Verification of Population Protocols

Javier Esparza
Technical University of Munich

Joint work with
Pierre Ganty, Jérôme Leroux, Rupak Majumdar, and
Michael Blondin, Stefan Jaax, and Philipp Meyer
Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
• Deaf Black Ninjas meet at a Zen garden in the dark
• They must decide by majority to attack or not ("don’t attack" if tie)
Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not ("don’t attack" if tie)
Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not ("don’t attack" if tie)
- How can they conduct the vote?
• Ninjas randomly wander around the garden, interacting when they bump into each other
Deaf Black Ninjas in the Dark

- Ninjas randomly wander around the garden, interacting when they bump into each other.
- Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.
• Ninjas randomly wander around the garden, interacting when they bump into each other

• Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.

• Initially all Ninjas are Active, and their initial estimation is their own vote
• Ninjas randomly wander around the garden, interacting when they bump into each other
• Each Ninja stores their current estimation of the final outcome of the vote (Yes or No). Additionally, it is Active or Passive.
• Initially all Ninjas are Active, and their initial estimation is their own vote
• Ninjas follow this protocol:

\[
\begin{align*}
(\text{YA}, \text{NA}) & \rightarrow (\text{NP}, \text{NP}) \quad \text{(opposite votes “cancel”)} \\
(\text{YA}, \text{NP}) & \rightarrow (\text{YA}, \text{YP}) \quad \text{(active “survivors” tell outcome to passive Ninjas)} \\
(\text{NA}, \text{YP}) & \rightarrow (\text{NA}, \text{NP}) \\
(\text{NP}, \text{YP}) & \rightarrow (\text{NP}, \text{NP}) \quad \text{(to deal with ties)}
\end{align*}
\]
Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of

- identical, finite-state, and mobile agents

like... and Ninjas
Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

- identical, finite-state, and mobile agents

like

...and Ninjas
Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of

- identical, finite-state, and mobile agents

like

- ad-hoc networks of mobile sensors
Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of

- identical, finite-state, and mobile agents

like

- ad-hoc networks of mobile sensors
- “soups” of interacting molecules
Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin *et al.*
Designed to model collections of

```
identical, finite-state, and mobile agents
```

like

- ad-hoc networks of mobile sensors
- “soups” of interacting molecules
- people in social networks
Population protocols (PP)

Theoretical model for distributed computation
Proposed in 2004 by Angluin et al.
Designed to model collections of

identical, finite-state, and mobile agents

like

- ad-hoc networks of mobile sensors
- “soups” of interacting molecules
- people in social networks
- ... and Ninjas
A PP-scheme is a pair \((Q, \Delta)\), where

- \(Q\) is a finite set of states, and
- \(\Delta \subseteq (Q \times Q) \times (Q \times Q)\) is a set of interactions.
A PP-scheme is a pair \((Q, \Delta)\), where

- \(Q\) is a finite set of states, and
- \(\Delta \subseteq (Q \times Q) \times (Q \times Q)\) is a set of interactions.

Intuition:

\[
\text{if } (q_1, q_2) \mapsto (q'_1, q'_2) \in \Delta \text{ and two agents in states } q_1 \text{ and } q_2 \text{ “meet”,}
\]

\[
\text{then the agents can interact and change their states to } q'_1, q'_2.
\]

Assumption: at least one interaction for each pair of states (possibly \((q_1, q_2) \mapsto (q_1, q_2)\))
Configuration: mapping $C : Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

\[q_1 \quad q_2 \quad q_3 \quad q_4 \]

\[\begin{array}{cccc}
2 & 1 & 0 & 3 \\
\end{array} \]

\[(q_1, q_2) \mapsto (q_3, q_4)\]
Semantics

Configuration: mapping $C : Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

\[
\begin{array}{cccc}
q_1 & q_2 & q_3 & q_4 \\
2 & 1 & 0 & 3 \\
\end{array} \quad \rightarrow \quad \\
\begin{array}{cccc}
q_1 & q_2 & q_3 & q_4 \\
1 & 0 & 1 & 4 \\
\end{array}
\]

\[(q_1, q_2) \mapsto (q_3, q_4)\]
Semantics

Configuration: mapping $C: Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

\[
\begin{align*}
q_1 & \quad q_2 & \quad q_3 & \quad q_4 & \quad q_1 \quad q_2 \quad q_3 \quad q_4 \\
2 & \quad 1 & \quad 0 & \quad 3 & \quad 1 & \quad 0 & \quad 1 & \quad 4 \\
(q_1, q_2) & \mapsto (q_3, q_4)
\end{align*}
\]

If several steps are possible, a **random** scheduler chooses one (fixed nonzero prob. for each pair).
Semantics

Configuration: mapping $C : Q \rightarrow \mathbb{N}$, where $C(q)$ is the current number of agents in state q.

