
Third International Workshop

on Analysis of Security APIs

Port Jefferson, Long Island, NY USA

July 10-11 2009

Synthesising Secure APIs

Véronique Cortier

LORIA, Projet Cassis, CNRS & INRIA,

cortier@loria.fr

Graham Steel

LSV, CNRS & ENS de Cachan, France

graham.steel@lsv.ens-cachan.fr

Abstract

Security APIs are used to define the boundary between trusted and untrusted code. The security

properties of existing API are not always clear. In this paper, we give a new generic API for managing

symmetric keys on a trusted cryptographic device. We state and prove security properties for the API.

In particular, our API offers a high level of security even when the host machine is controlled by an

attacker.

Our API is generic in the sense that it can implement a wide variety of (symmetric key) protocols.

As a proof of concept, we give an algorithm for automatically instantiating the API commands for

a given key management protocol. We demonstrate the algorithm on a set of key establishment

protocols from the Clark-Jacob suite.

Security APIs are used to define the boundary between trusted and untrusted code. They typically

arise in systems where certain security-critical fragments of a programe are executed on some tamper

resistant device (TRD), such as a smartcard, USB security token or hardware security module (HSM).

Though they typically employ cryptography, security APIs differ from regular cryptographic APIs in

that they are designed to enforce a policy, i.e. no matter what API commands are received from the

(possibly malicious) untrusted code, certain properties will continue to hold, e.g. the secrecy of sensitive

cryptographic keys.

The ability of these APIs to enforce their policies has been the subject of formal and informal analysis

in recent years. Open standards such as PKCS#11 [12] and proprietary solutions such as IBM’s Common

Cryptographic Architecture [3] have been shown to have flaws which may lead to breaches of the policy

[2, 5, 6, 8, 10]. The situation is complicated by the lack of a clearly specified security policy, leading to

disputes over what does and does not constitute an attack [9]. All this leaves the application developer in

a confusing position. Since more and more applications are turning to TRD based solutions for enforcing

security [1, 11] there is a pressing need for solutions.

We propose to tackle this problem from a different direction. We suggest a way to infer functional

properties of a security API for a TRD from the security protocols the device is supposed to support.

Our first main contribution is to give a generic API for key management protocols. Our API is generic

in the sense that it can implement a wide class of symmetric key protocols, while ensuring security of

confidential data. The key idea is that confidential data should be stored inside a secure component

together with the set of agents that are granted access to it. Then our API will encrypt data only if the

agents that are granted access to the encryption key are all also granted access to the encrypted data.

In this way, trusted data can be securely shared between TRDs. To illustrate the generality of our API,

we show how to instantiate the API commands for a given protocol using a simple algorithm that has

been implemented in Prolog. In particular, we show that our API supports a suite of well-known key

establishment protocols.

Our second main contribution is to state and prove key security properties for the API no matter

what protocol has been implemented. We propose a formal model for a threat scenario where TRDs may

sometimes be connected to a clean host machine, and sometimes to a corrupted one where the attacker

can execute arbitrary code. Additionally, the attacker is assumed to have defeated the tamper resistance

on some devices, obtaining the long term keys of some users. We show in particular that our API

guarantees the confidentiality of any (non public) data that is meant to be shared between honest agents

only (honest agents are those whose TRDs are intact). The property holds even when honest agents

1

cortier@loria.fr
graham.steel@lsv.ens-cachan.fr

APIs are controlled by an attacker (in case e.g. an honest user’s machine has been infected by a worm).

Considering an even stronger attack scenario, where the attacker is also given old confidential keys, we

show that our API still provides security provided it is switched to a restricted mode where the API

decrypts a cyphertext only when it is able to perform some freshness test. This restricted mode allows us

to implement fewer protocols. In particular, of course it does not allow us to implement protocols subject

to replay attacks. It does not cover all notions of freshness, but in fact, we discovered that any symmetric

key establishment protocol of the Clark and Jacob library [4] can be implemented within the restricted

mode, except for protocols that are known to suffer from replay attacks.

A detailed version of our contributions can be found online as an INRIA Research Report [7].

References

[1] Council regulation (ec) no 2252/2004: on standards for security features and biometrics in passports and

travel documents issued by member states, December 2004. Available at http://eur-lex.europa.eu/

LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF.

[2] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the 3rd International Workshop on

Cryptographic Hardware and Embedded Systems (CHES’01), volume 2162 of LNCS, pages 220–234, Paris,

France, 2001. Springer.

[3] CCA Basic Services Reference and Guide, Oct. 2006. Available online at www.ibm.com/security/

cryptocards/pdfs/bs327.pdf.

[4] J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0. Available via http:

//www.cs.york.ac.uk/jac/papers/drareview.ps.gz, 1997.

[5] J. Clulow. On the security of PKCS#11. In Proceedings of the 5th International Worshop on Cryptographic

Hardware and Embedded Systems (CHES’03), volume 2779 of LNCS, pages 411–425, Cologne, Germany,

2003. Springer.

[6] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of XOR-based key management

schemes. In Proceedings of the 13th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’07), volume 4424 of LNCS, pages 538–552, Braga, Portugal, 2007. Springer.

[7] V. Cortier and G. Steel. Synthesising secure APIs. Research Report RR-6882, INRIA, March 2009.

[8] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of the 21st IEEE Com-

puter Security Foundations Symposium (CSF’08), pages 331–344, Pittsburgh, PA, USA, June 2008. IEEE

Computer Society Press.

[9] IBM Comment on “A Chosen Key Difference Attack on Control Vectors”, Jan. 2001. Available from

http://www.cl.cam.ac.uk/~mkb23/research.html.

[10] D. Longley and S. Rigby. An automatic search for security flaws in key management schemes. Computers

and Security, 11(1):75–89, March 1992.

[11] M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal of Computer Security, 15(1):39–68,

2007.

[12] RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard., June 2004.

2

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF
www.ibm.com/security/cryptocards/pdfs/bs327.pdf
www.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz

Strict Access Control in a Key-Management Server

Christian Cachin Anil Kurmus Marko Vukolić

IBM Zurich Research Laboratory

CH-8803 Rüschlikon, Switzerland

{cca,kur,mvu}@zurich.ibm.com

3 June 2009

1 Introduction

Key management is concerned with operations to manage the lifecycle of cryptographic keys, for creat-

ing, storing, distributing, deploying, and deleting keys. An important aspect is to manage the attributes

of keys that govern their usage and their relation to other keys. Multiple efforts are currently underway

to build and standardize key-management systems accessible over open networks: the W3C XML Key

Management Specification (XKMS) [18], the IEEE P1619.3 Key Management Project [12], the OASIS

Key Management Interoperability Protocol (KMIP) standardization effort [14], and the Sun Crypto Key

Management System [16] are some of the most prominent ones. Cover [9] gives an up-to-date summary

of the current developments.

Many proprietary key-management systems are on the market, including HP StorageWorks Secure

Key Manager, IBM Distributed Key Management System (DKMS), IBM Tivoli Key Lifecycle Man-

ager (TKLM), NetApp Lifetime Key Management, and Thales/nCipher keyAuthority. The need for

enterprise-wide key management systems has been recognized widely [4], and NIST, an agency of the

US Government, has issued a general recommendation for key management [3].

Such a key-management server is generally accessed by multiple clients, who perform operations

on keys and other cryptographic objects maintained by the server. The objects may include symmetric

keys, public keys, private keys, certificates, and more; they typically have a range of attributes describing

their lifecycle and their usage in cryptographic operations. Operations allow to create, import, read,

search, update, and delete keys by the server, and generally focus on attribute handling rather than on

cryptographic functions. A comprehensive key-management server will also support some small set

of cryptographic operations, including to create a key, to issue a certificate, to derive a new key (a

deterministic operation that creates a symmetric key from an existing one), and to wrap or unwrap a key

with another key (wrapping means to encrypt a target key with another key for export and transfer to

another system). These features can be found in many of the above-mentioned protocols and systems.

In this work, we report on a design for controlling access to operations and to keys in a key-server

prototype, which we are currently developing. The key server is able to distinguish between different

users, which are the principals that invoke operations, and to securely authenticate them.

Because the key-management server provides the above-mentioned cryptographic functions, it rep-

resents a cryptographic security API accessible over a network. Security APIs stand at the boundary

between untrusted code and trusted modules capable of maintaining internal state. Cryptographic se-

curity APIs are typically provided by cryptographic tokens [1], hardware-security modules (HSM) like

IBM’s 4764 cryptoprocessor that supports the IBM CCA interface [11, 13] and generic PKCS #11-

compliant [15] modules, smartcards, or the Trusted Platform Module [17]. This work extends the study

of cryptographic security APIs to protocols over open networks.

1

2 Access Control

We distinguish between basic and strict access control in the key server. In basic mode, access-control

decisions for a key are taken directly from an access-control list (ACL) associated with it. But because the

operations of our key server allow users to create complex relationships between keys, primarily through

key derivation and key wrapping, basic access control may have security problems. For example, if there

exists a particular key that some user is not allowed to read, but the user may wrap that key under another

key of its choice and export the wrapped representation, the user may nevertheless obtain the bits of the

first key. Another example is a key that was derived from a parent key by the server; when a user reads

the parent key, the user implicitly also obtains the cryptographic material of the derived key.

In general, a cryptographic interface that manages keys and allows to create such dependencies

among keys poses the problem that access to one key may give a user access to many another keys.

This issue has been identified in the APIs of several cryptographic modules [2, 6, 8, 10] and may lead to

serious security breaches when an organization does not fully understand all implications of an API.

In strict mode, therefore, access-control decisions by the key server take the semantics of the key-

management API into account and implement a cryptographically sound access-control policy on all

symmetric keys and private keys. The above issues with basic access control are eliminated with strict

access control. Our strict access-control policy builds on the work of Cachin and Chandran [7], which

describes a secure cryptographic token interface, introduces a cryptographically strong security policy,

and shows how to implement it. A strict access-control decision may not only depend on the ACL of the

corresponding key, but takes also into account the ACLs of related keys and the history of past operations

executed on them. It prevents any unauthorized disclosure of a symmetric key or a private key.

Every key maintained by the server has several attributes that govern if an access is permitted. The

basic policy is determined by an access-control list (ACL) attribute. It can be modified by clients and

contains a list of user/privilege-pairs. A boolean attribute strict determines if the key underlies only the

basic or the strict access-control policy.

Every key maintained by the key-management server in strict mode benefits from an explicitly stated

security policy that respects cryptographic side-effects of the server’s operations. In particular, it guaran-

tees that a user may only retrieve the information she is authorized to, i.e., that she cannot abuse the API

to violate the access control policy. Thus, it avoids the problems mentioned above and similar problems

existing in other APIs [2, 6, 8, 10], which arise from interdependencies among the keys.

