TD 6

Exercise 1 (Ultimately Periodic Words). An *ultimately periodic word* over Σ is a word of form $u \cdot v^{\omega}$ with u in Σ^* and v in Σ^+ .

Prove that any nonempty recognizable language in $\mathsf{Rec}(\Sigma^{\omega})$ contains an ultimately periodic word.

Exercise 2 (Muller Automata). A nondeterministic Muller automaton is a tuple $\mathcal{A} = (Q, \Sigma, I, T, \mathcal{F})$, where Q, Σ, I, T are as for Büchi automata and $\mathcal{F} \subseteq 2^Q$ is the acceptance condition. For a run σ of \mathcal{A} , denote by $\mathsf{Inf}(\sigma)$ the set of states which are visited infinitely often. A run σ is accepting if $\mathsf{Inf}(\sigma) \in \mathcal{F}$.

- 1. Give a *deterministic* Muller automaton for the language $(a + b)^* a^{\omega}$.
- 2. Show that for any Muller automaton \mathcal{A} , $L(\mathcal{A})$ is ω -regular.
- 3. Show that any ω -regular language is accepted by some (nondeterministic) Muller automaton.

Remark: in fact, any ω -regular language can be recognized by some *deterministic* Muller automaton.

Exercise 3 (Synchronous Büchi Transducers). Give unambigous synchronous Büchi transducers for the following formulæ:

- 1. SF q
- 2. SG q
- 3. $G(p \rightarrow Fq)$