Enumeration of First-Order Queries on Classes of
Structures With Bounded Expansion

*
Wojciech Kazana
INRIA and ENS Cachan
kazana@lsv.ens-cachan.fr

ABSTRACT

We consider the evaluation of first-order queries over classes
of databases with bounded expansion. The notion of bounded
expansion is fairly broad and generalizes bounded degree,
bounded treewidth and exclusion of at least one minor. It
was known that over a class of databases with bounded ex-
pansion, first-order sentences could be evaluated in time lin-
ear in the size of the database. We first give a different proof
of this result. Moreover, we show that answers to first-order
queries can be enumerated with constant delay after a linear
time preprocessing. We also show that counting the number
of answers to a query can be done in time linear in the size
of the database.

1. INTRODUCTION

Query evaluation is certainly the most important problem
in databases. Given a query ¢ and a database D it is to com-
pute the set ¢(D) of all tuples in the output of ¢ on D. How-
ever, the set ¢(D) may be larger than the database itself as
it can have a size of the form n! where n is the size of the
database and [the arity of the query. It can therefore require
too many of the available resources to compute it entirely.

There are many solutions to overcome this problem. For
instance one could imagine that a small subset of ¢(D) can
be quickly computed and that this subset will be enough for
the user needs. Typically one could imagine computing the
top-¢ most relevant answers relative to some ranking func-
tion or to provide a sampling of ¢(D) relative to some distri-
bution. One could also imagine computing only the number
of solutions |¢(D)| or providing an efficient test for whether
a given tuple belongs to ¢(D) or not.

In this paper we consider a scenario consisting in enu-
merating ¢(D) with constant delay. Intuitively, this means
that there is a two-phase algorithm working as follows: a
preprocessing phase that works in time linear in the size of
the database, followed by an enumeration phase outputting
one by one all the elements of ¢(D) with a constant delay
between any two consecutive outputs. In particular, the first

*This work has been partially funded by the European Research
Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant Webdam, agreement
226513. http://webdam.inria.fr/

Luc Segoufin
INRIA and ENS Cachan
http://pages.saclay.inria.fr/luc.segoufin/

answer is output after a time linear in the size of the database
and once the enumeration starts a new answer is being out-
put regularly at a speed independent from the size of the
database. Altogether, the set ¢(D) is entirely computed in
time f(q)(n + |¢(D)|) for some function f depending only
on ¢ and not on D.

One could also view a constant delay enumeration algo-
rithm as follows. The preprocessing phase computes in lin-
ear time an index structure representing the set ¢(D) in a
compact way (of size linear in n). The enumeration algo-
rithm is then a streaming decompression algorithm.

One could also require that the enumeration phase outputs
the answers in some given order. Here we will consider the
lexicographical order based on a linear order on the domain
of the database.

There are many problems related to enumeration. The
main one is the model checking problem. This is the case
when the query is boolean, i.e. outputs only 0 or 1. In
this case a constant delay enumeration algorithm is a Fixed
Parameter Linear (FPL) algorithm for the model checking
problem of ¢, i.e. it works in time f(q)n. This is a rather
strong constraint as even the model checking problem for
conjunctive queries is not FPL (modulo some hypothesis in
parametrized complexity) [19]. Hence, in order to obtain
constant delay enumeration algorithms, we need to make re-
strictions on the queries and/or on the databases. Here we
consider first-order (FO) queries over classes of structures
having “bounded expansion”.

The notion of class of graphs with bounded expansion was
introduced by Nesetfil and Ossona de Mendez in [16]. Its
precise definition can be found in Section 2.2. At this point
it suffices to know that it contains the class of graphs of
bounded degree, the class of graphs of bounded treewidth,
the class of planar graphs, and any class of graphs excluding
at least one minor. This notion is generalized to classes of
structures via their Gaifman graphs or adjacency graphs.

For the class of structures with bounded degree and FO
queries the model checking is in FPL [20] and there also
are constant delay enumeration algorithms [9, 13]. In the
case of structures of bounded treewidth and FO queries (ac-
tually even MSO queries with first-order free variables) the
model checking is also in FPL [8] and there are constant de-

lay enumeration algorithms [4, 14]. For classes of structures
with bounded expansion the model checking problem for FO
queries was recently shown to be in FPL [10, 12].

Our results can be summarized as follows. For FO
queries and any class of structures with bounded expansion:

e we provide a new proof that the model checking prob-
lem can be solved in FPL,

e we show that the set of solutions to a query can be enu-
merated with constant delay,

e we show that computing the number of solutions can be
done in FPL,

e we show that, after a preprocessing in time linear in the
size of the database, one can test on input a whether a €
¢(D) in constant time.