In a forthcoming paper [5], we report on the challenges with designing and on the lessons learned

from implementing strict access control in the prototype key-management server.

References

[1] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Cryptographic processors — a survey,” Proceedings

of the IEEE, vol. 94, pp. 357–369, Feb. 2006.

[2] R. J. Anderson, “Why cryptosystems fail,” in Proc. 1st ACM Conference on Computer and Communications

Security (CCS), pp. 215–227, 1993.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management,” NIST

special publication 800-57, National Institute of Standards and Technology (NIST), 2007. Available from

http://csrc.nist.gov/publications/PubsSPs.html.

[4] BITS Security Working Group, “Enterprise key management.” Whitepaper, BITS Financial Ser-

vices Roundtable, available from http://www.bits.org/downloads/Publications%20Page/

BITSEnterpriseKeyManagementMay2008.pdf, May 2008.

[5] M. Björkqvist, C. Cachin, R. Haas, X.-Y. Hu, A. Kurmus, R. Pawlitzek, and M. Vukolić, “Design and imple-

mentation of a key-lifecycle management system,” Research Report RZ 3739, IBM Research, June 2009.

2

http://csrc.nist.gov/publications/PubsSPs.html
http://www.bits.org/downloads/Publications%20Page/BITSEnterpriseKeyManagementMay2008.pdf
http://www.bits.org/downloads/Publications%20Page/BITSEnterpriseKeyManagementMay2008.pdf

[6] M. Bond, “Attacks on cryptoprocessor transaction sets,” in Proc. Cryptographic Hardware and Embedded

Systems (CHES), vol. 2162 of Lecture Notes in Computer Science, pp. 220–234, 2001.

[7] C. Cachin and N. Chandran, “A secure cryptographic token interface,” in Proc. Computer Security Founda-

tions Symposium (CSF-22), IEEE, July 2009. To appear.

[8] J. Clulow, “On the security of PKCS#11,” in Proc. Cryptographic Hardware and Embedded Systems (CHES),

vol. 2779 of Lecture Notes in Computer Science, pp. 411–425, 2003.

[9] “Cover pages: Cryptographic key management.” http://xml.coverpages.org/keyManagement.html,

Apr. 2009.

[10] S. Delaune, S. Kremer, and G. Steel, “Formal analysis of PKCS#11,” in Proc. 21st IEEE Computer Security

Foundations Symposium (CSF), 2008.

[11] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and S. Weingart, “Building the

IBM 4758 secure coprocessor,” IEEE Computer, vol. 34, pp. 57–66, Oct. 2001.

[12] IEEE Security in Storage Working Group (SISWG), “P1619.3/D6 draft standard for key management in-

frastructure for cryptographic protection of stored data.” Available from https://siswg.net/index.php,

2009.

[13] International Business Machines Corp., CCA Basic Services Reference and Guide for the IBM 4758 PCI and

IBM 4764 PCI-X Cryptographic Coprocessors, 19th ed., Sept. 2008. Available from http://www-03.ibm.

com/security/cryptocards/pcicc/library.shtml.

[14] OASIS Key Management Interoperability Protocol Technical Committee, “Key Management Interoperability

Protocol,” Apr. 2009. Editor’s draft 0.98; available from http://www.oasis-open.org/committees/

documents.php?wg_abbrev=kmip.

[15] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard.” Available from http://

www.rsa.com/rsalabs/, 2004.

[16] Sun Microsystems, “Sun Crypto Key Management System (KMS).” http://opensolaris.org/os/

project/kmsagenttoolkit/, 2009.

[17] Trusted Computing Group, “Trusted platform module specifications.” Available from http://www.

trustedcomputinggroup.org, 2008.

[18] World Wide Web Consortium, XML Key Management Working Group, “XML Key Management Specifica-

tion (XKMS 2.0).” Available from http://www.w3.org/2001/XKMS/, 2005.

3

http://xml.coverpages.org/keyManagement.html
https://siswg.net/index.php
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www-03.ibm.com/security/cryptocards/pcicc/library.shtml
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://www.oasis-open.org/committees/documents.php?wg_abbrev=kmip
http://www.rsa.com/rsalabs/
http://www.rsa.com/rsalabs/
http://opensolaris.org/os/project/kmsagenttoolkit/
http://opensolaris.org/os/project/kmsagenttoolkit/
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.w3.org/2001/XKMS/

Security APIs for Privacy in Social Networks

Jonathan Anderson
Computer Laboratory

University of Cambridge

jonathan.anderson@ieee.org

Joseph Bonneau
Computer Laboratory

University of Cambridge

joseph.bonneau@cl.cam.ac.uk

Frank Stajano
Computer Laboratory

University of Cambridge

frank.stajano@cl.cam.ac.uk

I. INTRODUCTION

Online social networks, in their current form, require users

to place a vast amount of trust in the operators of both the core

network and the third-party applications they use. Since both

of these actors have shown themselves to be untrustworthy

in the past [1], [2], [3], [4], [5], we have proposed a model

for social networks in which client software runs on the user’s

computer, encrypted blocks are stored on a “dumb” server and

third-party applications are sandboxed to avoid the leakage of

personal information [6].

In this scheme, the interface between applications and the

core client software resembles a system call API in which

a kernel offers applications the means to perform privileged

operations. We have begun exploring this API to determine

its functional requirements and desired security properties,

but we welcome comments from and engagement with the

security API community in order to provide the users of social

networks with meaningful promises of personal privacy.

II. FUNCTIONAL REQUIREMENTS

An API for social applications must allow users to adapt

the technology to their own needs [7]; we cannot predict what

applications users will find compelling. We must, however,

build this API so that it can support the functionality that we

already know users will expect. This functionality includes

finding other users, especially real-life friends, communicating

and sharing personal information with them and adding value

to other users’ content by tagging and commenting on it.

a) Finding Friends: In order to establish connections,

a member of a social network must advertise themselves to

other users. By default, users of a site should be invisible to

all other users. They should be able to advertise themselves

in three ways:

1) By making some personal information (e.g. name,

photo) available on the Web;

2) By sending social network information via existing

communication channels (e.g. IM, e-mail);

3) Via social relationships in the network itself.

The first method requires that applications be able to retrieve or

at least parse Web content, the second requires interoperating

with arbitrary communications protocols and the third requires

some sharing of personal information with other users.

b) Identity Verification: Another feature which privacy-

preserving social network should provide – and which current

social networks do not – is a means for users to verify the

online identities of their real-world friends. Today’s social

networks are already used to impersonate important politicians

for comedic purposes [8], but the potential to use social

networks for highly targeted phishing attacks is tremendous.

Users should therefore be provided with an easy-to-use yet

cryptographically strong means of verifying identity using

limited out-of-band signalling (in person, over the phone, etc.).

A. Messaging

Users must be able to send each other messages, either in

real-time (a la IM or Twitter) or a delay-tolerant fashion (a la

e-mail or Facebook messages). Applications should be able to

send such messages and cause them to be signed in desired.

B. Storage

Some applications – e.g. photo sharing applications – will

require long-term storage within a pseudo-filesystem. Posting

personal content in existing models is as straightforward as

putting the content on the server and not restricting other users’

access to it. In a client-centric system, however, access control

must be done by client software.

Our system should provide applications with a general-

purpose filesystem, and applications could share content,

where permitted, by passing capabilities via the kernel.

C. Joint Content

One of the most interesting cases in the debate over online

privacy is the case of joint content: content that was created

and posted by one person, but which involves another person’s

name, likeness, opinions or comments. For instance, if a user

is “tagged” in a Facebook photograph, they have the right to

remove the tag – which recognises the stake that they hold in

the content – but tagging another user’s photo also requires

the permission of the person who posted the photo.

We must provide the ability for applications to generate and

share such content, and the joint content must be carefully tied

by the kernel to its original context.

III. PRIVACY MECHANISMS

Our application API must provide privileged operations

that applications can execute, but its primary purpose is to

safeguard the privacy of users’ personal information. The

API, then, must hide personal information from applications

unless it is truly required and user-authorised. The API should

provide applications with the means to operate successfully

without private information and, should they truly need it,

privileged but limited operations which they can perform.

A. Access Control

Access control in existing social APIs is extraordinarily

simplistic and permissive. In the case of Facebook, applica-

tions have some access to the personal information of almost

all users, even those those who do use the application in

question [9]. Access to other users’ personal information

depends on whether or not users have declared themselves to

be “friends”, which we have argued is an incorrect approach

for a system that is concerned with privacy [10]. We propose

that a privacy-preserving social network should not share

information because users are in a list of friends, but that

access control should be inferred from the normal course of

user action [11], and that if friend lists exist, they should be

derived from sharing policy, not the other way around.

In some cases, privacy policy should be simple: many

applications will need either personal information or external

interaction, but not both. Other applications, however, will

have more sophisticated requirements, and our system must

be capable of servicing their requests.

Application behaviour will be governed by a kernel-

maintained policy. That policy should be restrictive by default

but make it easy for capabilities to be granted by the course

of normal user actions [11], i.e. without “security prompts”

that distract users from their purposes for the network [12].

B. Placeholders

In many instances, applications do not actually require

social information, it is placing them in a social context

that adds value. Application code could use placeholders and

pseudonyms in user interaction which the kernel could replace

with actual social information, as suggested by Felt and Evans’

privacy-by-proxy concept [13].

For instance, a chess application does not need to know

my name or my opponent’s, but it could generate messages

such as “${opponent name} has offered to resign” or tell the

UI to “place the opponent’s profile picture in the rectangle

[50,0,100,100]” without seeing bitmap data.

C. Privileges

In our implementation, applications will run as plugins

to a Java-based framework with no permission to perform

system operations such as open network sockets. All external

or inter-application interaction, then, must be accomplished

via privileged operations provided by our API.

The atomic operations which it provides should be per-

formed in such a way that their combination does not introduce

unforeseen vulnerabilities.

Java’s security policy does not allow us to restrict access

to the current system time; if it did, we might even shut

down covert schannels of information flow among malicious

applications [14]. However, changing the flow of private

information from unrestricted to covert-channel-only would be

a significant improvement over current practice.

IV. RELATED WORK

While Felt and Evans’ concept of placeholders for social in-

formation [13] could be very useful, the utility of anonymized

social networks is suspect given the ease with which these

networks can be de-anonymised [15].
May, Gunter and Lee have previously proposed Privacy

APIs [16], by which they mean the formalisation and analysis

of legal policies in which access control requirements are

supplemented by notification and logging requirements.

V. CONCLUSION

By recognising social application APIs as security APIs,

we could provide users with a much safer social networking

experience, giving them control over and visibility of what

applications do with their personal information. We welcome

the security API community’s feedback on and involvement

with these efforts.

