Complexity Analysis for Termination by a Well-Quasi-Order

Sylvain Schmitz

Cachan, May 12th, 2017
Outline

- Vector Addition Systems
- Reachability
- Termination
- Complexity

well-quasi-orders (wqo) as a means to prove termination complexity

- combinatorial analysis of controlled bad sequences

- application reachability in vector addition systems (VAS)
Outline

Length Function Theorem (Figueira, Figueira, S., and Schnoebelen, '11)

Bad sequences over \mathbb{N}^d controlled by primitive recursive functions are of at most Ackermannian length.

Upper Bound Theorem (Leroux and S., '15)

Reachability in vector addition systems is in cubic Ackermann.
VECTOR ADDITION SYSTEMS
Vector Addition Systems

Springfield Power Plant

Can we produce unbounded electricity with no left-over uranium waste?

produce electricity

recycle uranium

(1,1)

(-1,-2)

(q,0,1)

(q,ω,0) is reachable
Can we produce unbounded electricity with no leftover uranium waste? Yes, \((q, \omega, 0)\) is reachable.
IMPORTANCE OF THE PROBLEM

Discrete Resources

- *modelling*: items, money, energy, molecules, …
- *distributed computing*: active threads in thread pool
- *data*: isomorphism types in data logics and data-centric systems

Central Decision Problem

Large number of problems interreducible with VAS reachability
 IMPORTANCE OF THE PROBLEM

Discrete Resources

- **modelling**: items, money, energy, molecules, ...
- **distributed computing**: active threads in thread pool
- **data**: isomorphism types in data logics and data-centric systems

Central Decision Problem

Large number of problems interreducible with VAS reachability
Importance of the Problem

- 1962: C. A. Petri: Petri nets
- 1976: R. J. Lipton: EXPSpace lower bound
- 1981: E. W. Mayr: decidability by decomposition
- 1982: J.-L. Lambert: decidability by decomposition
- 1992: S. R. Kosaraju: decidability by decomposition
- 2011: J. Leroux: decidability by Presburger inductive invariants
- 2015: this talk: cubic Ackermann upper bound
Perfect Marked Witness Graphs

$q, 0, 1 \rightarrow (q, \omega, \omega) \rightarrow q, \omega, 0

(1, 1)

(-1, -2)
Perfect Marked Witness Graphs

Characteristic System

\[0 + 1 \cdot a - 1 \cdot b = c\]

\[1 + 1 \cdot a - 2 \cdot b = 0\]

Homogeneous System

\[1 \cdot a - 1 \cdot b = c\]

\[1 \cdot a - 2 \cdot b = 0\]

\[a, b, c > 0\]
Perfect Marked Witness Graphs

Characteristic System

\[
0 + 1 \cdot a - 1 \cdot b = c \\
1 + 1 \cdot a - 2 \cdot b = 0
\]

Homogeneous System

\[
1 \cdot a - 1 \cdot b = c \\
1 \cdot a - 2 \cdot b = 0 \\
a, b, c > 0
\]

Solutions over \(\mathbb{N} \)

\((1,1,0)\)
\((4,2,2)\)
PERFECT MARKED WITNESS GRAPHS

Characteristic System

\[
\begin{align*}
0 + 1 \cdot a - 1 \cdot b &= c \\
1 + 1 \cdot a - 2 \cdot b &= 0
\end{align*}
\]

Homogeneous System

\[
\begin{align*}
1 \cdot a - 1 \cdot b &= c \\
1 \cdot a - 2 \cdot b &= 0
\end{align*}
\]

\[a, b, c > 0\]

Solutions over \(\mathbb{N}\)

\[(1,1,0) \quad (4,2,2)\]

Euler’s Lemma on associated system of equations

- Perform once

 \[(0,-1)\]

- Repeat

 \[(2,0)\]
Perfect Marked Witness Graphs
Perfect Marked Witness Graphs

Pumpable Paths: up to and down from (ω, ω)

$pump\ up + pump\ down + remainder = solution\ of\ homogeneous\ system$

(we picked a large enough solution)
Perfect Marked Witness Graphs
Perfect Marked Witness Graphs

Perfectness (aka Theta Condition)

0. solution of characteristic system:

1. solution of homogeneous system:

2. up/down pumpable paths: and

⇒ implies existence of a run
Perfect Marked Witness Graphs

Checking Perfectness

0. solution of characteristic system
 ▶ in \(\text{NPTime} \)