Concerning model checking, our method uses a different
technique than the previous ones. There are several charac-
terizations of classes having bounded expansion [16]. Among
them we find the “low tree depth coloring” and the “transi-
tive fraternal augmentations”. The previous methods were
based on the low tree depth coloring characterization while
ours is based on transitive fraternal augmentations. We ar-
gue that the use of transitive fraternal augmentations gives
a simpler proof. The reason is that it gives a useful nor-
mal form on quantifier-free formulas that will be the core of
our algorithms for constant delay enumeration and for count-
ing the number of solutions. As for the previous proofs, we
exhibit a quantifier elimination method, also based on our
normal form. Our quantifier elimination method results in a
quantifier-free formula but over a recoloring of a functional
representation of a “fraternal and transitive augmentation”
of the initial structure.

Our other algorithms (constant delay enumeration, count-
ing the number of solution or testing whether a tuple is a
solution or not) start by eliminating the quantifiers as for the
model checking algorithm. Note that for all these problems,
the quantifier-free case is already non trivial and require the
design and the computation of new index structures. For in-
stance consider the simple query R(x, y). Given a pair (a, b)
we would like to test whether (a, b) is a tuple of the database
in constant time. In general, index structures can do this
with log n time. We will see that we can do constant time,
assuming bounded expansion.

In the presence of a linear order on the domain of the
database, our constant delay algorithm can output the an-
swers in the corresponding lexicographical order.

Related work.

We make use of a functional representation of the initial
structures. Without this functional representations we would
not be able to eliminate first-order quantifiers. Indeed, with
this functional representation we can talk of a node at dis-
tance 2 from x using the quantifier-free term f(f(x)), avoid-
ing the existential quantification of the middle point. This
idea was already taken in [9] for eliminating first-order quan-
tifiers over structures of bounded degree. Our approach dif-

fers from theirs in the fact that in the bounded degree case
the functions can be assumed to be permutations (in partic-
ular they are invertible) while this is no longer true in our
setting, complicating significantly the combinatorics.

Once we have a quantifier-free formula, constant delay
enumeration could also be obtained using the characteriza-
tion of bounded expansion based on low tree depth color-
ings. Indeed, using this characterization one can easily show
that enumerating a quantifier-free formula over structures of
bounded expansion amounts in enumerating an MSO query
over structures of bounded tree-width and for those known
algorithms exist [4, 14]. However, the known enumeration
algorithms of MSO over structures of bounded treewidth are
rather complicated while our direct approach is fairly simple.
Actually, our proof shows that constant delay enumeration of
FO queries over structures of bounded treewidth can be done
using simpler algorithms than for MSO queries. Moreover,
it gives a constant delay algorithm outputting the solutions
in lexicographical order. No such algorithms were known
for FO queries over structures of bounded treewidth. In the
bounded degree case, both enumeration algorithms of [9, 13]
output their solutions in lexicographical order.

Similarly, counting the number of solutions of a quantifier-
free formula over structures of bounded expansion reduces
to counting the number of solutions of a MSO formula over
structures of bounded treewidth. This latter problem is known
to be in FPL [3]. We give here a direct and simple proof of
this fact for FO queries over structures of bounded expan-
sion.

2. PRELIMINARIES

In this paper a database is a finite relational structure. A
relational signature is a tuple 0 = (Ry,...,R;), each R;
being a relation symbol of arity r;. A relational structure
over o is a tuple D = (D, RY,...,RP), where D is the
domain of D and RP is a subset of D"i. We fix a reasonable
encoding of structures by words over some finite alphabet,
as in [1] for instance. The size of D is denoted by |D| and is
the length of the encoding of D.

By query we mean a formula written in the first-order
logic, FO, built from atomic formulas of the form z = y
or R;(z1,...,x,,) for some relation R;, and closed under
the usual Boolean connectives (—, V, A) and existential and
universal quantifications (3,V). We write ¢(Z) to denote a
query whose free variables are Z, and the number of free
variables is called the arity of the query. A sentence is a
query of arity 0. Given a structure D and a query ¢, an
answer to ¢ in D is a tuple @ of elements of D such that
D = ¢(a). We write ¢(D) for the set of answers to ¢ in
D, ie. (D) = {a|D E ¢(a)}. By |¢(D)| we denote the
cardinality of the set ¢(D). As usual, |¢| denotes the size of
0.
Let C be a class of structures. The model checking prob-
lem of FO over C is the computational problem of given a

sentence ¢ € FO and a database D € C to test whether
D E g ornot.
We now introduce our running examples.

EXAMPLE A-1. The first query has arity 2 and returns
pairs of nodes at distance at most two in a graph. We use
the classical notion of distance that ignores the possible ori-
entation of the edges. The query is of the form zE(x, z) A
E(z,y), where E is the symmetric closure of the input rela-
tion.

Testing the existence of a solution to this query can be
easily done in time linear in the size of the database. For in-
stance one can go trough all nodes of the database and check
whether it has degree two. The degree of each node can be
computed in linear time by going through all edges of the
database and incrementing the degree counters associated
with its endpoints.

EXAMPLE B-1. The second query has arity 3 and returns
triples (x,y, z) such that y is connected to x and z via an
edge but x is not connected to z. The query is of the form
E(z,y) N E(y,z) A ~E(x,z), where E is the symmetric
closure of the input relation.