$C(q_1) = 2$, $C(q_2) = 1$, $C(q_3) = 0$, $C(q_4) = 3$

If several steps are possible, a random scheduler chooses one (fixed nonzero prob. for each pair)

Execution: infinite sequence $C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow \cdots$ of steps
A population protocol (PP) consists of

- A PP-scheme \((Q, \Delta)\)

\[Q: \quad \bigcirc \]
A population protocol (PP) consists of

- A PP-scheme \((Q, \Delta)\)
- An ordered subset \((i_1, \ldots, i_k)\) of input states

\(Q:\)

\(i_1\) \hspace{1cm} \(i_2\)
A population protocol (PP) consists of

- A PP-scheme \((Q, \Delta)\)
- An ordered subset \((i_1, \ldots, i_k)\) of input states
- A partition of \(Q\) into 1-states (green) and 0-states (pink)
A population protocol (PP) consists of

- A PP-scheme \((Q, \Delta)\)
- An ordered subset \((i_1, \ldots, i_k)\) of input states
- A partition of \(Q\) into 1-states (green) and 0-states (pink)

An execution reaches consensus \(b \in \{0, 1\}\) if from some point on every agent stays within the \(b\)-states.
Computing with PPs

A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

\[n_1 \cdot i_1 + n_2 \cdot i_2 + \cdots + n_k \cdot i_k \]

reach consensus b with probability 1.

Equivalently: executions that do not reach consensus or reach consensus 1−b have probability 0.

A PP computes $P(x_1, \ldots, x_n)$ if it computes $P(n_1, \ldots, n_k)$ for every input (n_1, \ldots, n_k).
A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1$$

Equivalently: executions that do not reach consensus or reach consensus $1 - b$ have probability 0.
A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1 + n_2 \cdot i_2$$
A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1 + n_2 \cdot i_2 + \cdots + n_k \cdot i_k$$

Equivalently: executions that do not reach consensus or reach consensus $1 - b$ have probability 0.
A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1 + n_2 \cdot i_2 + \cdots + n_k \cdot i_k$$

reach consensus b with probability 1.
A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1 + n_2 \cdot i_2 + \cdots + n_k \cdot i_k$$

reach consensus b with probability 1.

Equivalently: executions that do not reach consensus or reach consensus $1 - b$ have probability 0.
Computing with PPs

A PP computes the value b for input (n_1, n_2, \ldots, n_k) if executions starting at the configuration

$$n_1 \cdot i_1 + n_2 \cdot i_2 + \cdots + n_k \cdot i_k$$

reach consensus b with probability 1.

Equivalently: executions that do not reach consensus or reach consensus $1 - b$ have probability 0

A PP computes $P(x_1, \ldots, x_n): \mathbb{N}^n \rightarrow \{0, 1\}$ if it computes $P(n_1, \ldots, n_k)$ for every input (n_1, \ldots, n_k)
Previous work

Expressive power thoroughly studied:

- PPs compute exactly the Presburger predicates (Angluin et al. 2007)
Previous work

Expressive power thoroughly studied:

- PPs compute exactly the Presburger predicates (Angluin et al., 2007)
- Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis and Spirakis, 2008)
- Fault-tolerant PPs (Delporte-Gallet et al. 2006)
- Private computation in PPs (Delporte-Gallet et al. 2007)
- PPs with identifiers (Guerraoui et al. 2007)
- PPs with a leader (Angluin et al. 2008)
- Mediated PPs (Michail et al., 2011)
- Trustful PPs (Bournez et al., 2013)
Q: And if the processes only reach consensus with probability < 1?

A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Q: And how do I know if my protocol is well-specified?

A: That's your problem . . .