REFERENCES

[1] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano, “Eight Friends
Are Enough: Social Graph Approximation via Public Listings,” in
Proceedings of the Second ACM EuroSys Workshop on Social Network

Systems (SNS ’09), 2009.
[2] J. C. Perez, “Facebook’s Beacon More Intrusive Than Previ-

ously Thought.” http://www.pcworld.com/printable/article/id,140182/
printable.html, Nov 2007. PCWorld.

[3] B. Stone, “Facebook Aims to Extend Its Reach Across the Web,” The

New York Times, vol. 12, no. 1, 2008.
[4] T. S. Schmidt, “Inside the Backlash Against Facebook.” http://www.time.

com/time/nation/article/0,8599,1532225,00.html, 2006. Time Magazine.
[5] E. Mills, “Facebook suspends app that permitted peephole.” http://news.

cnet.com/8301-10784 3-9977762-7.html, 2008. CNET News.
[6] J. Anderson, C. Diaz, J. Bonneau, and F. Stajano, “Privacy Preserving

Social Networking Using Untrusted Servers,” in Proceedings of the

Second ACM SIGCOMM Workshop on Online Social Networks (WOSN

’09), 2009.
[7] D. M. Boyd, Taken Out of Context – American Teen Sociality in

Networked Publics. PhD thesis, University of California, Berkeley, 2008.
[8] B. McGonigle, “Some profiles on MySpace.com not what they seem.”

http://www.boston.com/news/nation/washington/articles/2006/10/16/
some profiles on myspacecom not what they seem/, 2006. The
Boston Globe.

[9] J. Bonneau, J. Anderson, and G. Danezis, “Prying Data Out of a Social
Network,” in Proceedings of the 2009 International Conference on

Advances in Social Network Analysis and Mining, 2009.
[10] J. Anderson and F. Stajano, “Not That Kind of Friend: Misleading

Divergences Between Online Social Networks and Real-World Social
Protocols,” in Proceedings of the Seventeenth International Workshop

on Security Protocols (SPW ’09), 2009.
[11] K.-P. Yee, “Aligning security and usability,” IEEE Security and Privacy

Magazine, vol. 2, no. 5, pp. 48 – 55, 2004.
[12] A. Whitten, Making Security Usable. PhD thesis, Carnegie Mellon

University, 2004.
[13] A. Felt and D. Evans, “Privacy Protection for Social Networking

Platforms,” in Proceedings of Web 2.0 Security and Privacy 2008, 2008.
[14] B. W. Lampson, “A Note on the Confinement Problem,” Communica-

tions of the ACM, vol. 16, no. 10, pp. 613 – 615, 1973.
[15] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:

anonymized social networks, hidden patterns and structural steganogra-
phy,” in Proceedings of the 16th International Conference on the World

Wide Web (WWW ’07), pp. 181–190, 2007.
[16] M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access Control

Techniques to Analyze and Verify Legal Privacy Policies,” Computer

Security Foundations Workshop, 2006.

The Usual Suspects

Mike Bond

Cryptomathic Ltd
327 Cambridge Science Park
Cambridge, CB4 0WG, UK

Mike.Bond@cryptomathic.com

Abstract. This paper outlines the key challenges facing security API
design, emphasising the recurring problems which still have no practical
solution – the usual suspects. The usual suspects are a starting point for
designers making new contributions, and for verifiers looking for vulner-
abilities. We discuss the problems of secure data structure building, data
migration, secure cluster operation, and access control, drawing examples
of failures from banking and from the Trusted Platform Module (TPM)
API. Comprehensive treatment of these problems would be invaluable
to industry API designers, who rarely have the resources to solve these
problems afresh on any individual project.

1 Securely Building Data Structures

A regular security API challenge is to take small amounts of sensitive data which
where each data item is individually encrypted and combine them together into
a larger data structure which contains a lot of less sensitive data, but which is
to be encrypted in its entirety under a transport or communications key. This
problem comes up all the time. For example, in the smartcard industry one needs
to build data structures to:

1. Embed cryptographic keys for EMV cards into a personalisation load data
file to be sent to a physical personalisation machine (that loads all the data
onto the smartcard).

2. Insert sensitive data into individual smartcard APDUs which of course will
not be entirely encrypted (examples include personalisation of “native OS”
cards, and EMV script processing)

3. Build database records consisting of a mixture of fields
4. Support creation of protocol messages with a key where there are a wide

variety of protocol message formats or variations

There are several things that go wrong. API designers often try to build a
monotonic API which stores intermediate state whilst the data structure is being
built in encrypted blobs returned from one command, which are to be passed to
the next. This allows the attacker to make many related ciphertexts and despite
a potentially secure mode of operation, pull off a codebook attack by matching
known and partially unknown ciphertext blocks.

2 Data Migration

Data migration is the challenge of getting cryptographic keys from one secure
device to another. There are two factos to this: first, ensuring that the correct
device receives the keys, and that this device will continue to enforce policy on
behalf of the stakeholders, and second, ensuring that essential metadata associ-
ated with the keys is not lost or corruptible in the process.

We have seen dozens of problems with this, in banking HSMs, in the ubiqui-
tous PKCS#11-based HSMs that are used in Certificate Authorities and much
more, and in many other areas too. The author draws on an example from the
Trusted Computing Group TPM version 1.2, where a data typing failure in ca-
pability tokens almost causes a security breach.

3 Secure Clustering

Secure clustering is the challenge of assembling together devices implementing
the same API and policy into a cohesively functioning unit. The basic function-
ality is dead simple: store keys externally under a master key, and load the same
master key into each device. Things start to get more complicated when you
consider access control problems, and how to enforce more advanced policies.
For instance, if you want to ensure a crypto key cannot be used more than 1000
times a day, how can you have a functioning cluster which is resilient to failure
and able to recover, yet which still keeps track of the usages made, and does not
simply allow each node to make 1000 uses in its own right?

There have been solutions to this recurring problem, but many of them try to
bind together the cluster into an integrity preserving state where any deviation
or problems will cause the system to lock up and stop working. Administrators
must attend under dual control and examine all devices and software (a heavy
burden) before the system can be unlocked. Such solutions are fragile. Yes, they
may work, but they fall prey to the “just click Yes” security usability issues that
plague web browsers to this day when considering SSL.

4 Access Control

Sadly the usability of access control mechanisms that govern access to sensitive
security API commands is in a pretty poor state. They range from sophisticated
Role-Based Access Control (RBAC) systems as offered by IBM’s Common Cryp-
tographic Architecture, through the one-bit “physical presence” switch for the
TPM, to a variety of smartcard and secret sharing mechanisms used by many
cryptographic devices. Across the board these mechanisms always seem to fall
short: a typical case is where the calling application is left with a password se-
curity problem, having to store and protect a password whose discovery totally
compromises the entire system, yet is needed on a regular basis to get work done.

Access control mechanisms are often overlooked in analysis of APIs (and
indeed protocolss), maybe because the analysts don’t have a clear model of how

the access control might be configured. The author aims to flesh out the typical
access control environment surrounding a security API, and to point to some
challenges where an analytical method which can cope with a major temporal
component could be useful.

�����������	�
	���
�����������	����	���	����	

������������	���	����������	��

�����������	

���	
�������������

���������
�����������

����
�� ���������!∀���#∃

�����������	
��
�	�
���	��

��������� 	%
�� � � �� � &��	��∋�� � (
� � ������)������ �
��� � ∋���� � ∗���

	�� �����
���(
����
����+ �	��,���������&�
�(��
���	∗�����
������� �����

�	
������
����
��∗�
��
��∗����,�	�� �����
�	�−�.���.��(�

�&��	��∋���
��

 ��∋
����,�	�&������
�	�������&�∗��������−�.��.��(�

� ����&���+��
����,�

(
�� ����� �(������ .� �(�

 � �
��� ��	��&� �� �&��	��∋����(
�� � �
��/ ��,�	��

−�.0����
��
����
����,������∗�����&�&�
������� ��� �	�����

���������	
����
��������������

%
��∗����,�	�� �����
��∋��∋�����
���∋����&������∋�����∗�∋����,�&�,,����������∗
����������

�+���&�&� ����&��,�������%
���
���
�&�������������	����(�
�����
��∗����,�	�� �����
���

2�������
������
�������∗����,�	�� �����
��(���,���&������������������� ������3&���	���
����
�	��∗��

����		�&����
��
����������,�&�����4��
��
���&� �������,����(�������(��
����
��������)��������	�� �����

(���&�
���&���� ����&����
���
��,�� ����	�����

%
����+��&������,����
��∗����,�	�� �����
��(��������	�����
���	
�����������&�������������������

%
����������
����	
∗&���,��∗&�∋∗��∋∗���������&�� ��������
���������(�

�

������
���
��&�����������	��
���	����&����∗
�������,�����������������&��������)���������&�

���
����&� ∗∋
�	��(���������,�.&�������%
�,����&�&����∋���	
��������

�� 2.∀−��5�����	��&��∀4.�%�����.����	��,����	
����	��
���	��

�� ����������	�����−	��#∃����∀���������������&�6#�����������	���������	�����

�� −�&���������&���	�����∗
���,���
��������
�����������∀−7�89������−	��

�� %:�5�+���&�;57��������������

%
���
������∗
��&����	�� �����
��∋��������(�&�������	�����
���������������������������������������
�

���&�����������	��
���	�����&�����<∗���������������,� ����&����	��,�&�����
�������������������

�∗�
����	��������∋�����∗�������
���(���	�� �����
����&��
��−�.���
����∗ ������������
����∗∋<�	�����

�&&������
���=∗����������%
�� � ���(�

��∗�
�����
������=∗�����������&��
������
����	��

mailto:George.French@Barclays.com

����������	
���
�
����	����������
�

�%
���∗�
���(�

��∗�
����(
����
��&�����������,����
����
�	������,����−�.���&� ����&�������
�������
�(�

	�� �����
������� �	�

��&�
���&�>�

� %��&������
�∋�������,∗�	�������������������
� ∗� ����,∗�	�����

� ��� ����	�� �����
����	
������

� %
��
�	��������&���,�����∗	�∗����,��
���
�	��������=∗������	�� �����
�

� 4
��(�

�∋��∗�&����������
��&���
� �������������������������,��
��−�.�������
���
�	������

���(�

��� ��&∗	��∋�� ∗�	
���&����

� �∗������&�
���&���
∗������

� ��������	��?�������
���&��+�����
≅

� �����

��������	��������������	 �

%
���∗�
���(�

� ����&���+��
����,���
�������	����������������&�������������	�∗�����&�(
���

&����������
�	���������∗���	�� �����
�	�−�.�����(�

������,�(��+��
����,��������	�������������

%
���(�

���	
∗&���
�����∗���(��
�&���
� ������Α
�∗������(�

�����
�������(��,����&����∗����,�

	�� �����
�	�−�.��

����������
��
��
����������������
���

%
���∗�
���(�

�&��	��∋���,�����
����
�������������&�&�
������� ��� �	������
�������∋∗�����,��
��

/ ��,�	�0�−�.��%
���(�

���	
∗&����
��������� ���	
�(
�	
�
��� ����&��∗		���,∗
�������������
��

�&&������
���=∗�����������	�� �����
�	�−�.�
������,∗
,�

�(��
����
��∋��������
��������(�

����

 ������������
������������������(
�	
�
��&������	∗�����(������������
�	�������

�

Improving PIN Processing API Security

R. Focardi and F. Luccio

Università di Venezia, Italy

focardi@dsi.unive.it

G. Steel

LSV, CNRS & ENS de Cachan, France

graham.steel@lsv.ens-cachan.fr

Abstract

We propose a countermeasure for a class of known attacks on the PIN processing API used in the

ATM (cash machine) network. This API controls access to the tamper-resistant Hardware Security

Modules where PIN encryption, decryption and verification takes place. The attacks are differential

attacks, whereby an attacker gains information about the plaintext values of encrypted customer PINs

by making changes to the non-confidential inputs to a command. Our proposed fix adds an integrity

check to the parameters passed to the command. It is novel in that involves very little change to the

existing ATM network infrastructure.