1. solution of homogeneous system
 ▶ in \(\text{NPTime} \)

2. up/down pumpable paths
 ▶ place boundedness problem, in \(\text{ExpSpace} \) [Demri ‘13, Blockelet and S. ‘11]
Imperfect Marked Witness Graphs

When imperfect: decompose in a set of sequences of graphs
Imperfect Marked Witness Graphs

0. solution of characteristic system
 ▶ otherwise, no run; empty decomposition
Imperfect Marked Witness Graphs

1. solution of homogeneous system
 a. otherwise, bound on number of uses of a transition
 b. or bound on an “ω” in input/output constraint
Imperfect Marked Witness Graphs

1. solution of homogeneous system

 a. otherwise, bound on number of uses of a transition

 Here, \(t_3 = 1 \) and \(t_5 = 0 \) in the characteristic system

 b. or bound on an “\(\omega \)” in input/output constraint
Imperfect Marked Witness Graphs

1. solution of homogeneous system
 a. otherwise, bound on number of uses of a transition

 ![Diagram](image)

 - here, \(t_3 = 1 \) and \(t_5 = 0 \) in the characteristic system

b. or bound on an “\(\omega \)” in input/output constraint
Imperfect Marked Witness Graphs

1. solution of homogeneous system
 a. otherwise, bound on number of uses of a transition

 ![Diagram of Vector Addition Systems]

 ▶ here, $t_3 = 1$ and $t_5 = 0$ in the characteristic system; decompose as

 ![Decomposed diagram of Vector Addition Systems]

 b. or bound on an “ω” in input/output constraint
Imperfect Marked Witness Graphs

2. up/down pumpable paths
 - otherwise, bound on some reachable/co-reachable coordinates
Improper Marked Witness Graphs

2. up/down pumpable paths
 ▶ otherwise, bound on some reachable/co-reachable coordinates

\[
\begin{align*}
q_0, 1, 0, 1 & \rightarrow q_0, \omega, \omega, \omega \\
(1, 1, -1) & \rightarrow q_0, \omega, \omega, \omega \\
(1, 0, 0) & \rightarrow q_1, \omega, \omega, \omega \\
(0, -1, 0) & \rightarrow q_1, \omega, \omega, \omega \\
(0, -1, 0) & \rightarrow q_1, 2, 2, 1
\end{align*}
\]
Imperfect Marked Witness Graphs

2. up/down pumpable paths
 ▶ otherwise, bound on some reachable/co-reachable coordinates

\[(1,1,-1)\]
\[q_0,1,0,1 \rightarrow q_0,\omega,\omega,\omega \rightarrow q_0,\omega,\omega \rightarrow (1,0,0) \rightarrow q_1,\omega,\omega,\omega \rightarrow q_1,2,2,1\]
\[(-1,0,1)\]

▶ here decompose as

\[q_0,2,\omega,0\]
\[(-1,0,1) \rightarrow (1,1,-1)\]
\[q_0,1,0,1 \rightarrow q_0,1,\omega,1 \rightarrow q_0,1,\omega,1 \rightarrow (1,0,0) \rightarrow q_1,2,\omega,1 \rightarrow q_1,2,2,1\]
\[(-1,0,1) \rightarrow (1,1,-1)\]
\[q_0,0,\omega,2\]
Vector Addition Systems
Reachability
Termination
Complexity

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

STRUCTURES: Sequences of Marked Witness Graphs

\[\sigma = \begin{array}{c}
M_0 \\
M_1 \\
M_k
\end{array} \]

Algorithm

\[S_0, S_1, \ldots: \text{finite sets of sequences of marked witness graphs} \]

init \(S_0 \)

\[\forall n : \text{if } S_n = \{ \sigma \} \cup S \text{ and } \text{perfect}(\sigma) \]

\[S_{n+1} = S \cup \text{decompose}(\sigma) \]

\[\text{otherwise stop: src} \rightarrow^* \text{tgt iff } S_n = \{ \} \]
Decomposition Algorithm

[Mayr’81, Kosaraju’82, Lambert’92]

Structures: Sequences of Marked Witness Graphs

\[\sigma = \text{src} \xrightarrow{a_1} \text{out}_0 \xrightarrow{\text{in}} \text{in}_1 \xrightarrow{\text{out}} \cdots \xrightarrow{\text{out}} \text{tgt} \]