Well-specification problem: Given a protocol, decide if it is well-specified.

Correctness problem: Given a protocol and a Presburger predicate, decide if the protocol is well-specified and computes the predicate.
Q: And if the processes only reach consensus with probability < 1?

A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?

A: Then your protocol is not well-specified. Repair it!

Q: And how do I know if my protocol is well-specified?

A: That's your problem . . .

Well-specification problem: Given a protocol, decide if it is well-specified.

Correctness problem: Given a protocol and a Presburger predicate, decide if the protocol is well-specified and computes the predicate.
Q: And if the processes only reach consensus with probability < 1?
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?
Q: And if the processes only reach consensus with probability < 1?
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?
A: Then your protocol is not well-specified. Repair it!
Q: And if the processes only reach consensus with probability < 1?
A: *Then your protocol is not well-specified. Repair it!*

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?
A: *Then your protocol is not well-specified. Repair it!*

Q: And how do I know if my protocol is well-specified?
Q: And if the processes only reach consensus with probability < 1?
A: Then your protocol is not well-specified. Repair it!

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?
A: Then your protocol is not well-specified. Repair it!

Q: And how do I know if my protocol is well-specified?
A: That’s your problem . . .
Q: And if the processes only reach consensus with probability < 1?
A: *Then your protocol is not well-specified. Repair it!*

Q: And if the processes may reach consensus 0 and 1 for the same input, both with positive probability?
A: *Then your protocol is not well-specified. Repair it!*

Q: And how do I know if my protocol is well-specified?
A: *That’s your problem . . .*

Well-specification problem: Given a protocol, decide if it is well-specified.

Correctness problem: Given a protocol and a Presburger predicate, decide if the protocol is well-specified and computes the predicate.
Verifying population protocols: Previous work

• For each input, the semantics of the protocol is a finite-state Markov chain.
• The semantics for all inputs is an infinite collection of finite-state Markov chains.
• Use model-checkers (SPIN, PRISM, ...) to verify correctness for some inputs. Pang et al., 2008; Sun et al., 2009; Chatzigiannakis et al., 2010; Clément et al., 2011.
• Use interactive theorem provers (Coq) to prove correctness of a specific protocol. Deng et al., 2009 and 2011.

Not complete or not automatic.
• For each input, the semantics of the protocol is a finite-state Markov chain

• The semantics for all inputs is an infinite collection of finite-state Markov chains
Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain
- The semantics for all inputs is an infinite collection of finite-state Markov chains
- Use model-checkers (SPIN, PRISM, ...) to verify correctness for some inputs

Pang et al., 2008; Sun et al., 2009
Chatziigiannakis et al., 2010; Clément et al., 2011
• For each input, the semantics of the protocol is a finite-state Markov chain
• The semantics for all inputs is an infinite collection of finite-state Markov chains
• Use model-checkers (SPIN, PRISM, ...) to verify correctness for some inputs
 Pang et al., 2008; Sun et al., 2009
 Chatzigiannakis et al., 2010; Clément et al., 2011
• Use interactive theorem provers (Coq) to prove correctness of a specific protocol
 Deng et al., 2009 and 2011
Verifying population protocols: Previous work

- For each input, the semantics of the protocol is a finite-state Markov chain.
- The semantics for all inputs is an infinite collection of finite-state Markov chains.
- Use model-checkers (SPIN, PRISM, ...) to verify correctness for some inputs.
 - Pang et al., 2008; Sun et al., 2009
 - Chatzigiannakis et al., 2010; Clément et al., 2011
- Use interactive theorem provers (Coq) to prove correctness of a specific protocol.
 - Deng et al., 2009 and 2011

Not complete or not automatic.
Main results

Are the well-specification and correctness problems decidable?
Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.
Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.

Theorem: The well-specification and correctness problems can be reduced to the reachability problem for Petri nets, and are thus decidable.
Main results

Are the well-specification and correctness problems decidable?
Open for about 10 years.

Theorem: The well-specification and correctness problems can be reduced to the reachability problem for Petri nets, and are thus decidable.