1 Introduction

In the international ATM (cash machine) network, users’ personal identification numbers (PINs) have

to be sent encrypted from the PIN entry device (PED) on the terminal to the issuing bank for checking.

Issuing banks cannot expect to securely share secret keys with every cash machine, and so the PIN

is encrypted under various different keys as it passes through the network. Typically, it will first be

encrypted in the PED under a key shared with the server or switch to which the ATM is connected. The

PIN is then decrypted and re-encrypted under the key for an adjacent switch, to which it is forwarded.

Eventually, the PIN reaches a switch adjacent to the issuing bank, by which time it may have been

decrypted and re-encrypted several times. The issuing bank has no direct control over what happens

in the intermediate switches, so to establish trust, the internationally agreed standards ANSI X9.8 and

ISO 9564 stipulate the use of tamper proof cryptographic hardware security modules (HSMs). In the

switches, these HSMs protect the PIN encryption keys, while in the issuing banks, they also protect

the PIN derivation keys (PDKs) used to derive the customer’s PIN from non-secret validation data such

as their personal account number (PAN). All encryption, decryption and checking of PINs is carried

out inside the HSMs. To this aim, the HSMs have a carefully designed API providing functions for

translation (i.e., decryption under one key and encryption under another) and verification (i.e. PIN

correctness checking). The API has to be designed so that even if an attacker obtains access to the host

machine connected to the HSM, he cannot abuse the API to obtain customer PINs.

In the last few years, several attacks have been published on the APIs in use in these systems [5, 6, 8].

Very few of these attacks directly reveal the PIN. Instead, they involve the attacker calling the API

commands repeatedly with slightly different parameter values, and using the results (which may be error

codes) to deduce the value of the PIN. High-profile instances of many PINs being stolen from a hacked

switch has increased interest in the problem [1]. Recently, a Verizon Data Breach report and a subsequent

article in the press confirmed publicly for the first time that PINs are being extracted from HSMs on a

wide scale [3, 2].

PIN recovery attacks have been formally analysed before, but previously the approach was to take

a particular API configuration and measure its vulnerability to combinations of known attacks [10]. In

recent work, we proposed an extension to language based information flow analysis to take account of

cryptographic primitives designed to assure data integrity, in particular MACs [7]. We showed how PIN

processing APIs could be extended with MACs to counteract differential attacks, and showed how this

revised API type-checked under our framework. However, that work was rather theoretical, and did not

attempt to explain how our proposal could be put into practice. In particular, for our proposal to be

1

focardi@dsi.unive.it
graham.steel@lsv.ens-cachan.fr

Improving PIN Processing API Security Focardi, Luccio and Steel

feasible in the short term, it needs to be adapted to take into account the constraints of the existing ATM

infrastructure. In this paper we outline what we believe to be a practical scheme. We assess its impact on

security and the amount of changes that would be required to the ATM network to put it in to practice.

We will not review the operation of PIN processing APIs in detail here. For understanding the

abstract, it suffices to know that the attacks are caused by an attacker making illegitimate queries to

the API, ‘tweaking’ the bits of the non-confidential parameters such as the customer’s PAN and the

decimalisation table (dectab). Interested readers are referred to existing literature for more details [5, 6,

8, 10].

2 The Fix

In another paper [7], we show how differential attacks can be countered by the use of MACs, which

prevent the intruder from making arbitrary queries to the verification and translation APIs. Only queries

whose parameters match the supplied MAC are processed. However, the infrastructure changes needed

to add full MAC calculation to ATMs and switches are seen as prohibitive by banks [4]. We propose

here a way to implement a weaker version of our scheme whilst minimising changes to the existing

infrastructure. We lose some security, since our MACs now have an entropy of only 5 decimal digits

(216 < 105 < 217). We assess the effect of this change in section 2.4.

2.1 Ideal MAC-based integrity

The idea proposed in our paper [7] is to add a MAC of the non-confidential parameters required for PIN

verification to the input to the PIN verification command. The PIN Verify command checks the MAC

before performing the PIN calculation. If the MAC check fails, the command halts without checking the

PIN. This way we achieve ‘robust declassification’ [9], i.e. we declassify only the result of the legitimate

comparison of the encrypted PIN block with the real PIN, and nothing else.

In our paper, we did not discuss how exactly this MAC should be calculated, and where it should

be stored. Below we propose a way to store a MAC of the non-confidential inputs to the verification

command on the card itself, using an existing mechanism.

2.2 CVC/CVV Codes

We observe that cards used in the cash machine network already have an integrity checking value: the

card verification code (CVC) or value (CVV) is a 5 (decimal) digit number included on the magnetic

stripe of most cards in use. It is, in effect, a MAC of the customer’s PAN, expiry date of the card and

some other data. The current purpose of the CVV is to make copying cards more difficult, since the CVV

is not printed on the card and does not appear on printed POS receipts1. Below we give the algorithm

for calculating the CVV. This is done at the card issuing facility. CVVs are checked at the verification

facility.

PAN Exp date Service code 0 pad

16 digits max 4 digits 3 digits 9 digits max

Block B1 Block B2

Note the partition of the CVV plaintext field into two blocks, B1 and B2. To construct the CVV, a

two-part DES key is required. Call the two 64-bit parts key K1 and key K2. The hexadecimal CVV root

is constructed as

1The CVV/CVC is not to be confused with the CVC2 or CVV2, which is printed on the back of the card and designed to

counteract ‘customer not present’ fraud when paying over the Internet or by phone.

2

Improving PIN Processing API Security Focardi, Luccio and Steel

CVVhex = enc(K1,dec(K2,enc(K1(enc(K1,B1)⊕B2))))

The 5 digit decimal is constructed using the Visa decimalisation scheme:

1. Extract all decimal digits from CVVhex, preserving their order from left to right.

2. Left justify the result

3. Reduce any remaining digits by 10

4. Left justify the result and append it to the result of 2

5. The CVV is the first 5 digits (from left to right) of the result.

2.3 Packing the MAC into the CVC/CVV

Our proposal is to pack more information into the CVV at issue time, and to use this as a MAC at the

verification facility. In our formal scheme, we included the data of the decimalisation table and card

offset. Observe that with the maximum 16 digits of the PAN being used, we still have 9 digits of zeros

in the final field of block B2. Our idea is to use the CVV calculation method twice, in the manner of

a hashed MAC or HMAC function. We will calculate the CVV of a new set of data, containing the

decimalisation table and offset or PVV and a code for the PIN block format. Then we will insert the

result of the original CVV calculation to produce a final 5-digit MAC.

Our second CVV, which we will call CVV’, contains the following fields:

Dectab Offset/PVV PIN block format original CVV 0 pad

16 digits max 4 digits 1 digit 5 digits 6 digits max

Block B1’ Block B2’

We calculate CVV’ in the same way as the standard CVV. This makes for easy upgrade from the orig-

inal infrastructure, because CVV generation and verification commands are already available in HSMs

so will need minimal changes to the firmware. The PIN Verify command of the HSM must be changed

to check CVV’ before performing a verification test. The PIN test is only performed if the CVV’ of

the inputs matches the supplied CVV’. Of course, the API of the HSM must not make available the

functionality to allow the creation of CVV’s on arbitrary data.

The scheme is practical because ATMs and switches generally already send the CVV from the ATM

to the issuing bank, so can easily be adapted to send CVV’. In fact, many ATMs blindly send all the

‘Track 2 data’ from the magnetic card - this includes the PAN, expiry date, and CVV. Under most

schemes there is still space on the magnetic stripe for a further 5 digit code. Chip based cards should

have no problem storing a further 20 bits of data. So, we could use CVV’ and the original CVV’, thus

allowing CVVs to be checked separately if required.

One could use the same keys for calculating the CVV’ as for the CVV, or one could use different

keys. Either way, the verifying HSM needs access to these keys. The use of different keys could be

motivated by a desire to be able to check CVVs, and so to an extent to verify card authenticity, in ATMs,

without giving them the keys used to create CVV’s.

3

Improving PIN Processing API Security Focardi, Luccio and Steel

2.4 Security of the CVV Based Scheme

In our formal scheme we assume a perfect, collision free scheme. However, in proposing a scheme with

a 5-digit MAC value, we are admitting the possibility of brute-force attacks. To guess the CVV’ for a

given set of parameters should take an average of 50 000 trials. So, an attack like the dectab attack which

previously required 15 calls to the API will now take 750 000 calls. HSMs typically perform something

of the order of 1000 PIN verifications per second, so this change moves the expected attack time for a

single PIN from 0.015 seconds to 750 seconds, or 12.5 minutes, making the ‘lunch hour hack’ scenario

of [6] worth an expected 4 or 5 PAN/PIN pairs.

3 Conclusions

We have described a version of our MAC based scheme for ensuring integrity of queries to PIN process-

ing APIs that is easy to implement and does not require wholesale changes to the ATM infrastructure.

This is at the cost of some security, since the CVV codes can be cracked by brute force, but its implemen-

tation in the short term would make attack scenarios far less profitable. In the medium term we feel that

the full MAC scheme should be used. The cost of this should be weighed against the cost of a complete

overhaul of the way PIN processing is carried out in the ATM network.

References

[1] Hackers crack cash machine PIN codes to steal millions. The Times online. http://www.timesonline.

co.uk/tol/money/consumer affairs/article4259009.ece.

[2] PIN Crackers Nab Holy Grail of Bank Card Security. Wired Magazine Blog ’Threat Level’. http://blog.

wired.com/27bstroke6/2009/04/pins.html.

[3] Verizon Data Breach Investigations Report 2009. Available at http://www.verizonbusiness.com/

resources/security/reports/2009 databreach rp.pdf.