It is not clear at all how to test the existence of a solu-
tion to this query in time linear in the size of the database.
The problem is similar to the one of finding a triangle in a
graph, for which the best known algorithm has complexity
even slightly worse than matrix multiplication [2]. If the de-
gree of the input structure is bounded by a constant d, we
can test the existence of a solution in linear time by the fol-
lowing algorithm. We first go through all edges (x,y) of the
database and add y to a list associated with x and x to a list
associated with y. It remains now to go through all nodes
y of the database, consider all pairs (x, z) of nodes in the
associated list (the number of such pairs is bounded by d?)
and then test whether there is an edge between x and z (by
testing whether x is in the list associated with z).

We aim at generalizing this kind of reasoning to structures
with bounded expansion.

Given a query ¢, we care about “enumerating” ¢(D) effi-
ciently. Let C be a class of structures. For a query ¢(Z), the
enumeration problem of q over C is, given a database D € C,
to output the elements of ¢(D) one by one with no repetition.
The maximal time between any two consecutive outputs of
elements of ¢(D) is called the delay. The definition below re-
quires a constant time between any two consecutive outputs.
We formalize these notions in the forthcoming sections.

2.1 Model of computation and enumeration

We use Random Access Machines (RAM) with addition
and uniform cost measure as a model of computation. For
further details on this model and its use in logic see [9]. In
the sequel we assume without loss of generality that the in-
put relational structure comes with a linear order on its do-
main (if not, we use the one induced by the encoding of the

database as a word). Whenever we iterate through all nodes
of the domain, the iteration is with respect to the initial linear
order.

We say that the enumeration problem of g over a class C of
structures is in the class CONSTANT-DELAY ;,,, O equivalently
that we can enumerate ¢ over C with constant df:lay1 ,if it can
be solved by a RAM algorithm which, on input D € C, can
be decomposed into two phases:

e aprecomputation phase that is performed in time O(|D|),

e an enumeration phase that outputs ¢(D) with no rep-
etition and a constant delay between two consecutive
outputs. The enumeration phase has full access to the
output of the precomputation phase but can use only a
constant total amount of extra memory.

Notice that if we can enumerate ¢ with constant delay,
then all answers can be output in time O(|D| + |¢(D)|) and
the first output is computed in time linear in |D|. In the par-
ticular case of boolean queries, the associated model check-
ing problem must be solvable in time linear in |D].

We may in addition require that the enumeration phase
outputs the answers to g using the lexicographical order. We
then say that we can enumerate ¢ over C with constant delay
in lexicographical order.

EXAMPLE A-2. Over the class of all graphs, we cannot
enumerate pairs of nodes at distance 2 with constant de-
lay unless the Boolean Matrix Multiplication problem can
be solved in quadratic time [6]. However, over the class of
graphs of degree d, there is a simple constant delay enumer-
ation algorithm. During the preprocessing phase, we asso-
ciate with each node the list of all its neighbors at distance
2. This can be done in time linear in the database as in Ex-
ample B-1. We then color in blue all nodes having a non
empty list and make sure each blue node points to the next
blue node (according to the linear order on the domain).
This also can be done in time linear in the database and
concludes the preprocessing phase. The enumeration phase
now goes through all blue nodes x using the pointer struc-
ture and, for each of them, outputs all pairs (z,y) where y
is in the list associated with x.

EXAMPLE B-2. Over the class of all graphs, the query
of this example cannot be enumerated in constant delay be-
cause, as mentioned in Example B-1, testing whether there is
one solution is already non linear. Over the class of graphs
of bounded degree, there is a simple constant delay enumer-
ation algorithm, similar to the one from Example A-2.

Note that in general constant delay enumeration algorithms
are not closed under any boolean operations. For instance

'For readability we use the term “enumerate with constant delay”,
but technically speaking it should read “enumerate with constant
delay after linear preprocessing”. The reader should keep in mind
that the linear preprocessing, although not explicitly mentioned, al-
ways precedes the enumeration process.

it is not because we can enumerate g and ¢’ with constant
delay, that we can enumerate ¢ VV ¢’ with constant delay as
enumerating one query after the other would break the “no
repetition” requirement. However, if we can enumerate with
constant delay in the lexicographical order, then a simple ar-
gument that resembles the problem of merging two sorted
lists shows closure under union:

LEMMA 1. If both queries q(Z) and ¢'(T) can be enu-
merated in lexicographical order with constant delay then
the same is true for q(T) V ¢’ (Z).

It will follow from our results that the enumeration prob-
lem of FO over the class of structures with “bounded ex-
pansion” is in CONSTANT-DELAY;;,,. The notion of bounded
expansion was defined in [16] for graphs and then it was gen-
eralized to structures via their Gaifman or Adjacency graphs.
We start with defining it for graphs.