Theorem: The reachability problem for Petri nets can be reduced to the well-specification and correctness problems for PPs.
<table>
<thead>
<tr>
<th>Population protocols</th>
<th>Petri nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Population protocols</td>
<td>Petri nets</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Interaction: $(q_1, q_2) \mapsto (q'_1, q'_2)$</td>
<td>Transition with input places q_1, q_2 and output places q'_1, q'_2</td>
</tr>
<tr>
<td>Population protocols</td>
<td>Petri nets</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Interaction</td>
<td>Transition with input places q_1, q_2 output places q'_1, q'_2</td>
</tr>
<tr>
<td>$(q_1, q_2) \mapsto (q'_1, q'_2)$</td>
<td></td>
</tr>
<tr>
<td>PP-scheme</td>
<td>Net without marking</td>
</tr>
</tbody>
</table>
From PPs to Petri nets

<table>
<thead>
<tr>
<th>Population protocols</th>
<th>Petri nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Interaction</td>
<td>Transition with</td>
</tr>
<tr>
<td>((q_1, q_2) \mapsto (q'_1, q'_2))</td>
<td>input places (q_1, q_2)</td>
</tr>
<tr>
<td>PP-scheme</td>
<td>Net without marking</td>
</tr>
<tr>
<td>Configuration</td>
<td>Marking</td>
</tr>
</tbody>
</table>

Input places: \(q_1, q_2\)

Output places: \(q'_1, q'_2\)
From PPs to Petri nets

<table>
<thead>
<tr>
<th>Population protocols</th>
<th>Petri nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Interaction</td>
<td>Transition with</td>
</tr>
<tr>
<td>$(q_1, q_2) \mapsto (q_1', q_2')$</td>
<td>input places q_1, q_2</td>
</tr>
<tr>
<td></td>
<td>output places q_1', q_2'</td>
</tr>
<tr>
<td>PP-scheme</td>
<td>Net without marking</td>
</tr>
<tr>
<td>Configuration</td>
<td>Marking</td>
</tr>
<tr>
<td>Configuration graph</td>
<td>Reachability graph</td>
</tr>
<tr>
<td>Population protocols</td>
<td>Petri nets</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>State</td>
<td>Place</td>
</tr>
<tr>
<td>Interaction $(q_1, q_2) \rightarrow (q'_1, q'_2)$</td>
<td>Transition with input places q_1, q_2 (\text{output places} q'_1, q'_2)</td>
</tr>
<tr>
<td>PP-scheme</td>
<td>Net \text{ without marking}</td>
</tr>
<tr>
<td>Configuration</td>
<td>Marking</td>
</tr>
<tr>
<td>Configuration graph</td>
<td>Reachability graph</td>
</tr>
<tr>
<td>PP</td>
<td>Net + infinite family of initial markings</td>
</tr>
</tbody>
</table>
Petri net of the majority protocol
Reducing well-specification to a reachability problem

Configuration graph of a PP:

- **Nodes**: all (infinitely many) possible configurations
- **Edges**: steps
Reducing well-specification to a reachability problem

Configuration graph of a PP:

- **Nodes**: all (infinitely many) possible configurations
- **Edges**: steps

Fact: Infinite, but every node has only finitely many successors.
Reducing well-specification to a reachability problem

Configuration graph of a PP:

- **Nodes**: all (infinitely many) possible configurations
- **Edges**: steps

Fact: Infinite, but every node has only finitely many successors.

Fact: Every execution of a PP gets eventually trapped in a bottom SCC of its configuration graph w.p.1, and visits all configurations of the SCC infinitely often w.p.1.
Reducing well-specification to a reachability problem

Bottom configuration: configuration of a bottom SCC.

Fact: A PP is ill-specified iff there is

- an initial configuration C, and
- two bottom configurations C_0 and C_1, reachable from C

such that C_0 has at least one agent in a 0-state, and C_1 has at least one agent in a 1-state.
Theorem 1: Given two (possibly infinite!) Presburger sets of configurations C_1, C_2 of a Petri net, it is decidable if some configuration of C_2 is reachable from some configuration of C_1.

Easy reduction to the reachability problem for Petri nets.
Well-specification is decidable

Theorem 1: Given two (possibly infinite!) Presburger sets of configurations C_1, C_2 of a Petri net, it is decidable if some configuration of C_2 is reachable from some configuration of C_1.

Easy reduction to the reachability problem for Petri nets.