[4] R. Anderson. What we can learn from api security. In Security Protocols, pages 288–300. Springer, 2003.

[5] O. Berkman and O. M. Ostrovsky. The unbearable lightness of PIN cracking. In Springer LNCS

vol.4886/2008, editor, 11th International Conference, Financial Cryptography and Data Security (FC 2007),

Scarborough, Trinidad and Tobago, pages 224–238, February 12-16 2007.

[6] M. Bond and P. Zielinski. Decimalization table attacks for pin cracking, 2003.

http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

[7] M. Centenaro, R. Focardi, F. Luccio, and G. Steel. Type-based analysis of PIN processing APIs. Available

from http://www.dsi.unive.it/∼focardi/typing-PIN-full.pdf, 2009.

[8] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s thesis, University of

Natal, Durban, 2003.

[9] A.C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness.

Journal of Computer Security, 14(2):157–196, May 2006.

[10] G. Steel. Formal Analysis of PIN Block Attacks. Theoretical Computer Science, 367(1-2):257–270, Novem-

ber 2006.

4

http://www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece
http://www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece
http://blog.wired.com/27bstroke6/2009/04/pins.html
http://blog.wired.com/27bstroke6/2009/04/pins.html
http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf
http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf
http://www.dsi.unive.it/~focardi/typing-PIN-full.pdf

Compiling Applications with Information-Flow
Policies to Systems with Trusted Modules

(Work in Progress)

Jérémy Planul1 and Cédric Fournet2,1

1 MSR-INRIA
2 Microsoft Research

Today, many computers come bundled with some form of secure coprocessor
with a dedicated secure instruction set—for example, most laptops now embed
a Trusted Platform Module (TPM) [10], and many high-end processors feature
a special skinit instruction [1]. These instructions can run a given piece of code
in isolation, with strong code-based identity and privileged cryptographic opera-
tions, for instance to seal some persistent state or to perform remote attestation.
Such hardware mechanisms can greatly reduce the TCB, removing the need to
trust most of the code for the host operating system and application, and thus
help protect critical data and computations from malicious software. For exam-
ple, TPMs are commonly used for secure booting, e.g. Bitlocker [7] guards access
to the master keys for disk encryption, so that the disk content is released only
after authenticating the operating systems. Research papers also describe e.g.
how to build secure online payment systems [2], and how to use skinit to run
small pieces of application code in isolation [6]. Still, the secure instructions are
remarkably seldom used in practice. We believe that the complexity of their low-
level interface and the lack of programming tools are major obstacles to their
mainstream adoption for writing security applications.

At a more abstract level, language-based security often relies on information
flow policies [8]. Each variable is given a level in a security lattice; this level
indicates the intended integrity and confidentiality of any information stored in
this variable. Thus, a program is deemed secure (non-interferent) if an adversary
that can access only low-level information cannot gain (or influence) any higher-
level information by executing the program. Static analyses and type systems
have been developed to verify that a program is secure with regards to a given
policy. Further, it is sometimes possible to compile such programs to a given
system while preserving all their security properties; hence, Jif and FlowCaml [9]
provide security typechecking for Java and Caml, respectively. Further, Jif/Split
[12,13] and Swift [3] can automatically partition distributed programs into local
code, each running at a given security level, representing for instance the level
of trust granted to every host in a protocol, subject to some locality constraints.
This compilation method is partial: in some cases, the security policy may be
such that no host has a sufficient level to run some parts of the computation (for
instance when combining secret information from mutually-suspicious parties.).
Cryptographically-blinded evaluation techniques [11] can solve this problem in
some cases, but with a high performance penalty. Instead, it is tempting to rely

on secure hardware capabilities to virtually “boot” short-lived, highly-trusted
execution environments at any host that supports them. For example, a server
may provide code that locally interacts with a client, and both the client and
the server may trusts (some of) their secrets to secure evaluation at the client.
To this end,

– We define an operational semantic for a core subset of the secure instructions,
by extending the semantics of a core imperative programming language. Our
semantics aims at formal simplicity while still reflecting the main security
features of the hardware specifications at a level of details sufficient for rea-
soning about information flows.

– We develop a prototype compiler for a typed information flow language that
partitions code and automatically takes advantage of the secure instructions.

– We show that our compilation scheme preserves information-flow security, at
least for our target semantics, under standard assumptions on cryptographic
primitives.

We supplement a simple imperative language with data representations for
code, and with instructions to (1) run some code in isolation; (2) compute a
secret associated with the code being executed; and (3) increment monotonic
counters. We also consider encodings of additional security functionality on top
of these instructions, for instance to (4) cryptographically seal and unseal data
using a key associated with some code; (5) cryptographically sign and verify data
using a key associated with some code and attested by a TPM certificate.

We use this language as the target of a new security-preserving compiler,
built by adapting recent work on cryptographic support for information-flow
policy enforcement [5,4]. In their work, imperative commands can be annotated
with locality information that indicate where a sub-command should be exe-
cuted. Each locality is also given a security level, used both for typechecking the
source program, and to generate cryptographic operations to secure the imple-
mentation. Their compilation process involves the generation of a protocol for
securing the transfer of control between locations, as specified by the control flow
of the source program, and selective encryption and authentication for securing
the exchange of data. In addition, we provide runtime support for implementing
highly-trusted localities by translation to our (formal) secure instruction set.
Hence, we obtain distributed code, composed of ordinary application code plus
high-security code, together with custom cryptographic support to coordinate
their execution, so that the information-flow properties of the source program
still hold in the resulting system.

References

1. Advanced Micro Devices. AMD64 virtualization: Secure virtual machine architec-
ture reference manual. AMD publication no. 33047 rev 3.01, May 2005.

2. S. Balfe and K. G. Paterson. e-EMV: Emulating EMV for internet payments using
trusted computing technology. Proceedings of the 3rd ACM Workshop on Scalable
Trusted Computing (STC 2008), pages 81–92, 2008.

2

3. S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Building
secure web applications with automatic partitioning. Communications of the ACM,
52(2):79–87, 2009.

4. C. Fournet, G. le Guernic, and T. Rezk. From information-flow policies to crypto-
graphic mechanisms: a security-preserving compiler for distributed programs, 2009.
Draft, at http://www.msr-inria.inria.fr/projects/sec/cflow.

5. C. Fournet and T. Rezk. Cryptographically sound implementations for typed
information-flow security. In 35th Symposium on Principles of Programming Lan-
guages (POPL’08), pages 323–335. ACM Press, Jan. 2008.

6. J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proceedings of the ACM European
Conference in Computer Systems (EuroSys), Apr. 2008.

7. Microsoft. Windows BitLocker drive encryption, 2006. http://technet.

microsoft.com/en-us/library/cc766200.aspx.
8. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.

ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.
9. F. Pottier and V. Simonet. Information flow inference for ML. ACM Transactions

on Programming Languages and Systems, 25(1):117–158, Jan. 2003. c©ACM.
10. Trusted Computing Group. PC client specific TPM interface specification (TIS).

version 1.2, revision 1.00, July 2005.
11. A. Yao. Protocols for secure computation. In Twenty-third IEEE Symposium on

Foundations of Computer Science, pages 160–164, Nov. 1982.
12. S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partition-

ing. ACM Trans. Comput. Syst., 20(3):283–328, 2002.
13. L. Zheng, S. Chong, A. Myers, and S. Zdancewic. Using replication and partitioning

to build secure distributed systems. In 15th IEEE Symposium on Security and
Privacy, 2003.

3

http://www.msr-inria.inria.fr/projects/sec/cflow
http://technet.microsoft.com/en-us/library/cc766200.aspx
http://technet.microsoft.com/en-us/library/cc766200.aspx

Extraction of properties in C implementations of security APIs

for the verification of Java applications

Cyrille Artho∗ Yutaka Oiwa∗ Kuniyasu Suzaki∗ Masami Hagiya†

Abstract

Java applications utilize various security APIs for cryptography and access control, such as avail-

able through packages java.security and javax.crypto. For performance reasons, these libraries inter-

nally use an implementation written in C, accessed through the Java Native Interface. Our goal is

to extract properties in the source code of the C library, and translate these assertions back into the

Java domain. This allows these properties to be used in verification of Java code, opening up various

applications that are not possible when verifying binary code.

Keywords: Software model checking, software testing, Java, C, API, verification, security

1 Introduction

Java offers various security and cryptography facilities [11]. Security includes permission management

(access control managed by security policies) and secure class loading. Cryptography includes access to

cryptographic functions, such as hashing and encryption ciphers, and cryptographic protocols [16].

Java applications request security services from the Java platform. In order to accommodate for dif-

ferences between different platforms, implementations are typically not provided by the standard library

itself. Instead, they are accessed via providers, which encapsulate algorithm-specific implementations

behind a standardized application programming interface (API). This allows an application to be in-

dependent of a provider. The same kind of function can be implemented by different providers, and

exchanged if necessary [16].

For instance, certain access control features may only be available if the underlying operating system

or file system supports corresponding mechanisms. Secure class loading may take advantage of specific

hardware (trusted computing) [7, 21]. Cryptographic functions implemented in hardware or software

may have to be replaced by different implementations if an existing implementation is too slow [1], or if

an underlying cryptographic algorithm has been broken, i. e., demonstrated not to be cryptographically

secure anymore [9].

Because the underlying functionality and API are very system-specific and low-level, the software li-

brary is usually implemented in C. Table 1 shows how in a Java application, access to C code is provided

by the Java Native Interface (JNI) [11, 17]. This causes a problem when a Java application is analyzed by

Java-specific tools, such as software model checkers [22]. An analysis tool may not be able to inspect or

execute C code. In model checking, the inability to handle actions outside the given bytecode platform

is a well-known problem when analyzing application that use library functionality such as network com-

munication [5]. Because the effect of C code cannot be controlled by the Java platform, analysis tools

may provide incorrect results. For model checking, a tool has to be able to restore the entire program

state to a previous state. If C code is involved, side-effects of its execution may prove to be impossible

to revert. This effectively puts programs using JNI calls outside the range of model checkers.

We plan to extract properties from low-level C code that are relevant for the correct behavior of Java

applications. In this way, we can apply various inspection and analysis techniques to Java programs that

are not possible otherwise.

Compared to similar work [19, 18], we plan to generate executable code instead of property anno-

tations. We think that existing toolkits for code analysis that represent the abstract syntax tree as XML

data may be the appropriate platform for a unified representation of the data [10, 14]. Mapping rules can

then relate C code fragments to Java code.

∗Research Center for Information Security (RCIS), AIST, Tokyo, Japan
†University of Tokyo, Tokyo, Japan

1

Extraction of properties in C implementations Cyrille Artho et al.

Table 1: Architecture of Java application using Java library backed by native code.