2.2 Graphs with bounded expansion and aug-
mentation

In this paper a graph is a directed graph with colors on
vertices. We can then view a graph as a relational structure
G = (V,E,Py,...,P), where V is the set of nodes, E C
V2 is the set of oriented edges and, foreach 1 < i < [, P;
is a predicate of arity 1. A pair (u,v) € E represents an
edge from node u to node v. The in-degree of a node v is
the number of nodes u such that (u,v) € E. By A7 (G) we
mean the maximal in-degree of a node of G.

In [16] several equivalent definitions of bounded expan-
sion were shown. We will not use here the initial definition
but the one exploiting the notion of “augmentations”. The
interested reader can find in Appendix 8.1 the initial defini-
tion of bounded expansion.

Let G be a graph. A 1-transitive fraternal augmentation
of G is any graph H with the same vertex set as G and the
same colors of vertices, including all edges of G (with their
orientation) and such that for any three vertices z,y, z of G
we have the following:

(transitivity) if (z,y) and (y,) are edges in G, then (z, z)
is an edge in H,

(fraternity) if (x, z) and (y, z) are edges in G, then at least
one of the edges: (x,¥), (y,x) is in H,

(strictness) moreover, if H contains an edge that was not
present in G, then it must have been added by one of
the previous two rules.

Note that the notion of 1-transitive fraternal augmentation
is not a deterministic operation. Although transitivity in-
duces precise edges, fraternity implies nondeterminism and
thus there can possibly be many different 1-transitive frater-
nal augmentations. We care here about choosing the orienta-
tions of the edges resulting from the fraternity rule in order
to minimize the maximal in-degree.

Following [17] we fix a deterministic algorithm comput-
ing a “good” choice of orientations of the edges induced by

the fraternity property. The precise definition of the algo-
rithm is not important for us, it only matters here that the
algorithm runs in time linear in the size of the input graph
(see Lemma 2 below). With this algorithm fixed, we can
now speak of the 1-transitive fraternal augmentation of G.

Let G be a graph. The transitive fraternal augmentation
of G is the sequence G = Gy C G; C G2 C ... such that
for each ¢ > 1 the graph G, is the 1-transitive fraternal
augmentation of G;. We will say that G; is the i-th augmen-
tation of G.

DEFINITION 1. [16] Let C be a class of graphs. C has
bounded expansion if there exists a function I'c : N — R
such that for each graph G € C the transitive fraternal aug-
mentation G = Gog C Gy C G2 C ... of G is such that for
eachi > 0 we have A~ (G;) < T'¢ ().

Consider for instance a graph of degree d. Notice that the
1-transitive fraternal augmentation introduces an edge be-
tween nodes that were at distance at most 2 in the initial
graph. Hence, when starting with a graph of degree d, we
end up with a graph of degree at most d?. This observa-
tion shows that the class of graphs of degree d has bounded
expansion as witnessed by the function I'(i) = d?'. Exhibit-
ing the function I' for the other examples of classes with
bounded expansion mentioned in the introduction: bounded
treewidth, planar graphs, graphs excluding at least one mi-
nor, requires more work [16].

The following lemma shows that within a class C of bounded
expansion the i-th augmentation of G € C can be computed
in linear time.

LEMMA 2. [17] Let C be a class of bounded expansion.

For each G € C and each i, G; is computable from G;_1 in
time O("G7_1 ”)

In particular Lemma 2 implies that for each ¢, given G €
C, G; is computable from G in time O(|G]|).

2.3 Graphs of bounded in-degree as functional
structures

For the rest of this section we fix a class C of graphs with
bounded expansion and let I'¢ be the function given by Def-
inition 1. For any graph G € C its transitive fraternal aug-
mentation G = Gg € G; C Gy C ... is such that for all 7,
G; has in-degree bounded by I'¢ (7). From the definition of
bounded expansion it follows that the maximal in-degree of
the graphs we will manipulate is always bounded by a num-
ber independent of the graph. We will use this property by
constantly referring to the 15¢,2"¢ . . . predecessor of a node.
It will therefore be convenient for us to represent the graphs
G; as functional structures where this predecessors are im-
ages of the current node via some suitable functions. As
mentioned in the introduction, this functional representation
is also useful for eliminating some quantifiers.

A functional signatureis atuplec = (f1,..., fi, P1,- ..
each f; being a functional symbol of arity 1 and each P; be-
ing an unary predicate. A functional structure over o is then

7P7n)’

defined as for relational structures. FO is defined as usual
over the functional signature. In particular, it can use atoms
of the form f(f(f(z))), which is crucial for the quantifier
elimination step of Section 3 as the usual relational repre-
sentation would require existential quantification for denot-
ing the same element. A graph G of in-degree / and colored
with m colors can be represented as a functional structure
G, where the unary predicates encode the various colors and
v = f;(u) if v is the i™ element (according to some arbitrary
order that will not be relevant in the sequel) such that (v, u)
is an edge of G. We call such node v the i predecessor
of u (where “i'" predecessor” should really be viewed as an
abbreviation for “the node v such that f;(u) = v” and not as
a reference to the chosen order). If we do not care about ¢
and we only want to say that v is the image of v under some
function, we call it a predecessor of u. Given G € C we de-
fine G to be the functional representation of G as described
above. Note that G is computable in time linear in |G| and
that for each first order query ¢(Z) one can easily compute a

first order query ¢ (Z) such that ¢(G) = w(é)

EXAMPLE A-3. With the functional point of view, the query

computing nodes at distance at most two is of the form:

\ flg@) =y Vv g(f(y) =2 Vv f(z)=g(y) Vv

v 32 f(z) = Aglz) =y

where there is one disjunct per possible orientation of the
edges on the path from x to y. We have removed the inner
node z whenever this was possible.