Theorem 2: The set of all configurations belonging to all bottom SCCs from all configurations is an effectively Presburger set.
Well-specification is decidable

Theorem 1: Given two (possibly infinite!) Presburger sets of configurations C_1, C_2 of a Petri net, it is decidable if some configuration of C_2 is reachable from some configuration of C_1.

Easy reduction to the reachability problem for Petri nets.

Theorem 2: The set of all configurations belonging to all bottom SCCs from all configurations is an **effectively Presburger** set.

“Presburgerness” follows immediately from a classical result by Eilenberg and Schützenberger (1969) on rational sets in commutative monoids.
Theorem 1: Given two (possibly infinite!) Presburger sets of configurations C_1, C_2 of a Petri net, it is decidable if some configuration of C_2 is reachable from some configuration of C_1.

Easy reduction to the reachability problem for Petri nets.

Theorem 2: The set of all configurations belonging to all bottom SCCs from all configurations is an effectively Presburger set.

“Presburgerness” follows immediately from a classical result by Eilenberg and Schützenberger (1969) on rational sets in commutative monoids.

Effectiveness follows from a bound on the size of the Presburger representation due to Leroux (2011).
Well-specification is decidable

- S: protocol scheme
- \mathcal{I}: set of all initial configurations
- \mathcal{B}_b (where $b \in \{0, 1\}$): set of all bottom configurations with at least one agent in a b-state
Well-specification is decidable

- \(S \): protocol scheme
- \(I \): set of all initial configurations
- \(B_b \) (where \(b \in \{0, 1\} \)): set of all bottom configurations with at least one agent in a \(b \)-state

Decision procedure:

1. Construct the net \(S \parallel S \) ("two copies of \(S \) side by side").
2. Construct the set \(I_2 = \{(C, C) | C \in I\} \) of configurations of \(S \parallel S \).
3. Check if \(B_0 \times B_1 \) is reachable from \(I_2 \). \(B_0 \times B_1 \) is effectively Presburger by Theorem 2, the check is effective by Theorem 1.
Well-specification is decidable

- S: protocol scheme
- \mathcal{I}: set of all initial configurations
- \mathcal{B}_b (where $b \in \{0, 1\}$): set of all bottom configurations with at least one agent in a b-state

Decision procedure:

- Construct the net $S \parallel S$ ("two copies of S side by side").
Well-specification is decidable

- S: protocol scheme
- I: set of all initial configurations
- B_b (where $b \in \{0, 1\}$): set of all bottom configurations with at least one agent in a b-state

Decision procedure:

- Construct the net $S \parallel S$ (“two copies of S side by side”).
- Construct the set $I_2 = \{(C, C) \mid C \in I\}$ of configurations of $S \parallel S$.
 Presburger, because I is Presburger.
Well-specification is decidable

- S: protocol scheme
- I: set of all initial configurations
- B_b (where $b \in \{0, 1\}$): set of all bottom configurations with at least one agent in a b-state

Decision procedure:

- Construct the net $S \parallel S$ ("two copies of S side by side").
- Construct the set $I_2 = \{(C, C) \mid C \in I\}$ of configurations of $S \parallel S$.
- Presburger, because I is Presburger.
- Check if $B_0 \times B_1$ is reachable from I_2
 $B_0 \times B_1$ is effectively Presburger by Theorem 2, the check is effective by Theorem 1.
Given: A PP P, a Presburger predicate Π

 Decide: Does P compute Π?

Given: A well-specified PP P

Compute: A Presburger formula (or semilinear representation of) the predicate computed by P.
Search for a subclass of the class WS of well-specified protocols that

- Has a membership problem of reasonable complexity.
- Can compute all Presburger predicates.
Search for a subclass of the class WS of well-specified protocols that

- Has a membership problem of reasonable complexity.
- Can compute all Presburger predicates.

Many protocols from the literature are silent: Executions end w.p.1 in terminal configurations that enable no transitions.

Equivalent definition: bottom SCCs contain only one configuration.
Search for a subclass of the class WS of well-specified protocols that

- Has a membership problem of reasonable complexity.
- Can compute all Presburger predicates.

Many protocols from the literature are silent: Executions end w.p.1 in terminal configurations that enable no transitions.

Equivalent definition: bottom SCCs contain only one configuration.