Layer Language Description

Application Java Written by developers, target of verification in this project

Java library Java High-level functions (e. g., security and cryptography)

JNI layer Java Java Native Interface: passes library calls to low-level code

JNI impl. C C counterpart of JNI, sometimes automatically generated

Crypto library C Library implementing low-level functions

Device driver C (If present) interface to hardware (e. g., trusted computing)

2 Benefits

There are several benefits when low-level C code is modeled in the same language as the target applica-

tion:

• Better integration into the analysis tool, as the tool can fully inspect properties of interest.

• The possibility of combining properties of multiple implementations, giving a stronger specifica-

tion for verification.

• The possibility of using other analysis technologies, such as symbolic execution, model checking,

or fault injection. These technologies are usually not applicable to low-level code.

Model checking for software is specifically useful for concurrent applications, as the outcome of all pos-

sible thread and communication schedules cannot be tested effectively. A test run covers one particular

scenario [15]. In software where multiple threads [20] of execution work in parallel, a test run executes

one particular thread schedule. As the schedule is typically non-deterministic, even repeated test runs

cover only a part of all behaviors. Different verification approaches are required for more exhaustive

verification. Model checking has the advantage that it is fully automated, but given verification tools for

Java require that the entire application exists as Java bytecode [22] or that side-effects of system-specific

code are modeled by a special library [4].

Similarly, fault injection tools also require that code is available in a platform that the tool supports [3,

2]. Conversion of so-called checked exceptions from JNI to Java would allow such tools to have a richer

view of the library, including exceptions returned from C code.

As complex computations are inevitably simplified when extracting only key properties, the resulting

model code would also be more efficient than the original one. This is another benefit both for model

checking and other analysis types, because analysis can scale to larger applications.

3 Implementation Strategy

A model of a library function may consist of a stub, implementing only a subset of the real functional-

ity [6]. The stub has to be precise enough to allow for execution of a test case of interest. For crypto-

graphic functions and security APIs, certain properties of their behavior help us to write such stubs:

• Cryptographic functions can be replaced with a stub that either returns clear text (for matching

keys) or a pseudo cipher text that differs in a simple way. For example, each string may be pre-

ceded with a special marker character to mark it as encrypted. This marker is removed upon

encryption. Because the goal of software verification is only to ensure that encryption is used

whenever necessary, the lack of security of this “encryption scheme” is not a problem.

2

Extraction of properties in C implementations Cyrille Artho et al.

Java interface:

public final static native void

TPM_NONCE_nonce_set(long jarg1, TPM_NONCE jarg1_, short[] jarg2);

C implementation:

SWIGEXPORT void JNICALL

Java_iaik_tc_tss_impl_jni_tsp_TspiWrapperJNI_TSS_1NONCE_1nonce_1set(

JNIEnv *jenv, jclass jcls, jlong jarg1, jobject jarg1_, jshortArray jarg2) {

// other declarations omitted

if (jarg2 && (*jenv)->GetArrayLength(jenv, jarg2) != TPM_SHA1BASED_NONCE_LEN) {

SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException,

"incorrect array size");

return;

}

...

Figure 1: C implementation of a Java native method.

• Security APIs often work in a binary way, either granting or denying access. This can be modeled

as a non-deterministic decision.

In both cases, the exact way the C security library works is often irrelevant for testing an application. The

library has to implement high-level properties such as providing a secure one-way hash function. Such

properties can be analyzed in isolation of the application, for example through cryptanalysis. When

analyzing the Java application, only correct usage of the functionality is important.

Therefore, stubs should model preconditions that the Java application must meet when calling the

API. Such preconditions can be extracted from assertions in the C implementation. Other properties,

such as a correct sequence of calls, may also be accessed by more advanced inspection techniques on the

C code, such as program slicing [13].

Figure 1 shows a part of the API for Trusted Computing for Java [12, 21]. In this code, method

nonce_set is declared to be native in Java, and implemented in C. The Java Native Interface declaration

requires the expanded class name of the method and a lengthy signature, but the interesting part is the C

implementation of the method. In the C code, the array length of the last argument is checked against

a constant that is defined elsewhere. This check is not part of the Java program! However, knowledge

of JNI calling conventions allows for a translation of the if-expression from C to Java, where it can be

verified even if the C code is subsumed by a stub.

Previous work has implemented a similar mapping for the verification of low-level C libraries [19,

18]. The focus was on generating code annotations, but we aim at generating executable code that does

not require extra tool support for analysis. By leveraging tools that represent program structure in XML

form, we have a unified representation of the problem [10, 14]. Finally, we hope to include recent

advances in reverse engineering to infer properties relating to correct sequences of API calls [8].

References

[1] T. Arnold and L. Van Doom. The IBM PCIXCC: a new cryptographic coprocessor for the IBM eServer. IBM

J. Res. Dev., 48(3–4):475–487, 2004.

[2] C. Artho, A. Biere, and S. Honiden. Enforcer – efficient failure injection. In Proc. Int. Conference on Formal

Methods (FM 2006), Canada, 2006.

3

Extraction of properties in C implementations Cyrille Artho et al.

[3] C. Artho, A. Biere, and S. Honiden. Exhaustive testing of exception handlers with enforcer. Post-proceedings

of 5th Int. Symposium on Formal Methods for Components and Objects (FMCO 2006), 4709:26–46, 2006.

[4] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Efficient model checking of networked appli-

cations. In Proc. TOOLS EUROPE 2008, volume 19 of LNBIP, pages 22–40, Zurich, Switzerland, 2008.

Springer.

[5] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Tools and techniques for model checking net-

worked programs. In Proc. SNPD 2008, Phuket, Thailand, 2008. IEEE.

[6] E. Barlas and T. Bultan. Netstub: a framework for verification of distributed Java applications. In Proc. 22nd

Int. Conf. on Automated Software Engineering (ASE 2007), pages 24–33, Atlanta, USA, 2007. ACM.

[7] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. Van Doorn. A practical guide to trusted computing.

IBM Press, 2007.

[8] Vitaly Chipounov and George Candea. Reverse-Engineering Drivers for Safety and Portability. In 4th Work-

shop on Hot Topics in System Dependability (HotDep), San Diego, USA, 2008.

[9] H. Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

[10] K. Gondow, T. Suzuki, and H. Kawashima. Binary-level lightweight data integration to develop program un-

derstan ding tools for embedded software in C. In Proc. 11th Asia-Pacific Software Engineering Conference

(APSEC 20 04), pages 336–345, Washington, USA, 2004. IEEE Computer Society.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition. Addison-

Wesley, 2005.

[12] Institute for Applied Information Processing and Communications. Trusted Computing for the Java Platform,

2009. http://trustedjava.sourceforge.net/.

[13] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163, 1988.

[14] K. Maruyama and S. Yamamoto. A tool platform using an XML representation of source code informati on.

IEICE – Trans. Inf. Syst., E89-D(7):2214–2222, 2006.

[15] D. Peled. Software Reliability Methods. Springer, 2001.

[16] Sun Microsystems, Santa Clara, USA. How to Implement a Provider in the Java Cryptography Ar-

chitecture, 2009. http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/

HowToImplAProvider.html.

[17] Sun Microsystems, Santa Clara, USA. Java Native Interface, 2009. http://java.sun.com/javase/6/

docs/technotes/guides/jni/.

[18] G. Tan and J. Croft. An empirical security study of the native code in the jdk. In Proc. 17th Conf. on Security

Symposium (SS ’08), pages 365–377, San Jose, USA, 2008. USENIX Association.

[19] G. Tan and G. Morrisett. ILEA: inter-language analysis across Java and C. In Proc. 22nd annual ACM

SIGPLAN Conf. on Object-oriented programming systems and applications (OOSPLA 2007), pages 39–56,

Montreal, Canada, 2007. ACM.

[20] A. Tanenbaum. Modern operating systems. Prentice-Hall, 1992.

[21] T. Vejda, R. Toegl, M. Pirker, and T. Winkler. Towards trust services for language-based virtual machines

for grid computing. In Proc. 1st Intl. Conf. on Trusted Computing and Trust in Information Technologies

(Trust ’08), pages 48–59, Villach, Austria, 2008. Springer.

[22] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Automated Software

Engineering Journal, 10(2):203–232, 2003.

4

http://trustedjava.sourceforge.net/
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://java.sun.com/javase/6/docs/technotes/guides/jni/
http://java.sun.com/javase/6/docs/technotes/guides/jni/

Secure your PKCS#11 token against API attacks!∗

M. Bortolozzo, G. Marchetto, R. Focardi

Università di Venezia, Italy

focardi@dsi.unive.it

G. Steel

LSV, CNRS & ENS de Cachan, France

graham.steel@lsv.ens-cachan.fr

Abstract

PKCS#11 defines a widely adopted API for cryptographic devices such as USB crypto-tokens

and smartcards. Despite its widespread adoption, PKCS#11 is known to be vulnerable to various

attacks that enable the extraction (as plaintext) of sensitive keys stored on the device. These attacks

have been formalized and analyzed via model-checking, so as to automatically find flaws on specific

subsets of PKCS#11 and on given device configurations. The analyses, however, are performed on an

abstract model of the standard and the ‘theoretical’ attacks have to be tried by hand on real devices. In

this paper we shortly describe a new tool, named API attacks!, that aims at automatically performing

the above mentioned analyses on real PKCS#11 devices. We believe this tool might be helpful both to

hardware developers, willing to improve the security of their existing and new devices, and to system

administrators that might want to check their device is configured is a secure way before distributing

it to end-users.

1 Introduction

PKCS#11 defines a widely adopted API for cryptographic devices such as USB crypto-tokens and smart-

cards. As well as providing access to cryptographic functionality, the interface is suppose to preserve

certain security properties, e.g. no matter what sequence of commands is called by the application, the

values of keys stored on the device and marked as sensitive should never become known ‘in the clear’.

However, PKCS#11 is known to be vulnerable to various attacks that compromise this property.

PKCS#11 has been formalized and analyzed via model-checking, allowing the automatic detection

of attacks on specific subsets of the API and on given device configurations [3]. The analyses, however,

are performed on an abstract model of the standard and the ‘theoretical’ attacks have to be tried by hand

on real devices. Particular PKCS#11 compatible devices may implement the standard in subtly different

ways to try to prevent the attack. What is needed is a way to link the abstract model checking analysis to

the API as implemented on real devices.

In this paper we describe a new tool, named API attacks! [1], that aims at automatically performing

the above mentioned analyses on real PKCS#11 devices. In summary, the tool (i) attempts a set of

known attacks reporting the results; (ii) reads the actual subset of PKCS#11 implemented on the token;

(iii) generates a model of the specific subset of the standard and gives it as an input to the model checkers

NuSMV and SATMC; (iv) parses the results of the model checkers and tries to mount the attacks on the

real token;1 (v) performs custom attacks and static checks on the actual token configuration, pointing out

potential sources of flaws.