Algorithm

\[S_0, S_1, \ldots : \text{finite sets of sequences of marked witness graphs} \]

\[
\begin{align*}
\text{init} & \quad S_0 \\
\forall n & \quad \text{if } S_n = \{\sigma\} \cup S \text{ and } \neg \text{perfect}(\sigma) \\
S_{n+1} & \overset{\text{def}}{=} S \cup (\text{decompose}(\sigma)) \\
\text{otherwise stop: } \text{src} \rightarrow^* \text{tgt} \text{ iff } S_n \neq \emptyset
\end{align*}
\]
Decomposition Algorithm

[Mayr’81, Kosaraju’82, Lambert’92]

Structures: Sequences of Marked Witness Graphs

$\sigma = \langle M_0, a_1, M_1, \ldots, M_k \rangle$

Algorithm

S_0, S_1, \ldots: finite sets of sequences of marked witness graphs

init S_0

$\forall n \quad \text{if } S_n = \{\sigma\} \cup S \text{ and } \neg \text{perfect} (\sigma)$

$S_{n+1} \overset{\text{def}}{=} S \cup (\text{decompose} (\sigma))$

• otherwise stop: $\text{src} \rightarrow^* \text{tgt}$ iff $S_n \neq \emptyset$
"Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

[Turing’49]
“Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops. To the pure mathematician it is natural to give an ordinal number.”

[Turing’49]
Termination

Ordinals
isomorphism classes of well-orders

Ranking Functions
\[f : \text{Conf} \to \alpha \text{ s.t. } c \to c' \text{ implies } f(c) > f(c') \]

For the Decomposition Algorithm
- into \(\omega^3 \)
- \(\sigma' \in \text{decompose}(\sigma) \text{ implies } f(\sigma) > f(\sigma') \)
TERMINATION

ORDINALS
isomorphism classes of well-orders

RANKING FUNCTIONS
\(f: \text{Conf} \to \alpha \) s.t. \(c \to c' \) implies \(f(c) > f(c') \)

FOR THE DECOMPOSITION ALGORITHM

- into \(\omega^3 \)
- \(\sigma' \in \text{decompose}(\sigma) \) implies \(f(\sigma) > f(\sigma') \)
The Length of Decreasing Sequences

- no upper bound in general
 e.g. in ω:

 \[
 N > N - 1 > N - 2 > \cdots > 1 > 0
 \]

- even with a fixed initial element
 e.g. in $\omega + 2$:

 \[
 \omega + 1 > \omega > N > \cdots > 1 > 0
 \]
The Length of Decreasing Sequences

- no upper bound in general
 e.g. in ω:

 \[N > N - 1 > N - 2 > \cdots > 1 > 0 \]

- even with a fixed initial element
 e.g. in $\omega + 2$:

 \[\omega + 1 > \omega > N > \cdots > 1 > 0 \]
Controlled Descending Sequences

- α an **ordinal**
- $\mathbb{N}: \alpha \rightarrow \mathbb{N}$ an **ordinal norm**
- $g: \mathbb{N} \rightarrow \mathbb{N}$ monotone a **control function**
- $n_0 \in \mathbb{N}$ an **initial norm**

- a sequence β_0, β_1, \ldots over α is (g, n_0)-controlled if
 \[\forall i. N(\beta_i) \leq g^i(n_0) \]

- (g, n_0)-controlled descending sequences $\beta_0 > \beta_1 > \ldots$ over α have a maximal length $L_{\alpha, g}(n_0)$
Controlled Descending Sequences

- α an ordinal
- $N: \alpha \to \mathbb{N}$ an ordinal norm
- $g: \mathbb{N} \to \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm
- a sequence β_0, β_1, \ldots over α is (g, n_0)-controlled if
 \[\forall i. N(\beta_i) \leq g^i(n_0) \]
- (g, n_0)-controlled descending sequences $\beta_0 > \beta_1 > \cdots$ over α have a maximal length $L_{\alpha, g}(n_0)$
Controlled Descending Sequences

