TD 3: CTL, CTL^*

Exercise 1 (Equivalences). Are the following formulæ equivalent?

- 1. $AXAG\varphi$ and $AXG\varphi$
- 2. $\mathsf{EXEG}\,\varphi$ and $\mathsf{EXG}\,\varphi$
- 3. $A(\varphi \wedge \psi)$ and $A\varphi \wedge A\psi$
- 4. $\mathsf{E}(\varphi \wedge \psi)$ and $\mathsf{E}\varphi \wedge \mathsf{E}\psi$
- 5. $\neg A(\varphi \Rightarrow \psi)$ and $E(\varphi \land \neg \psi)$

Exercise 2 (Semantics of CTL*). Compute $[\![\varphi]\!]$, where:

 $\varphi = \mathsf{A}\big[(\mathsf{X}q) \vee \mathsf{FA}\big((\mathsf{EFG}p)\mathsf{U}(\mathsf{AG}q))\big)\big]$

Exercise 3 (CTL Model-Checking). Let $M = (S, T, I, AP, \ell)$ be a finite Kripke structure, and φ a CTL formula.

- 1. Let M_{φ} be the restriction of M to states satisfying φ : $M_{\varphi} = (\llbracket \varphi \rrbracket, T \cap \llbracket \varphi \rrbracket^2, I \cap \llbracket \varphi \rrbracket, AP, \ell_{\lVert \llbracket \varphi \rrbracket})$.
 - Show that $s \in \llbracket \mathsf{EG} \varphi \rrbracket$ iff there exists a non-trivial strongly connected component C of M_{φ} and $t \in C$ such that $s \to^* t$ in M_{φ} .
- 2. Deduce an algorithm to compute $\llbracket \mathsf{EG} \varphi \rrbracket$ from M and $\llbracket \varphi \rrbracket$. What is the complexity of your procedure?

Exercise 4 (CTL⁺). CTL⁺ extends CTL by allowing boolean connectives on path formulæ, according to the following abstract syntax:

$$f ::= \top \mid a \mid f \land g \mid \neg f \mid \mathsf{E}\varphi \mid \mathsf{A}\varphi \qquad \qquad \text{(state formulæ } f,g)$$

$$\varphi ::= \varphi \wedge \psi \mid \neg \varphi \mid \mathsf{X} f \mid f \mathsf{U} g \tag{path formulæ } \varphi, \psi)$$

where a is an atomic proposition. The associated semantics is that of CTL*.

We want to prove that, for any CTL⁺ formula, there exists an equivalent CTL formula.

1. Give an equivalent CTL formula for

$$\mathsf{E}((a_1 \mathsf{U} b_1) \land (a_2 \mathsf{U} b_2))$$
.

2. Generalize your translation for any formula of form

$$\mathsf{E}\left(\bigwedge_{i=1,\ldots,n}(\psi_i\,\mathsf{U}\,\psi_i')\wedge\mathsf{G}\,\varphi\right)\;. \tag{1}$$

What is the complexity of your translation?

3. Give an equivalent CTL formula for the following CTL⁺ formula:

$$E(X a \wedge (b \cup c))$$
.

4. Using subformulæ of form (1) and E modalities, give an equivalent CTL formula to

$$\mathsf{E}(\mathsf{X}\,\varphi \wedge \bigwedge_{i=1,\dots,n} (\psi_i \,\mathsf{U}\,\psi_i') \wedge \mathsf{G}\,\varphi') \;. \tag{2}$$

What is the complexity of your translation?

5. We only have to transform any CTL⁺ formula into (nested) disjuncts of form (2). Detail this translation for the following formula:

$$A((F a \lor X a \lor X \neg b \lor F \neg d) \land (d \cup \neg c))$$
.