Proposition: WS^2 protocols (well specified and silent) can compute all Presburger predicates.
Fighting complexity I: The class WS^2

Search for a subclass of the class WS of well-specified protocols that

- Has a membership problem of reasonable complexity.
- Can compute all Presburger predicates.

Many protocols from the literature are silent: Executions end w.p.1 in terminal configurations that enable no transitions.

Equivalent definition: bottom SCCs contain only one configuration.

Proposition: WS^2 protocols (well specified and silent) can compute all Presburger predicates.

Proposition: Petri net reachability is reducible to the membership problem for WS^2.
WS^2: Well-sp. silent

Termination
For every reachable configuration C there exists an execution leading from C to a terminal conf. C_{\perp}

Consensus
All terminal configurations reachable from a given initial configuration form the same consensus.
Fighting complexity II: The class WS^3

WS^2: Well-sp. silent

Termination
For every reachable configuration C there exists an execution leading from C to a terminal conf. $C_{⊥}$

Consensus
All terminal configurations reachable from a given initial configuration form the same consensus.

WS^3: Well-sp. strongly silent

Layered Termination
For every configuration C there exists a layered execution leading from C to a terminal configuration $C_{⊥}$

Strong Consensus
All terminal configurations potentially reachable from a given initial configuration form the same consensus.
Layered Termination

A protocol is layered if there is a partition of the set T of transitions into layers T_1, \ldots, T_n s.t. for every configuration C (reachable or not):

- all executions from C containing only transitions of a single layer are finite.
- if all transitions of T_i are disabled at C, then they cannot be re-enabled by any sequence of transitions of T_{i+1}, \ldots, T_n.

An execution is layered if it “respects the layers”, i.e., if it belongs to $T_1^* T_2^* \ldots T_n^*$.
A protocol is **layered** if there is a partition of the set T of transitions into layers T_1, \ldots, T_n s.t. for every configuration C (reachable or not):

- all executions from C containing only transitions of a single layer are finite.
- if all transitions of T_i are disabled at C, then they cannot be re-enabled by any sequence of transitions of T_{i+1}, \ldots, T_n.

An execution is **layered** if it “respects the layers”, i.e., if it belongs to $T_1^* T_2^* \ldots T_n^*$.

Fact: For every configuration C (reachable or not) there exists a layered execution leading from C to a terminal configuration C_\bot.
Layered Termination

C_0

T_1

T_2

\ldots

T_n
Layered Termination

\[C_0 \xrightarrow{T_1^*} \bullet \]

\[
\begin{array}{c}
T_1 \\
\hline
T_2 \\
\hline
\ldots \\
\hline
T_n
\end{array}
\]
Layered Termination

$C_0 \xrightarrow{T_1^*} C \xrightarrow{T_2^*} \ldots \xrightarrow{T_n^*}$
Layered Termination

$C_0 \xrightarrow{T_1^*} T_2^* \xrightarrow{} \cdots \xrightarrow{}$
Layered Termination

\[C_0 \xrightarrow{T_1^*} C_1 \xrightarrow{T_2^*} \cdots \xrightarrow{T_n^*} C_{\perp} \]
Lemma: Deciding Layered Termination is in NP.

Proof sketch:

• Guess layers.
• Test that each individual layer terminates.
• Test that lower layers cannot re-enable higher layers.
• Simple syntactic check.
Complexity of checking Layered Termination

Lemma: Deciding Layered Termination is in NP.

Proof sketch:

- **Guess layers.**
- **Test that each individual layer terminates.**
 - Reducible to a Linear Programming Problem
- **Test that lower layers cannot re-enable higher layers.**
 - Simple syntactic check.
Replace reachability by \textit{cruder} relation called \textit{potential reachability}:

\[
\text{Reachability} \implies \text{Potential Reachability} \\
\text{Potential Reachability} \not\implies \text{Reachability}
\]

Potential reachability is defined in terms of a class of linear invariants derivable from the Petri net of the protocol by syntactic means (place invariants, siphons, traps).

A configuration C' is \textit{potentially reachable} from C if both C and C' satisfy the same invariants of the class.

Lemma: Deciding Strong Consensus is in co-NP.
Completeness

Lemma: All well-specified population protocols can be represented by an equivalent population protocol satisfying **Layered Termination** and **Strong Consensus**.