- \(\alpha \) an ordinal
- \(\mathbb{N}: \alpha \to \mathbb{N} \) an ordinal norm
- \(g: \mathbb{N} \to \mathbb{N} \) monotone a control function
- \(n_0 \in \mathbb{N} \) an initial norm
- A sequence \(\beta_0, \beta_1, \ldots \) over \(\alpha \) is \((g, n_0)\)-controlled if
 \[\forall i. N(\beta_i) \leq g^i(n_0) \]
- \((g, n_0)\)-controlled descending sequences \(\beta_0 > \beta_1 > \cdots \) over \(\alpha \) have a maximal length \(L_{\alpha, g}(n_0) \)
Controlled Descending Sequences

- α an ordinal
- $\mathbb{N}: \alpha \to \mathbb{N}$ an ordinal norm
- $g: \mathbb{N} \to \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm
- a sequence β_0, β_1, \ldots over α is (g, n_0)-controlled if
 \[\forall i. N(\beta_i) \leq g^i(n_0) \]
- (g, n_0)-controlled descending sequences $\beta_0 > \beta_1 > \cdots$ over α have a maximal length $L_{\alpha,g}(n_0)$

Length Function Theorem (for Ordinals, S., '14)

Descending sequences over ω^ω^3 controlled by Ackermannian functions are of at most cubic Ackermannian length.
Controlled Descending Sequences

- α an ordinal
- $N: \alpha \to \mathbb{N}$ an ordinal norm
- $g: \mathbb{N} \to \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm
- a sequence β_0, β_1, \ldots over α is (g, n_0)-controlled if
 $$\forall i. N(\beta_i) \leq g^i(n_0)$$
- (g, n_0)-controlled descending sequences $\beta_0 > \beta_1 > \cdots$ over α have a maximal length $L_{\alpha, g}(n_0)$

Length Function Theorem (for Ordinals, S., ’14)

Descending sequences over ω^3 controlled by Ackermannian functions are of at most cubic Ackermannian length.
CONTROLLING DECOMPOSITIONS

0. no solution to characteristic system
 ▶ empty decomposition

1. no solution to homogeneous system
 a. bound on number of uses of a transition
 b. or bound on an “ω” in input/output constraint
 ▶ exponential blow-up

2. no up/down pumpable paths
 ▶ Ackermannian blow-up
CONTROLLING DECOMPOSITIONS

0. no solution to characteristic system
 ▶ empty decomposition

1. no solution to homogeneous system
 a. bound on number of uses of a transition
 b. or bound on an “ω” in input/output constraint
 ▶ exponential blow-up

2. no up/down pumpable paths
 ▶ Ackermannian blow-up
CONTROLLING DECOMPOSITIONS

0. no solution to characteristic system
 ▶ empty decomposition

1. no solution to homogeneous system
 a. bound on number of uses of a transition
 b. or bound on an “\(\omega\)” in input/output constraint
 ▶ exponential blow-up

2. no up/down pumpable paths
 ▶ Ackermannian blow-up
CONTROLLING DECOMPOSITIONS

0. no solution to characteristic system
 ▶ empty decomposition

1. no solution to homogeneous system
 a. bound on number of uses of a transition
 b. or bound on an “ω” in input/output constraint
 ▶ exponential blow-up

2. no up/down pumpable paths
 ▶ Ackermannian blow-up
Coverability Trees

[Karp and Miller '69]

Pumping up?

\[q_0, 1, 0, 1 \rightarrow q_0, \omega, \omega, \omega \]

\[(1, 1, -1) \]

\[(-1, 0, 1) \]
Coverability Trees

[Karp and Miller ‘69]

Pumping up?

$q_0, 1, 0, 1 \rightarrow q_0, \omega, \omega, \omega$

$(1, 1, -1)$

$(−1, 0, 1)$
Coverability Trees

[Karp and Miller '69]

Pumping up?

\[q_0,1,0,1 \rightarrow q_0,\omega,\omega,\omega \]

\[(-1,0,1) \]

Termination
\[Q \times N \]
\[\text{is a wqo:} \]
\[r\text{-bad sequence} \]
\[c_0, c_1, \ldots : \]
\[\not\exists i_0 < i_1 < \cdots < i_r \text{ s.t.} \]
\[c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r} \]

\[r\text{-bad sequences are finite} \]
Coverability Trees

[Karp and Miller ’69]

Pumping up?

\[q_{0,1,0,1} \rightarrow q_{0,\omega,\omega,\omega} \]

\[(-1,0,1) \]

\[(1,1,-1) \]

\[q_{0,1,0,1} \rightarrow q_{0,\omega,\omega,\omega} \]

\[(-1,0,1) \]
Coverability Trees

[Karp and Miller ‘69]

