Exercise 1 (Comparison). Let us compare the reduction technique based on ample sets with Petri net unfoldings. We shall see that both have advantages and disadvantages over each other.

For a Petri net N, let $U(N)$ be its unfolding and $M(N)$ be the associated transition system in which, for simplicity, we assume all actions to be invisible, and that the independence relation used for reduction is maximal.

1. First, construct a Petri net N with two transitions a, b such that: (i) the input places of a and b overlap; (ii) a and b are independent in $M(N)$.

In the following, let $(N_k)_{k \geq 1}$ be a family of 1-safe Petri nets such that for all k, the size of N_k is $O(k)$.

2. Construct a family of nets such that for all k, any complete prefix of $U(N_k)$ is at least of size 2^k, but $red(M(N_k))$ is of size $O(k)$.

3. Construct a family of nets such that for all k, $red(M(N_k))$ is at least of size 2^k, but there is a complete prefix of $U(N_k)$ of size $O(k)$.

Hint: It suffices to regard nets whose rechability graph is acyclic. For (3), try to construct N_k from k separate components such that $U(N_k)$ is simply the juxtaposition of the unfoldings of the components.

Exercise 2 (Adequate Partial Orders). A partial order \prec between events is adequate if the three following conditions are verified:

(a) \prec is well-founded,

(b) $|t| \preceq |t'|$ implies $t \prec t'$, and

(c) \prec is preserved by finite extensions: as in the lecture notes, if $t \prec t'$ and $B(t) = B(t')$, and E and E' are two isomorphic extensions of $|t|$ and $|t'|$ with $|u| = |t| \oplus E$ and $|u'| = |t'| \oplus E'$, then $u \prec u'$.

As you can guess, adequate partial orders result in complete unfoldings. (An event e is a cutoff if there exists $f \prec e$ such that the markings associated with e and f are the same.)

1. Show that \prec_s defined by $t \prec_s t'$ iff $|t| < |t'|$ is adequate.

2. Construct the finite unfolding of the following Petri net using \prec_s; how does the size of this unfolding relate to the number of reachable markings?
3. Suppose we define an arbitrary total order \ll on the transitions T of the Petri net, i.e. they are $t_1 \ll \cdots \ll t_n$. Given a set S of events and conditions of Q, $\varphi(S)$ is the sequence $t_1^{i_1} \cdots t_n^{i_n}$ in T^* where i_j is the number of events labeled by t_j in S. We also note \ll for the lexicographic order on T^*.

Show that \prec_e defined by $t \prec_e t' \text{ iff } ||t|| < ||t'||$ or $||t|| = ||t'||$ and $\varphi(|t|) \ll \varphi(|t'|)$ is adequate. Construct the finite unfolding for the previous Petri net using \prec_e.

4. There might still be examples where \prec_e performs poorly. One solution would be to use a total adequate order; why? Give a 1-safe Petri net that shows that \prec_e is not total.

Exercise 3 (Computing $\text{pre}^*(C)$). Consider the pushdown system represented below, with stack alphabet $\Gamma = \{a, b\}$.

![Diagram of a pushdown system]

Apply the algorithm described in the lecture notes to compute a P-automaton accepting $\text{pre}^*(p_6b^*)$.

Exercise 4 (Labelled Pushdown Systems). Let $P = (P, \Gamma, \Delta, \Sigma)$ be a labelled pushdown system, i.e. the rules in Δ are of the form $pA \xrightarrow{a} qw$, where $p, q \in P$ are control locations,
A ∈ Γ and w ∈ Γ* are stack symbols, and additionally a ∈ Σ is an *action*. The set of configurations Con(𝑃) consists of the tuples qw with q ∈ P and w ∈ Γ*. For two configurations c, c′ we write c ⇝ w c′, where w ∈ Σ*, if c can be transformed into c′ by a sequence of rules whose labels yield w.

Given a regular set of configurations C, it is known how to compute \(\text{pre}^*(C) = \{ c ∈ \text{Con}(𝑃) | ∃ c′ ∈ C, w ∈ Σ^*: c ⇝ w c′ \} \). If C is accepted by an automaton with n states, this takes \(O(n^2 \cdot |D|) \) time.

1. Let \(L ⊆ Σ^* \) be a regular language and C be a regular set of configurations. We define
 \[
 \text{pre}^*[L](C) := \{ c ∈ \text{Con}(𝑃) | ∃ c′ ∈ C, w ∈ L : c ⇝ w c′ \}.
 \]
 One can prove that \(\text{pre}^*[L](C) \) is regular. Describe how to compute a finite automaton accepting \(\text{pre}^*[L](C) \).

2. Give a bound on the amount of time it takes to compute \(\text{pre}^*[L](C) \).

Exercise 5 (Data-flow Analysis). We consider a problem from interprocedural data-flow analysis. A program consists of a set Proc of procedures that can execute and recursively call one another. The behaviour of each procedure \(p \) is described by a flow graph, an example with two procedures is shown below.

Formally, a flow graph for procedure \(p ∈ \text{Proc} \) is a tuple \(G_p = (N_p, A, E_p, e_p, x_p) \), where

- \(N_p \) are the nodes, corresponding to program locations; we denote \(N := \bigcup_{p ∈ \text{Proc}} N_p \).
- \(A = A_I ∪ \{ \text{call}(p) | p ∈ \text{Proc} \} \) are the actions, where \(A_I \) are *internal actions* (such as assignments etc); additionally an action can call some procedure. \(A \) is identical for all procedures.
• $E_p \subseteq N_p \times A \times N_p$ are the edges, labelled with actions from A. We denote $E := \bigcup_{p \in \text{Proc}} E_p$.

• e_p is the entry point of procedure p, i.e. when p is called, execution will start at e_p.

• x_p is the exit point of p (without any outgoing edges); when x_p is reached, p terminates and execution resumes at last call site of p.

1. Construct a labelled pushdown system with one single control location that expresses the behaviour of the procedures in Proc.

Suppose that the internal actions in A_I describe assignments to global variables, i.e. they are of the form $v := \text{expr}$, where v is a variable and expr the right-hand-side expression. If v is a variable, then $D_v \subseteq A_I$ is the set of actions that assign a value to v and $R_v \subseteq A_I$ the set of actions where v occurs on the right-hand side.

Let $\text{Init} \in \text{Proc}$ be an initial procedure and $n \in N$ a node in the flow graph. We say that variable v is live at n if there exists a node n' and an execution that (i) starts at e_{Init}, (ii) passes n, (iii) finally reaches n' with an action from R_v, and (iv) there is no assignment to v between n and n' in this execution. (Intuitively, this means that the value that v has at n matters for some execution; this is used in compiler construction to determine whether an optimizing compiler may “forget” the value of v at n.) For instance, in the shown example, the variable x is live at n_1 and e_p, but not in the other nodes.

2. Describe a regular language $L \subseteq A^*$ that describes the sequences of actions that can happen along such executions between n and n'.

3. Describe how, given a variable v, one can compute the set of nodes n such that v is live at n.