By quantifier elimination, all predicates computable by Population Protocols can be defined as boolean combinations of

- **Threshold:** Is the weighted sum of the input values larger than a given threshold?
 \[\sum_i \alpha_i x_i > c \]

- **Remainder:** Is the sum of the input values modulo a given \(m \) equal to a given \(c \)?
 \[\sum_i \alpha_i x_i \mod m = c \]

- Give \(WS^3 \) protocols for Threshold and Remainder predicates
- Prove that \(WS^3 \) protocols are closed under conjunction and negation.
On top of the SMT-solver Z3.

Our tool reads a protocol and constructs two sets of constraints:

- The first is satisfiable iff. Layered Termination holds.
- The second is unsatisfiable iff. Strong Consensus holds.

Protocols from the literature for Majority, Threshold, Remainder, etc. belong to \mathcal{WS}^3.
Experimental Results

Experiments were performed on a machine equipped with an Intel Core i7-4810MQ CPU and 16 GB of RAM.

| ℓ_{max} | $|Q|$ | $|T|$ | Time[s] |
|---------------------|-------|-------|---------|
| 3 | 28 | 288 | 8.0 |
| 4 | 36 | 478 | 26.5 |
| 5 | 44 | 716 | 97.6 |
| 6 | 52 | 1002 | 243.4 |
| 7 | 60 | 1336 | 565.0 |
| 8 | 68 | 1718 | 1019.7 |
| 9 | 76 | 2148 | 2375.9 |
| 10 | 84 | 2626 | timeout |

| m | $|Q|$ | $|T|$ | Time[s] |
|-----|-------|-------|---------|
| 10 | 12 | 65 | 0.4 |
| 20 | 22 | 230 | 2.8 |
| 30 | 32 | 495 | 15.9 |
| 40 | 42 | 860 | 79.3 |
| 50 | 52 | 1325 | 440.3 |
| 60 | 62 | 1890 | 3055.4 |
| 70 | 72 | 2555 | 3176.5 |
| 80 | 82 | 3320 | timeout |
Experimental Results

| c | $|Q|$ | $|T|$ | Time [s] |
|-----|-------|-------|----------|
| 20 | 21 | 210 | 1.5 |
| 25 | 26 | 325 | 3.3 |
| 30 | 31 | 465 | 7.7 |
| 35 | 36 | 630 | 20.8 |
| 40 | 41 | 820 | 106.9 |
| 45 | 46 | 1035 | 295.6 |
| 50 | 51 | 1275 | 181.6 |
| 55 | 56 | 1540 | timeout |

| c | $|Q|$ | $|T|$ | Time [s] |
|-----|-------|-------|----------|
| 50 | 51 | 99 | 11.8 |
| 100 | 101 | 199 | 44.8 |
| 150 | 151 | 299 | 369.1 |
| 200 | 201 | 399 | 778.8 |
| 250 | 251 | 499 | 1554.2 |
| 300 | 301 | 599 | 2782.5 |
| 325 | 326 | 649 | 3470.8 |
| 350 | 351 | 699 | timeout |

[1] Chatzigiannakis et al., 2010

[2] Clement et al., 2011
Conclusions

• The natural verification problems for population protocols are decidable.
• Efficient verification algorithms for the class WS^3.
• Implementation on top of SMT-solvers.

Many open questions:
▶ Complexity for immediate observation and immediate transmission protocols
▶ Continuous Petri nets as abstractions
▶ Expressive power of PP in non-uniform computational models
▶ Applications to theoretical chemistry and systems biology
▶ Correctness problem and convergence speed for WS^3 protocols.
▶ Fault localization and repair.
▶ Synthesis of WS^3 protocols.
Conclusions

- The natural verification problems for population protocols are decidable.
- Efficient verification algorithms for the class WS^3.
- Implementation on top of SMT-solvers.
- Many open questions:
 - Complexity for immediate observation and immediate transmission protocols
 - Continuous Petri nets as abstractions
 - Expressive power of PP in non-uniform computational models
 - Applications to theoretical chemistry and systems biology
 - Correctness problem and convergence speed for WS^3 protocols.
 - Fault localization and repair.
 - Synthesis of WS^3 protocols.
Thank You