Pumping up?

\[q_0,1,0,1 \rightarrow q_0,\omega,\omega,\omega \]

\[(1,1,-1) \]

\[q_0,1,0,1 \]

\[(-1,0,1) \]

Termination

\[Q \times N^d \] is a wqo:

\[\text{r-bad sequence} \]

\[c_0, c_1, \ldots : \not\exists i_0 < i_1 < \cdots < i_r \text{ s.t.} \]

\[c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r} \]

\[\text{r-bad sequences are finite} \]
Coverability Trees

[Karp and Miller '69]

Pumping up?

$q_{0,1,0,1} \rightarrow q_{\omega,\omega,\omega}$

$q_{0,1,0,1} \rightarrow (1,1,-1)$

$q_{0,2,1,0}$

$q_{0,0,0,2}$

$q_{0,1,\omega,1}$

$q_{0,1,0,1}$

$(1,1,-1)$

$(-1,0,1)$

$(-1,0,1)$

$q_{0,0,0,2}$

$13/17$
Coverability Trees

[Karp and Miller ’69]

Pumping up?

$q_{0,1,0,1} \rightarrow q_{0,\omega,\omega,\omega}$

$(1,1,-1)$

$(−1,0,1)$
Coverability Graphs

[Karp and Miller '69]

Pumping up?

$q_{0},1,0,1 \rightarrow q_{0},\omega,\omega,\omega$

$(1,1,-1)$

$(−1,0,1)$
COVERABILITY GRAPHS

(Karp and Miller '69)

PUMPING UP?

$q_0, 1, 0, 1 \rightarrow q_0, \omega, \omega, \omega$

$(1,1,-1)$

$(−1,0,1)$

Termination

$Q \times N^d$ is a wqo:

r-bad sequence $c_0, c_1, ...$

$\not\exists i_0 < i_1 < \cdots < i_r$ s.t.

$c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r}$

r-bad sequences are finite
Coverability Graphs

[Karp and Miller '69]

Pumping up?

$$q_0,1,0,1 \rightarrow q_0,\omega,\omega,\omega$$

$$(-1,0,1)$$

Termination

$$Q \times \mathbb{N}^d$$ is a wqo:

- r-bad sequence $$c_0, c_1, \ldots$$: $$\nexists i_0 < i_1 < \cdots < i_r$$ s.t.
 $$c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r}$$

- r-bad sequences are finite
COVERABILITY GRAPHS

[Karp and Miller '69]

Pumping up?

\[(q_0, 1, 0, 1) \rightarrow (q_0, \omega, \omega, \omega) \]

\[(1, 1, -1) \]

\[(-1, 0, 1) \]

Termination

\(Q \times \mathbb{N}^d \) is a wqo:

- **r-bad sequence** \(c_0, c_1, \ldots \): \(\exists i_0 < i_1 < \cdots < i_r \) s.t.

\[c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r} \]

- **r-bad sequences are finite**
Coverability Graphs

[Karp and Miller ’69]

Pumping up?

\[q_0, 1, 0, 1 \rightarrow q_0, \omega, \omega, \omega \]

\[(1,1,-1) \]

\[(-1,0,1) \]

Termination

\(Q \times \mathbb{N}^d \) is a wqo:

- **r-bad sequence** \(c_0, c_1, \ldots \): \(\nexists i_0 < i_1 < \cdots < i_r \) s.t.

\[c_{i_0} \leq c_{i_1} \leq \cdots \leq c_{i_r} \]

- **r-bad sequences are finite**
Controlled Bad Sequences

- (A, \leq) a wqo
- $\| \cdot \| : A \to \mathbb{N}$ a norm
- $g : \mathbb{N} \to \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm

A sequence x_0, x_1, \ldots over A is (g, n_0)-controlled if

$$\forall i. \| x_i \| \leq g^i(n_0)$$

(g, n_0)-controlled r-bad sequences x_0, x_1, \ldots over A have a maximal length $L_{A, g, r}(n_0)$
CONTROLLED BAD SEQUENCES