EXAMPLE B-3. Similarly, the query of Example B-1 is
equivalent to:

\/ N\ (h(@) # 2 Ah(z) # x)

f.9€0 heo

)
r= f(y) Ny = g(2))].

Recall that the augmentation steps only introduce new edges

and do not affect the vertex set. It will be convenient for us
to be able to recover G; from G;;. For this we use extra
function symbols denoting the edges resulting from an aug-
mentation step. The definition of bounded expansion guar-
antees that the number of required new symbols is bounded
by I'c¢(i + 1) and does not depend on the graph.

From this it follows that we have functional signatures
oc(0) C oc(l) C o¢(2) C ..., where o¢(0) is the ini-
tial signature and o¢ (i + 1) is o¢(¢) plus the T'¢ (i + 1) extra
symbols needed for the extra augmentation step, such that
for any graph G € C and for all i:

1. (_‘;Z is a functional structure over o¢ (i),
2. (_‘;Z C éi+1 and éiH is computable in linear time
from G,

3. for every FO query ¢(Z) over o¢(i) and every j > 4
we have that ¢(G;) = ¢(G;).

We denote by (i) the number of function symbols of
oc(i). It follows from the discussion above that ac(i) =
Yi<il'c(j). It would be tempting to reduce this number by
reusing function symbols, but that would then be problem-
atic to enforce 3. (See Appendix 8.2.)

We say that a functional signature ¢’ is a recoloring of
o if it extends o with some extra unary predicates (colors),
while the functional part remains unchanged. Similarly, a

—/ —
functional structure G over o’ is a recoloring of G over o if

o’ is a recoloring of o and Gisa o’-expansion of G (i.e. it
does not differ from G on the predicates in o). We write ¢ is
over a recoloring of o if ¢ is over o’ and ¢’ is a recoloring
of 0.

For each p > 0 we define C, to be the class of all recol-

orings (_i;, of ép for some G € C. In other words C,, is the
class of functional representations of all recolorings of all
p-th augmentations of graphs from C. Note that all graphs
from C,, are recolorings of a structure in o¢(p), hence they
use at most ¢ (p) function symbols.

From now on we assume that all graphs from C and all
queries are in their functional representation. It follows from
the discussion above that this is without loss of generality.

2.4 From structures to graphs

The adjacency graph of a relational structure D, denoted
by Adjacency(D), is a functional graph defined as follows.
The set of vertices of Adjacency(D) is D U T where T is
the set of tuples occurring in some relation of D. For each
relation R; in the schema of D, there is a unary symbol Pg,
coloring the elements of 1" belonging to R;. For each tuple
t = (ay,---,ar,)such that D = R;(t) for some relation R;
of arity r;, we have an edge f;(t) = a; forall j < r;.

OBSERVATION 1. [t is immediate to see that for every re-
lational structure D we can compute Adjacency(D) in time

o([Dp])-

Let C be a class of relational structures. We say that C
has bounded expansion if the class C’ of adjacency graphs
of structures from C has bounded expansion.

REMARK 1. In the literature, for instance [10, 12], a
class C of relational structures is said to have bounded ex-
pansion if the class of their Gaifman graphs has bounded
expansion. Our definition can be shown to be equivalent to
the usual one (see Appendix 8.3). As it gives directly an ori-
ented graph, it is more convenient for us.

Let "¢ be the function given by Definition 1 for C’. The
following lemma is immediate.

LEMMA 3. Let C be a class of relational structures with
bounded expansion and let C’ be the underlying class of ad-
Jacency graphs. Let ¢(Z) € FO. In time linear in the size

of ¢ we can find a query ¥(Z) over oc/(0) such that for all
D € C we have ¢(D) = y(Adjacency(D)).

As a consequence of Lemma 3 it follows that model check-
ing, enumeration and counting of first-order queries over re-
lational structures reduce to the graph case. Therefore in
the rest of the paper we will only concentrate on the graph
case (viewed as a functional structure), but the reader should
keep in mind that all the results stated over graphs extend to
relational structures via this lemma.

2.5 Normal form for quantifier-free first-order
queries

We conclude this section by proving a normal form on
quantifier-free FO formulas. This normal form will be the
ground for all our algorithms later on. It basically says that,

modulo performing some extra augmentation steps, a quantifier-

free formula has a very simple form.

Fix class C of graphs with bounded expansion. Recall that
we are now implicitly assuming that graphs are represented
as functional structures.

