Attacking and Fixing
PKCS#11 Security Tokens
with Tookan

Graham Steel

LSV, INRIA & CNRS & ENS-Cachan

(joint work with Riccardo Focardi, Matteo Bortolozzo
& Matteo Centenaro, Università Ca’ Foscari, Venezia)
RSA Public Key Cryptographic Standard (PKCS) 11

Describes ‘cryptoki’: cryptographic token interface

Ubiquitous in industry for authentication tokens, smartcards (and HSMs, other devices, . . .)

Keys (etc.) stored on the device and accessed by handles

Attributes stored with keys to control usage
PKCS #11

Host machine

n1

k1 | A(n1)

n2

k2 | A(n2)

Trusted device
PKCS#11 Security

Section 7 of standard:

“1. Access to private objects on the token, and possibly to cryptographic functions and/or certificates on the token as well, requires a PIN.

2. Additional protection can be given to private keys and secret keys by marking them as “sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off the token, and unextractable keys cannot be revealed off the token even when encrypted”

“Rogue applications and devices may also change the commands sent to the cryptographic device to obtain services other than what the application requested [but cannot] compromise keys marked “sensitive,” since a key that is sensitive will always remain sensitive. Similarly, a key that is unextractable cannot be modified to be extractable.”
Prevent a key from doing decrypt and wrap.

Intruder knows: $h(n_1, k_1), h(n_2, k_2), k_3$

State: sensitive(n1), extract(n1), extract(n2)

- **Set_wrap:** $h(n_2, k_2) \rightarrow \text{; wrap}(n_2)$
- **Set_wrap:** $h(n_1, k_1) \rightarrow \text{; wrap}(n_1)$
- **Wrap:** $h(n_1, k_1), h(n_2, k_2) \rightarrow \{k_2\}_{k_1}$
- **Set_unwrap:** $h(n_1, k_1) \rightarrow \text{; unwrap}(n_1)$
- **Unwrap:** $h(n_1, k_1), \{k_2\}_{k_1} \overset{\text{new } n_3}{\rightarrow} h(n_3, k_2)$
- **Wrap:** $h(n_2, k_2), h(n_1, k_1) \rightarrow \{k_1\}_{k_2}$
- **Set_decrypt:** $h(n_3, k_2) \rightarrow \text{; decrypt}(n_3)$
- **Decrypt:** $h(n_3, k_2), \{k_1\}_{k_2} \rightarrow k_1$
‘Tool for cryptoKi Analysis’
Configuration Language

Functions
Attributes
Always on/off
Conflicts
Tied
Templates
Flags

(see http://secgroup.ext.dsi.unive.it/tookan for full description)
<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Supported Functionality</th>
<th>Attacks found</th>
<th>Tookan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>s</td>
<td>as</td>
<td>obj</td>
</tr>
<tr>
<td>Aladdin</td>
<td>eToken PRO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Athena</td>
<td>ASEKey</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bull</td>
<td>Trustway RCI</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eutron</td>
<td>Crypto Id. ITSEC</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Feitian</td>
<td>StorePass2000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Feitian</td>
<td>ePass2000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Feitian</td>
<td>ePass3003Auto</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gemalto</td>
<td>SEG</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MXI</td>
<td>Stealth MXP Bio</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RSA</td>
<td>SecurID 800</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SafeNet</td>
<td>iKey 2032</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sata</td>
<td>DKey</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ACS</td>
<td>ACOS5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Athena</td>
<td>ASE Smartcard</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gemalto</td>
<td>Cyberflex V2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gemalto</td>
<td>SafeSite V1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gemalto</td>
<td>SafeSite V2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Siemens</td>
<td>CardOS V4.3 B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Manufacturer Reaction

All 7 received notification at least 5 months before publication.

We offered to publish responses on project website

RSA sent response, registered vulnerability with Mitre (CVE-2010-3321), issued security advisory 6 Oct 2010

Aladdin (now Safenet) sent a 2-page response for website

Minimal response from anyone else (e.g. requests to know who else is vulnerable)

Since the first presentation of Tookan (CCS Chicago Oct ’10), sold licences to Boeing and Barclays.
OpencryptokiX

IBM Opencryptoki is a library including a software token

Vulnerable to many attacks

We have coded two fixed versions

- one implements config from Fröschle & Steel WITS ’09
- one is a new fix with no new crypto mechanisms
 Uses a carefully chosen set of templates \(G = \{wu, ed\} \), \(\mathcal{U} = \{eu\} \)

Available to download from
http://secgroup.ext.dsi.unive.it/cryptokix
Bees

- Library to assist programming PKCS#11 devices
- Offers a C++ and Java interface similar to model language
- Windows and Linux supported
- Used to construct the Tookan tool

Available to download from https://github.com/bugant/
Conclusions

Tookan: our tool for formal analysis of PKCS#11 configurations

OpencryptokiX: a sandbox for trying token configurations

Bees: a library for programming PKCS#11 tokens using symbolic model language

State of art of tokens not great (10/18 vulnerable, the rest very limited functionality)

Some manufacturers patching, no reaction from others

Recently: new attacks using error oracles

Project webpage:

http://secgroup.ext.dsi.unive.it/tookan