We believe this tool might be helpful to hardware developers, willing to improve the security of their

existing and new devices. In order to circumvent the flaws on PKCS#11, hardware developers usually

modify or patch the standard via proprietary extensions. API attacks! could be used to try all the existing

known attacks on new extensions, reporting where the attack possibly fails, and, more interestingly,

could incorporate a model of a new proposed extension so to analyse it via model checking looking for

possible new flaws or variants of existing ones. It might be the case, in fact, that a new patch blocks all

∗Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal Techniques”
1This last feature is currently under development: at the present state the tool just reports the results of (iii) to the user.

1

focardi@dsi.unive.it
graham.steel@lsv.ens-cachan.fr

Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

the known attacks but can be circumvented by non trivial variations of the attack sequences. This could

be detected automatically via model-checking, once the proprietary extension is modelled in the tool.

The tool might also be interesting for system administrators, who want to configure tokens in a secure

way before distributing them to end-users. Attacks, in fact, are sometime based on ‘weak’ token config-

urations where, e.g., keys can be used with different, conflicting, roles (see section 2). We thus believe

that having the possibility of automatically checking a specific configuration against known attacks (and

variants of those, via model-checking) could be extremely valuable.

2 Attacks on PKCS#11

In this section, we illustrate some of the attacks checked by the tool. They are all sequences of legal

API invocations that lead to the leakage of sensitive keys, i.e., keys intended to be securely stored in the

token and never extracted, unless encrypted under other suitable keys called key encryption keys. This

latter event is useful, e.g., when we need to share a new key between two devices that already share a

key encryption key kek: the new key k is wrapped under kek obtaining a ciphertext {k}kek. This wrapped

key is exported from the first device and imported in the second one. Only when the ciphertext is inside

the second device, the unwrap occurs: k is security stored and, from now on, it can be used for encrypted

communication between the two devices.

This simple wrap/unwrap mechanism is often source of attacks, if we mix the role of the keys. The

standard, in fact, does not forbid having keys with attributes that specify different uses like, e.g., wrap

and decrypt. Unfortunately this leads to simple attack sequences as the following one. From now on, we

write &k to denote the handle of key k stored in the device.

1. wrap(&k,&k) gives {k}k

2. decrypt({k}k,&k) gives k

This attack is a variant with just one key of the key separation attack presented in [6]. Intuitively, key

k is wrapped under itself, via a call to wrap, and the obtained ciphertext is decrypted with k, by calling

decrypt, obtaining k as plaintext. Notice that this decryption occurs in the token with no knowledge of

k (only the handle &k is needed).

It seems thus important to forbid this double role on the same key. This can be done, e.g. by

‘patching’ the API so that attributes wrap and decrypt are sticky, i.e., once set they cannot be unset, and

can never be set together. However a subtler variant of the attack might be performed as follows. Let ke

be a key generated by the attacker and ku a key, stored in the device, that can be used both to unwrap and

encrypt:

1. encrypt(ke, &ku) gives {ke}ku

2. unwrap({ke}ku
, &ku) imports ke in the device returning &ke

3. set wrap(&ke) sets the wrap attribute for ke

4. wrap(k, &ke) gives {k}ke

5. the intruder decrypts {k}ke
obtaining k

This attack has been discovered in [3], via model-checking. Intuitively, the intruder encrypts his key

under ku (1). This allows him to import the key via an unwrap call (2). Once the key is in the device, he

sets the wrap attribute (3) and just wraps the sensitive key k with ke (4). The intruder can now decrypt

{k}ke
with ke, which he knows, so this last event is performed outside the device.

Even subtler attacks can be mounted by, e.g., unwrapping twice the same key so to obtain two

different instances of the very same key. This allows the intruder to set two conflicting attributes on

the same key by just setting one attribute to each identical copy. This makes it even more difficult

2

Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

to circumvent the above attacks since the conflicting attribute policy should extend to all the identical

copies of the very same key. The interested reader is referred to [2, 6, 3] for more detail.

3 The API attacks! tool

The API attacks! tool aims to allow hardware developers and administrators to check the security of their

device and configurations against the attacks described in the previous section. We have, first of all, tried

to give an easy and intuitive interface. Moreover, the tool has been designed to be as portable as possible.

To this aim we have decided to implement it in Java, via the IAIK PKCS#11 wrapper [4], which supports

many existing devices.2

The attack window Figure 1 shows the attack windows of the tool where, using the buttons on the left,

the user can perform six pre-existent attacks, plus custom attacks as described below. When an attack

is successful, i.e., a sensitive key is extracted, the tool double-checks that the value of the extracted key

coincides with the value of the key stored in the device: it encrypts the plaintext ‘PKCS#11’ under the

stored key and then decrypts it with the extracted one, checking that the obtained plaintext is, again,

‘PKCS#11’. The first two buttons on the right can be used to look for conflicting attributes on the keys

stored in the device, and for performing a preliminary (static) test on the feasibility of the known attacks

on such real keys. The third button, ‘Attack test’, tries to perform the six above mentioned attacks on

the device real keys. The six buttons on the left, in fact, create ad-hoc keys for the specific attacks;

while this is interesting for hardware developer, an administrator might only be interested in discovering

weaknesses on the actual device configuration and keys and not just potential attacks on the subset of

the standard the token implements. Button ‘Find attack’ produces the input for the two model checkers

NuSMV and SATMC, via variations of the perl scripts described in [3, 5]: in order to increase the

performance of the analysis, only the actual subset of PKCS#11 implemented on the token is analyzed.

The custom attack window Figure 2 shows the interface for custom attacks. This window allows

users to perform all the typical operations performed during attacks: users can create keys, convert

keys to byte streams and vice-versa, perform wrap/unwrap and encrypt/decrypt plus extra functions on a

different windows, test extracted keys against stored ones. When creating new keys (see the windows on

the right), it is possible to try to set their attributes. Since proprietary extensions of the standard restrict

the setting of some attributes, the tool reports whether the requested setting has been successfully stored

in the device.

Current and future work We are currently testing the tool on a number of commercial devices. So

far, we have have found that many devices are indeed vulnerable to some or all of these attacks. We will

publish more details after due notice has been given to the manufacturers in question. Meanwhile, the

tool is still under development, and is partially supported by the MIUR Italian project SOFT: “Security

Oriented Formal Techniques. In particular, we are making attack sequences more adaptable to the specific

device; an attack may fail because one needed cryptographic primitive is not supported by the device,

but a slight variant of the attack might still be possible using a different, supported, functionality. As a

trivial example, think of using AES instead of DES. We are studying a graphical interface for custom

attacks, so that attack logic can be more intuitively represented in terms of information flows from/to

the device. We are extending the model-checking functionality so that the actual configuration, referring

2Compatibility has been reported with Giesecke & Devrient, Utimaco, Oberthur, SeTec, Orga, IBM, Safenet, Schlumberger,

Gemplus, Dallas, Rainbow, ActivCard, A-Trust, A-Sign, Eracom, Aladdin, Mozilla, Eutron, TeleSec, nCipher.

3

Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

Figure 1: The attack window

Figure 2: The custom attack window with key generation

4

Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

to the real keys stored in the device, is included in the model. This might be useful to model-check a

specific configuration of the device, instead of assuming the presence of weakly configured keys. We

are also writing a parser for the output of model-checkers so that the theoretical attacks can be directly

tested on the real devices. Finally, we intend to formalize the static analyses we already perform on the

key attributes, to see if they can be used to statically validate specific device and configurations. This

might complement the model checking analysis, by providing an additional tool for the static validation

of real PKCS#11 devices.

References

[1] M. Bortolozzo and G. Marchetto. Vulnerabilità dello standard PKCS#11: dalla teoria alla pratica. Master’s

thesis, University of Venice, Italy, 2009.

[2] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s thesis, University of

Natal, Durban, 2003.

[3] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of the 21st IEEE Computer

Security Foundations Symposium (CSF’08), pages 331–344, Pittsburgh, PA, USA, June 2008. IEEE Computer

Society Press.

[4] Institute for Applied Information Processing and Communication (IAIK) of the Graz University of Technol-

ogy. The IAIK Provider for the Java Cryptography Extension (IAIK-JCE) . http://jce.iaik.tugraz.at/.

[5] S. Fröschle and G. Steel. Analysing PKCS#11 Key Management APIs with Unbounded Fresh Data. In

Joint Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security

(ARSPA-WITS’09), 2009.

[6] J. Clulow. On the security of PKCS#11. In 5th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2003), pages 411–425, 2003.

5

http://jce.iaik.tugraz.at/

Monotonicity for Multiple Key Management Tokens

Johannes Borgström

Abstract

Formal analysis of cryptographic APIs such as PKCS #11 have focused on the case where the

attacker only has access to a single token implementing the API. Operations that are non-monotonic

in this simple setting, such as the setting of sticky attributes, may no longer be so in a multi-token

setting. We show that this may lead to vulnerabilities, by giving an example attack where practices

that are safe for a single token no longer are so for two communicating tokens. To our knowledge,

this is the first multi-token attack on PKCS #11.

1 Introduction

The PKCS #11 standard specifies a class of cryptographic APIs with operations for key generation, en-

cryption/decryption and key wrapping and unwrapping. We will here consider the case of an organization

owning several cryptographic tokens, each implementing a PKCS #11-conforming API. These tokens are

used for secure communication between users belonging to the organization, including key exchange.

One design goal of these tokens is to ensure the secrecy of keys that are used for key wrapping and/or

unwrapping. In particular, it should not be possible for an adversarial user with access to the tokens only

through their API to obtain such a key in plain text: if a wrapping key is compromised, then all past and

future communications using keys wrapped under this key (transitively) are also affected.

As a mechanism to ensure secrecy, keys are decorated with properties, including which kinds of

operations they may be used for. Critical properties are often sticky, meaning that they cannot be unset

once set, and may conflict with other properties, in order to achieve separation of usage [2]. Setting

a sticky property p on a key is intended to be a non-monotonic operation, in the sense that it restricts

the attacker’s future actions: the key can afterwards never be used for operations that conflict with the

sticky property p. Local checks for non-monotonicity may no longer be globally effective in a system

containing multiple tokens, as shown by the following attacks.

2 Multi-Token Attacks on PKCS #11

The PKCS #11 standard specifies an object model and interfaces to a number of functions, including

cryptographic operations. In this paper, we focus on the interaction between encryption, decryption and

key wrapping and unwrapping. For the sake of simplicity, we consider key objects as the only data stored

within a token. We conservatively model the wrapping of one key with another as a normal encryption;

this is motivated by key wrapping and unwrapping being built from normal encryptions and decryptions.

Our treatment builds on Delaune et al. [3]. The attacks are along the lines of the pure API attacks

described by Clulow [2].