A formula is simple if it does not contain atoms of the
form f(g(z)), i.e. it does not contain any compositions of
functions. Observe that, modulo augmentations, any for-
mula can be transformed into a simple one.

LEMMA 4. Let () be a formula over a recoloring of
oc(p). Then, for ¢ = p + ||, there is a simple formula
W' (Z) over a recoloring of o¢(q) such that:

for all G € Cp, there is a G e Cq computable in time
linear in |G| such that (G) = w’(é/).

PrROOF. This is a simple consequence of transitivity. Any
composition of two functions in G represents a transitive pair
of edges and becomes a single edge in the 1-augmentation H
of G. Then f(g(x)) over G is equivalent to h(z) A Py g.1n(x)
over H, where the newly introduced color Py 4.1 holds for
those nodes v, for which the f(g(v)) = h(v). As the nest-
ing of compositions of functions is at most ||, the result
follows. The linear time computability is immediate from
Lemma2. O

‘We make one more observation before proving the normal
form:

LEMMA 5. Let G € Cp. Let u be a node of G. Let S
be all the predecessors of u in G and set ¢ = p + I'c (p).
Let G € Cq be the (q — p)-th augmentation of G. There
exists a linear order < induced on S by é/, such that for all
v,v" € S, v < v implies v' = f(v) is an edge ofé/ for
some function f from o¢(q).

PROOF. This is because all nodes of S are fraternal and
the size of S is at most I'c(p). Hence, after one step of
augmentation, all nodes of S are pairwise connected and,
after at most I'c (p) — 1 further augmentation steps, if there is

a directed path from one node u of S to another node v of .S,
then there is also a directed edge from u to v. By induction
on |S| we show that there exists a node u € S such that for
all v € S there is an edge from v to w. If |[S| = 1 there is
nothing to prove. Otherwise fix v € S andlet S’ = S\ {v}.
By induction we get a u in S’ satisfying the properties. If
there is an edge from v to u, u also works for S and we are
done. Otherwise there must be an edge from u to v. But
then there is a path of length 2 from any node of S’ to v. By
transitivity this means that there is an edge from any node of
S’ to v and v is the node we are looking for.

We then set u as the minimal element of our order on S
and we repeat this argument with S\ {u}. O

Lemma 5 justifies the following definition.

DEFINITION 2. A p-type T,(x) is a quantifier-free con-
Jjunctive formula expressing all the relations between prede-
cessors of a node x in some graph G € C,, in the (q — p)-th

augmentation é/ of G, where q is given by Lemma 5. More
precisely, for every functions f;, f; € oc(p), Tp(x) con-
tains at least one of the conjuncts h; ;(fi(x)) = f;i(z) or
hji(fj(x)) = fi(x), where h; ; and h; ; are function sym-
bols from o¢(q).

In particular, a p-type 7 induces a linear order on the pre-
decessors of x as described by Lemma 5 (fi(z) < f;(x)
whenever h; ;(fi(z)) = f;(z) is a conjunct of 7) and more-
over specifies all the relations between these predecessors in
Gl. Note that for a given p there are only finitely many pos-
sible p-types and that each of them can be specified with a
conjunctive formula over o¢(q).

We now state the normal form result.

PROPOSITION 1. Let ¢(ZTy) be a simple quantifier-free
query over a recoloring of oc(p). There exists q that de-
pends only on p and ¢ and a quantifier-free query v over a
recoloring of o¢(q) that is a disjunction of formulas:

P1(Z) AT(y) A AT (TY) A AT (TY), (1)

where T(y) contains a p-type of y; A=(Ty) is either empty
or contains one clause of the form y = f(x;) or one clause
of the form f(y) = g(x;) for some suitable i, { and g; and
A7 (Zy) contains arbitrarily many clauses of the form y #
f(x;) or f(y) # g(z;). Moreover, 1 is such that:

for all G c Cy there is a é/ € Cq computable in time
linear in |G| with $(G) = 1/1(6/)

PROOF. Set q as given by Lemma 5. We first put ¢ into a
disjunctive normal form (DNF) and in front of each such dis-
junct we add a big disjunction over all possible p-types of y
(recall that a type can be specified as a conjunctive formula).
Let ¢’ be the resulting formula.

We deal with each disjunct of ¢’ separately.

Note that each disjunct is a query over o¢(q) of the form:

1 (2) AT(y) A AT (Zy) A AT (Ty),

where all sub-formulas except for A= are as desired. More-
over, 11 (%), A~ (Zy) and A7 (Zy) are in fact queries over
oc(p). At this point A= contains arbitrarily many clauses of
the form y = f(x;) or f(y) = g(x;). If it contains at least
one clause of the form y = f(x;), we can replace each other
occurrence of y by f(x;) and we are done.