- (A, \leq) a wqo
- $\| \cdot \| : A \rightarrow \mathbb{N}$ a norm
- $g: \mathbb{N} \rightarrow \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm
- a sequence x_0, x_1, \ldots over A is (g, n_0)-controlled if
 \[\forall i. \| x_i \| \leq g^i(n_0) \]
- (g, n_0)-controlled r-bad sequences x_0, x_1, \ldots over A have a maximal length $L_{A, g, r}(n_0)$
Controlled Bad Sequences

- (A, \leq) a wqo
- $\| \cdot \|: A \rightarrow \mathbb{N}$ a norm
- $g: \mathbb{N} \rightarrow \mathbb{N}$ monotone a control function
- $n_0 \in \mathbb{N}$ an initial norm
- a sequence x_0, x_1, \ldots over A is (g, n_0)-controlled if
 $$\forall i. \|x_i\| \leq g^i(n_0)$$
- (g, n_0)-controlled r-bad sequences x_0, x_1, \ldots over A have a maximal length $L_{A,g,r}(n_0)$
CONTROLLED BAD SEQUENCES

- \((A, \leq)\) a wqo
- \(\| \cdot \|: A \to \mathbb{N}\) a norm
- \(g: \mathbb{N} \to \mathbb{N}\) monotone a control function
- \(n_0 \in \mathbb{N}\) an initial norm
- a sequence \(x_0, x_1, \ldots\) over \(A\) is \((g, n_0)\)-controlled if
 \[
 \forall i. \|x_i\| \leq g^i(n_0)
 \]
- \((g, n_0)\)-controlled \(r\)-bad sequences \(x_0, x_1, \ldots\) over \(A\) have a maximal length \(L_{A, g, r}(n_0)\)

LENGTH FUNCTION THEOREM (FOR DICKSON’S LEMMA, FIGUEIRA ET AL., '11)

d-bad sequences over \(Q \times \mathbb{N}^d\) controlled by primitive recursive functions are of at most Ackermannian length.
Hitchhiker’s Guide to Galactic Complexity
HITCHHIKER’S GUIDE TO GALACTIC COMPLEXITY

- **Elementary**
 - F_3 = Tower
 - F_ω = Ackermann
 - F_{ω^3} = \bigcup e \text{ elementary } DTime(tower(e(n)))
Hitchhiker’s Guide to Galactic Complexity

\[F_3 \overset{\text{def}}{=} \bigcup_{e \text{ elementary}} \text{DTime}\left(\text{tower}(e(n))\right) \]

- **Elementary**
- **Primitive Recursive**
- **Multiply Recursive**
- **Vector Addition Systems**
- **Reachability**
- **Termination**
- **Complexity**
Hitchhiker’s Guide to Galactic Complexity

\[F_\omega \overset{\text{def}}{=} \bigcup_{p \text{ primitive recursive}} \text{DTIME}(\text{ackermann}(p(n))) \]

- **Elementary**
 - \(F_3 = \text{Tower} \)
 - \(F_\omega = \text{Ackermann} \)

- **Primitive Recursive**

- **Multiply Recursive**

Vector Addition Systems Reachability Termination Complexity
Hitchhiker’s Guide to Galactic Complexity

Elementary

Primitive Recursive

Multiply Recursive

$F_{\omega} = \text{Ackermann}$

$F_{3} = \text{Tower}$

$F_{\omega^{3}} \overset{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{< \omega^{3}}} \text{DTime}(F_{\omega^{3}}(p(n)))$
CONCLUDING REMARKS

- reachability problem: \(\text{ExpSpace} < ? < \mathcal{F}_{\omega^3} \)

- decomposition algorithm:
 - Ackermann lower bound on the algorithm
 - solves more than just reachability:
 e.g. inclusion problem between downward-closures of VAS languages is Ackermann-hard [Zetzsche ‘16]
Concluding Remarks

- reachability problem: \(\text{ExpSpace} < ? < F_{\omega^3} \)

- decomposition algorithm:
 - Ackermann lower bound on the algorithm

- solves more than just reachability:
 e.g. inclusion problem between downward-closures of VAS languages is Ackermann-hard [Zetzsche ’16]
CONCLUDING REMARKS

- reachability problem: ExpSpace $< ? < F_{\omega^3}$

- decomposition algorithm:
 - Ackermann lower bound on the algorithm

- solves more than just reachability:
 e.g. inclusion problem between downward-closures of VAS languages is Ackermann-hard [Zetzsche ’16]
Hot Topics?