The state of a cryptographic token is modelled as a finite map from abstract key handles g,h ∈ H to

key objects. A key object contains a key k, l ∈ K and a bitmap specifying the properties of the key. In

examples, we use the convention that h is a handle for a (wrapping) key k and g is the handle of a (data)

key l. The properties that we consider are permissions to use the key for encryption, decryption, key

wrapping and key unwrapping.

The set of permissions is P := {enc,dec,wrap,unwrap} ⊇ p,q, and token states M thus have the type

H →fin K× 2P. We often omit the braces when writing a permission set containing only one permis-

sion. We assume some primitive data objects d ∈ D, and a Dolev-Yao style term algebra of shared-key

cryptography with authenticated encryption enc(t,k) and decryption dec(t,k) using simple keys. The

1

Monotonicity for Multiple Key Management Tokens Johannes Borgström

constant symbols of the algebra are H∪K∪D; we denote terms from the algebra by t ∈ T. We write

consts(t) for the set of constants occurring in t, and lift consts to sets of and relations over terms in the

usual way.

We begin by modelling four operations supported by the token, intuitively described as follows.

1. enc t with h means “output the encryption of input t with the key with handle h”

2. dec enc(t,k) with h means “output the decryption of input enc(t,k) with the key with handle h”

3. wrap g with h means “output the key with handle g wrapped with the key with handle h”

4. unwrap enc(l,k) with h for q means “output a fresh handle with permissions q for a key un-

wrapped with the key with handle h from input enc(l,k)”

We formalize the API operations as follows: given a token and some terms known to the user,

an operation returns an updated token state and some additional terms that become known to the user,

possibly creating fresh names. Note that unwrap is the only operation that generates fresh handles and/or

modifies the token state (including the permissions of keys).

Specification of API Operations

enc t with h : M,h, t → M,enc(t,k) if M(h) = (k, p∪ enc)

dec enc(t,k) with h : M,h,enc(t,k) → M, t if M(h) = (k, p∪dec)

wrap g with h : M,g,h → M,enc(l,k) if M(h) = (k, p∪wrap) and M(g) = (l,q)

unwrap enc(l,k) with h for q :

M,h,enc(l,k)
g
−→ M′

,g if M(h) = (k, p∪unwrap)
and M′ = M∪{g 7→ (l,q)}

Formally, the specification of an operation has type (M× 2T)× 2H∪K × (M× 2T). Informally, the

specification M,S
H
−→ M′

,S′ means that a user that has access to a crypto token in state M and knows

all terms in S can take the token into state M′ and additionally learn the terms S′, generating fresh

handles (and later, keys) H. This is made precise by the following execution semantics. The execution

relation operates on pairs of a multisets of states and a set of terms representing the adversary knowledge.

Below, M is a multiset of tokens and ⊎ is multiset union.

Execution

M ⊎M,S∪S0
H
−→ M ⊎M′

,S∪S0 ∪S′ if M,S
H
−→ M′

,S′ and H ∩ consts(S∪dom(M)) = /0

Here we clearly see the freshness condition on the generated data, and that the adversary knowledge is

augmented by the terms learned.

2.1 An Attack on Two Tokens

We consider a network of two tokens, set up for the following scheme of interaction: The first token

wraps a key and sends it to the second. The second token then unwraps the key and uses it to send

encrypted data back to the first, which then can decrypt it. In our model, we can write the two tokens as

M1 = {h1 7→ (k,wrap),g1 7→ (l,dec)} and M2 = {h2 7→ (k,unwrap)}. The first token M1 holds a key k,

enabled for wrapping, and an decryption key l; the other token M2 holds the same key k, enabled for

unwrapping. We use the convention that h is a handle for k and g is a handle for l, with a subscript

depending on which token the handle refers to.

2

Monotonicity for Multiple Key Management Tokens Johannes Borgström

A successful interaction takes place as shown below. For ease of reading, we show the transition rule

that is used at each step in the left column. We write M′
2 for (M2∪g2 7→ (l,enc)) and let S = {h1,h2,g1,d}

be the initial user/adversary knowledge.

Successful Interaction

M1,M2,S

wrap g1 with h1 : → M1,M2,S∪{enc(l,k)}

unwrap enc(l,k) with h2 for enc :
g2
−→ M1,(M2 ∪g2 7→ (l,enc)),S∪{enc(l,k),g2}

enc d with g2 : → M1,(M2 ∪g2 7→ (l,enc)),S∪{enc(l,k),g2,enc(d, l)}
dec enc(d, l) with g1 : → M1,(M2 ∪g2 7→ (l,enc)),S∪{enc(l,k),g2,enc(d, l)}

Starting at the same point as the previous example, an attack compromising the key k is as follows.

We write M′
2 = M2 ∪g2 7→ (l,wrap) and omit the key handles in the adversary knowledge for clarity.

Attack 1

M1,M2

wrap g1 with h1 : → M1,M2,{enc(l,k)}

unwrap enc(l,k) with h2 for wrap :
g2
−→ M1,(M2 ∪g2 7→ (l,wrap)),{enc(l,k)}

wrap h2 with g2 : → M1,(M2 ∪g2 7→ (l,wrap)),{enc(l,k),enc(k, l)}
dec enc(k, l) with g1 : → M1,(M2 ∪g2 7→ (l,wrap)),{enc(l,k),enc(k, l),k}

Above, the first and last operations only are performed on token M1. In contrast to the intended inter-

action, the user unwraps key l with wrap permissions, and uses it to wrap key k instead of encrypting

d.

This example shows that local enforcement of separation of usage of keys can easily be circumvented

given access to multiple related tokens. This arises from two issues: Individually secure token configu-

rations may be insecure when composed; and the permissions of keys are not protected by the wrapping

primitive. In the following, we tighten the latter property.

2.2 Exploiting Assumptions of Non-monotonicity

We additionally model API operations for generating and modifying permissions of keys. We model the

operation to change the permissions associated with a handle as guarded by a permission policy, a binary

predicate φ over 2P. A user may change the permissions of a key from p to q iff φ(p,q) holds, and

we consider a permission set p valid iff φ(p, p) holds. In a well-formed policy, φ(q,q) holds whenever

φ(p, p) and φ(p,q) do. Key generation may only generate keys with valid permissions.

5. adm h for q means “set the permissions of handle h to q”.

6. gen for p means “generate a key with permissions p”.

Delaune et al.[3] describe a necessary permissions policy φd for avoiding key compromise. Infor-

mally, the policy is that all permissions (in P) are sticky and that certain pairs of permissions can not

both be in a valid permission set. Because of stickiness and conflicts, this policy is non-monotonous.

Formally, φd(p,q) := p ⊆ q∧ ({enc,unwrap} 6⊆ q)∧ ({dec,wrap} 6⊆ q)∧ ({wrap,unwrap} 6⊆ q).

Additional API Operations

adm h for q : M∪{h 7→ (k, p)},h → M∪{h 7→ (k,q)} if φd(p,q)

gen for p : M
h,k
−→ M∪{h 7→ (k, p)},h if φd(p, p)

The adm operation is the only operation that modifies the permissions of keys stored in the token.

3

Monotonicity for Multiple Key Management Tokens Johannes Borgström

Proprietary extensions to PKCS have been developed1 to ensure that wrapped keys are always un-

wrapped with their permissions unchanged. Under this assumption, we exhibit the following attack,

where M1 = {h1 7→ (k,wrap)} and M2 = {h2 7→ (k,unwrap)}. As above, we do not show key handles in

the adversary knowledge. We write M′
1 = (M1 ∪{g1 7→ (l,wrap)}).

Attack 2

M1,M2,{h1,h2}

gen for /0 :
g1,l
−−→ M1 ∪{g1 7→ (l, /0)},M2

wrap g1 with h1 : → (M1 ∪{g1 7→ (l, /0)}),M2,{enc(l,k)}

unwrap enc(l,k) with h2 for /0 :
g2
−→ (M1 ∪{g1 7→ (l, /0)}),(M2 ∪g2 7→ (l, /0)),{enc(l,k)}

adm g1 for wrap → M′
1,(M2 ∪g2 7→ (l, /0)),{enc(l,k)}

wrap h1 with g1 : → M′
1,(M2 ∪g2 7→ (l, /0)),{enc(l,k),enc(k, l)}

adm g2 for dec → M′
1,(M2 ∪g2 7→ (l,dec)),{enc(l,k),enc(k, l)}

dec enc(k, l) with g2 : → M′
1,(M2 ∪g2 7→ (l,dec)),{enc(l,k),enc(k, l),k}

This example shows that the possibility of adding permissions to a key after it has been exported or

imported may fail to provide the intended separation properties, even when wrapping and unwrapping

preserve permissions.

3 Conclusion

Based on the examples above, we conclude that multiple tokens should be explicitly taken into account

when verifying cryptographic APIs. In particular, invariants that are intended to hold of the state of

tokens should be composable, and enable realistic communication scenarios.

As part of this investigation, we have shown that the permissions policy described in [3] does not

guarantee key secrecy in a multiple token scenario, even when key permissions are preserved by wrap-

ping and unwrapping.

In ongoing work, we are implementing a key management API in F7 [1] and verifying secrecy

properties through type-checking. Initial results suggest that an API and permission policy similar to the

one considered in [4] can be proven secure against a symbolic attacker also in a multi-token setting.

Acknowledgments Thanks to Andy Gordon, Karthik Bhargavan and Mike Roe for helpful comments.

References

[1] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for secure implemen-

tations. In 21st IEEE Computer Security Foundations Symposium (CSF’08), pages 17–32, 2008.

[2] J. Clulow. On the security of PKCS#11. In Proceedings of CHES 2003, pages 411–425, 2003.

[3] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In 21st IEEE Computer Security Founda-

tions Symposium (CSF’08), pages 331–344, 2008.

[4] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded fresh data. In Proceed-

ings of ARSPA-WITS ’09, 2009. To Appear.

1These were recently studied in [4] in combination with a stronger permissions policy.

4

	Introduction
	Access Control
	 APIs In The Real World – a users perspective
	(How APIs are used and abused)
	1. Why Banks use cryptography
	2. How Banks select an API to use.
	3. Common pit falls found.
	3. What the perfect API might look like
	Introduction
	The Fix
	Ideal MAC-based integrity
	CVC/CVV Codes
	Packing the MAC into the CVC/CVV
	Security of the CVV Based Scheme

	Conclusions
	Compiling Applications with Information-Flow Policies to Systems with Trusted Modules (Work in Progress)
	Introduction
	Benefits
	Implementation Strategy
	Introduction
	Attacks on PKCS#11
	The API attacks! tool
	Introduction
	Multi-Token Attacks on []
	An Attack on Two Tokens
	Exploiting Assumptions of Non-monotonicity

	Conclusion