Assume now that A= contains several conjuncts of the
form f;(y) = g(xr). Assume wlog that 7 is such that f; (y) <
foly) < ---, where f1(y), f2(y),- - are all the predeces-
sors of y from o¢(p). Let ig be the smallest index ¢ such
that a clause of the form f;(y) = g(x)) belongs to A=. We
have f; (y) = g(z)) in A= and observe that 7 specifies for
i < j afunction h;, ; in o¢(q) such that h; ;(fi(y)) = f;i(y).
Then, as y is of type 7, a clause of the form f;(y) = h(zx)
with ig < j is equivalent to h;, ;(g(zx)) = h(xg).

Let ¢ be the result of performing this operation on each
disjunct of ¢'.

Now, given G € C,, let G ¢ C, be the (¢ — p)-th auge-
mentation of G. It is computable in time linear in G by
Lemma 2. By Lemma 5 we have ¢(G) = ¢’((§/). By

construction we have w(él) = ¢ (é,) and the result fol-
lows. [

EXAMPLE A-4. Let us see what Lemma 4 and the nor-
malization algorithm do for p = 0 and some of the disjuncts
of the query of Example A-3:

In the case of f(g(x)) = y note that by transitivity, in the
augmented graph, this clause is equivalent to one of the form
y = h(x) A Py g.1(x) (this case is handled by Lemma 4).

Consider now 3z f(z) = x A g(z) = y. It will be conve-
nient to view this query when z plays the role of y in Proposi-
tion 1. Notice that in this case it is not in normal form as A=
contains two elements. However, the two edges f(z) = «
and g(z) = y are fraternal. Hence, after one augmentation
step, a new edge is added between x and y and we either
have y = h(x) or x = h(y) for some h in the new signature.

Let Ty, 5.4(2) be a O-type stating that h(f(z)) = g(z) and
Th,g.f(2) be a O-type stating that h(g(z)) = f(2). It is now
easy to see that the query 3z f(z) = z ANg(z) = y is
equivalent, in the augmented graph, to

32\/ y=h@) A1 qe(2)ANf(z) =2 V
h

z=hY) AThgr(2) AN f(z) ==

3. MODEL CHECKING

In this section we show that the model checking problem
of FO over a class of structures with bounded expansion can
be done in time linear in the size of the structure. This gives
a new proof of the result of [10]. Recall that by Lemma 3 it
is enough to consider oriented graphs viewed as functional
structures.

THEOREM 1. [10] Let C be a class of graphs with bounded
expansion and let) be a sentence of FO. Then, for all G €
C, testing whether G |= 1 can be done in time O(||G|).

The proof of Theorem 1 is done using a quantifier elimi-
nation procedure: given a query ¢ (Zy) with at least one free
variable we can compute a quantifier-free query ¢(Z) that is
“equivalent” to Jy1(Zy). Again, the equivalence should be
understood modulo some augmentation steps for a number
of augmentation steps depending only on C and [¢)|. When
starting with a sentence ¢ we end-up with ¢ being a boolean
combination of formulas with one variable. Those can be
easily tested in linear time in the size of the augmented struc-
ture, which in turns can be computed in time linear from the
initial structure by Lemma 2. The result follows. We now
state precisely the quantifier elimination step:

PROPOSITION 2. Let C be a class of graphs with bounded
expansion witnessed by the function T'¢c. Let ¥(Zy) be a
quantifier-free formula over a recoloring of o¢(p). Then one
can compute a q and a quantifier-free formula ¢(T) over a
recoloring of o¢(q) such that:

forall G € Cp there is a G e Cq such that:

-/

o(G) = (Byv)(G)
Moreover;, G is computable in time O(|G])).

Before going into details, we start with an outline of the
proof. The reasoning is going to be as follows:

e Using Lemma 4 and Proposition 1 we argue that it suf-
fices to show the quantifier elimination procedure only for
1(Zy) being of the special form given by (1), that is:

V1(Z) AT(y) AAT(Ty) A AT (Zy).

¢ In order to eliminate the existentially quantified variable
y we somehow need to encode its existence in terms of prop-
erties of Z.

e In the easy case when 1/ contains conjunct of the form
f(z;) = y, we can replace each occurrence of y with f(x;)
and we are done.

e The most interesting case is when ¢ contains conjunct
of the form f(y) = g(x;). Then the algorithm proceeds as
follows:

o it iterates through all nodes v of the graph (think of v
as of a candidate for substituting the existentially quantified
variable y) and in a sense “registers” its existence to node
f(o),

o given tuple u to be substituted for for Z it is enough to
only check nodes from the “list of registrants” of g(u;) as
the possible candidates for y,

o unfortunately the above procedure could produce “lists
of registrants” of arbitrary lengths, so we have to be more
careful,

o therefore we limit the “registration” process and allow
new nodes to register only if they are “different enough” (in
terms of the sets of their predecessors) from the nodes that
already registered,

o this way we define so called WITNESS sets that are of
constant (i.e. independent from the size of é) sizes and such

that if there exists a valid node for y, there also exists such a
node inside WITNESS(g(u;)),

o the rest of the argument is a way of encoding WITNESS
sets by only recoloring the structure and not altering its func-
tional part.

