TD 7: Emptiness Test for Büchi Automata, Partial-Order Reduction

Exercise 1 (Büchi Emptiness Test). Consider an execution of Algorithm 1 on some Büchi automaton $\mathcal{B} = (\Sigma, S, s_0, \delta, F)$.

At each point during the DFS, we define the *search path* as the sequence of visited states for which the DFS call has not yet terminated (in the order in which they are visited), and the *explored graph* of \mathcal{B} as the subgraph containing all visited states and explored transitions. We call an SCC of the *explored* graph *active* if the search path contains at least one of its states. A state is *active* if it is part of an active SCC in the explored graph (it is not necessary for the state itself to be on the search path). The *active graph* is the subgraph of the explored graph induced by the active states.

For all strongly connected component $C \subseteq S$ of \mathcal{B} , we call *root of* C the state of C that is visited first during the DFS, i.e. the node r_C such that $r_C.num = \min\{s.num \mid s \in C\}$ at the end of the DFS. We define similarly the root of an SCC in the explored graph.

Algorithm 1 Depth-first-search

1. nr = 0;2. $hash = \{ \};$ 3. dfs (s_0) ; 4. exit; dfs(s): 1. add s to hash; 2. nr = nr + 1;3. s.num = nr;4. for all $t \in \operatorname{succ}(s)$ do if t not in hash then 5.6. dfs(t)end if 7. 8. end for

- 1. Show that an inactive SCC in the explored graph is also an SCC of \mathcal{B} .
- 2. Show that the roots of the SCCs in the active graph are a subsequence $r_1 \ldots r_m$ of the search path, and that an activated node s is in the active SCC of r_i if and only if i < m and $r_i.num \leq s.num < r_{i+1}.num$, or i = m and $r_i.num \leq s.num$.
- 3. Show that Algorithm 2 maintains the following invariants:
 - the stack W contains the sequence $(r_1, C_1) \dots (r_m, C_m)$ where $r_1 \dots r_m$ is the sequence of roots of the active graph, and C_i is the active SCC of r_i ,

- for all nodes s, s. *active* is *true* if and only if s is active.
- 4. Show that Algorithm 2 returns *true* iff the language of the input Büchi automaton is empty, and that in that case, it terminates as soon as the explored graph contains a counterexample.
- 5. Adapt Algorithm 2 to test emptiness of a generalized Büchi automaton with acceptance sets F_1, \ldots, F_n .
- 6. Compare with the nested DFS algorithm from the lectures.

Algorithm 2 Emptiness Test

1. nr = 0;2. $hash = \{ \};$ 3. $W = \{ \};$ 4. dfs (s_0) ; 5. return true; dfs(s): 1. add *s* to hash; 2. s.active = true;3. nr = nr + 1;4. s.num = nr;5. push $(s, \{s\})$ onto W; 6. for all $t \in \operatorname{succ}(s)$ do 7. if t not in hash then dfs(t)8. else if *t.active* then 9. 10. $D = \{ \};$ repeat 11. pop (u, C) from W; 12.if u is accepting then 13. return false 14. 15.end if merge C into D; 16. until $u.num \leq t.num;$ 17. push (u, D) onto W; 18. end if 19.20. end for 21. if s is the top root in W then pop (s, C) from W; 22.for all t in C do 23.t.active = false24.25.end for 26. end if

Exercise 2. Fix a set of atomic propositions AP, and $\Sigma = 2^{\text{AP}}$. Recall that $\sigma, \rho \in \Sigma^{\omega}$ are stuttering equivalent, written $\sigma \sim \rho$, when there exist infinite integer sequences $0 = i_0 < i_1 < \cdots$ and $0 = k_0 < k_1 < \cdots$ such that for all $\ell \ge 0$,

$$\sigma(i_{\ell}) = \sigma(i_{\ell}+1) = \dots = \sigma(i_{\ell+1}-1) = \rho(k_{\ell}) = \rho(k_{\ell}+1) = \dots = \rho(k_{\ell+1}-1),$$

where $\sigma(i) \in \Sigma$ denotes the letter at position *i* in σ .

A language $L \subseteq \Sigma^{\omega}$ is *stutter-invariant* if for all stuttering equivalent words $\sigma, \rho \in \Sigma^{\omega}$, we have $\sigma \in L$ if and only if $\rho \in L$.

1. Show that if φ is an LTL(AP, U) formula, then $L(\varphi) = \{ \sigma \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi \}$ is stutter-invariant.

A word $\sigma \in \Sigma^{\omega}$ is stutter-free if, for all $i \in \mathbb{N}$, either $\sigma(i) \neq \sigma(i+1)$, or $\sigma(i) = \sigma(j)$ for all $j \geq i$.

- 2. Show that for all $\sigma \in \Sigma^{\omega}$, there exists a unique $\sigma' \in \Sigma^{\omega}$ such that σ' is stutter-free and $\sigma \sim \sigma'$.
- 3. Given $a \in \Sigma$, we write a for the formula $\bigwedge_{p \in a} p \land \bigwedge_{p \notin a} \neg p$. That is, $\sigma, i \models a$ if and only if $\sigma(i) = a$.
 - (a) Give a formula $\psi_{a,a}$ in LTL(AP, U) such that for all *stutter-free* words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,a}$ if and only if $\sigma, 0 \models a \land X a$.
 - (b) Let $a, b \in \Sigma$ with $a \neq b$. Give a formula $\psi_{a,b}$ in LTL(AP, U) such that for all stutter-free words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,b}$ if and only if $\sigma, 0 \models a \land X b$.
- 4. Let φ be any LTL(AP, X, U) formula. Construct by induction on φ an LTL(AP, U) formula $\tau(\varphi)$ such that for all *stutter-free* words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \varphi$ iff $\sigma, 0 \models \tau(\varphi)$.
- 5. Let φ be an LTL(AP, X, U) formula such that $L(\varphi)$ is stutter-invariant. Show that $L(\varphi) = L(\tau(\varphi))$.