We now formalize the above approach:

PROOF OF PROPOSITION 2. Wlog (modulo augmentations,

see Lemma 4 for details) we assume that 1) is simple.

We apply Proposition 1 to ¢ and p and obtain a ¢ and an
equivalent formula in DNF, where each disjunct has the spe-
cial form given by (1). As disjunction and existential quan-
tification commute, it is enough to treat each part of the dis-
junction separately.

We thus assume that ¢)(Zy) is a quantifier-free conjunctive
formula over a recoloring of o¢(gq) of the form (1):

V1(Z) AT(y) AAT(Ty) A AT (Ty).

We assume wlog that 7 contains a p-type enforcing f1(y) <
fa(y) < ---, where fi(y), f2(y),- - are all the images of
y by a function from o¢(p). Moreover, for each i < j, T
contains an atom of the form h; ;(f;(y)) = f;(y) for some
function h; ; € o¢(q).

If A= is y = g(xy) for some function g and some k, then
we replace y with g(z) everywhere in ¢(Zy) resulting in a
formula ¢(Z) having obviously the desired properties.

Assume now that A= is f(y) = g(x;). Wlog assume that
fis fi, in the order specified by the p-type 7 and that ¢ = 1.
Hence we have f;,(y) = g(z1) in A=.

We will introduce extra colors in order to simulate all in-
teractions between y and .

Let G be the (¢— p)-th augmentation of G. We construct
in time linear in Hé// | a set WITNESS(v) for each v of G
such that for all tuples v of (3//, if G = 1¢(vu) for some
node u, then there is a node u' € WITNESS(g(v1)) such
that G = ¢ (ou’). Moreover, for all v, [WITNESS(v)| < N

where IV is a number depending only on p. We then encode
these witness sets using suitable extra colors.

Computation of the Witness function.

We start by initializing WITNESS(v) = 0 for all v.

We then successively investigate all nodes u of (}w and do
the following. If G’ E —7(u) then we move on to the next
u It G" = 7(u) then let uq, - - - , u; be the current value of
WITNESS(fi, (w)).

Let 3, be ac(p)(ac(p) + 1)|z] + 1.

Let 4 be minimal such that there exists j with f;(u;) =
fi(u) and set i = ac(p) + 1 if such an ¢ does not exists.
Let S; = {fi—1(u;) | fi(u;) = fi(u)}, where fo(u;) is u;
in the case where ¢ = 1. If |S;| < f3, then we add u to
WITNESS(fi, (v)).

The algorithm is linear time and the size of WITNESS(v) <
(Bp+1)P»*1. It remains to show that it has the desired prop-
erties.

Analysis of the Witness function.
—//
Assume G = ¢(vu). If u € WITNESS(g(v1)) we are

done. Otherwise note that f;,(u) = g(v1) and that G’ E
7(u). Let ¢ and S; be as described in the algorithm when
investigating u. As u was not added to WITNESS(f;,(u)),
we must have |S;| > B,. Let S; = {u;,,--- ,ug,,---} be
the corresponding elements of WITNESS(g(v1)). Among
these data values, for each j at most a¢(p) of them may be
a predecessor of v;. Similarly, for each ¢’ < i and each j, at
most ae(p) of them may be such that their image by f;/ is
a predecessor of v;. For each ¢’ > i their image is exactly
fir(u) and it does not falsify any inequality conjuncts of 1.
Hence, at most a¢(p)(ac(p) + 1)|9] of them may falsify at
least one of the inequality conjuncts of 1. We can therefore
find in WITNESS(g(vy)) at least one element satisfying the
formula, as |S;| > ac(p)(ac(p) + 1)|7].

—//
Recoloring of G .
—//
Based on WITNESS we recolor G as follows. Let v, =

—//
(Bp + 1)1 Foreachv € G we order WITNESS(v). We
can now speak of the i*" witness of v.
For each 7 < v, we introduce a new unary predicate P;

—//
and for each u € G we set P;(u) if WITNESS(u) contains
at least ¢ elements.
For each i < ~y, and each h,h’ € a¢(gq) we introduce

—

a new unary predicate P; 5, , and for each v € G we set
P; .1 (v) if the i*" witness of h(v) is an element u with
W (u) =v.

For each ¢ < v, h € a¢(g) we introduce a new unary
predicate @; 5, and for each v € G we set Qi n(v) if the ith
witness of h(v) is v.

We denote by G the resulting graph and notice that it can
be computed in linear time from G.

Finally, note that if y is the i*" witness of g(z1), the equal-

=/

ity f;(y) = h(zx) with j < 1 is equivalent over G to
hjio(M(zr)) = g(x1) A H,h,,,io,fj(h(zk)) and the equality
y = h(xy) is equivalent over G to fio(h(zk)) = g(z1) A
Qi,f,, (h(zy)). From the definition of p-type, the equality
fi(y) = h(xy) with j > ¢ is equivalent to h;, ;(g(z1)) =
h(l‘k>

Computation of ¢.
In view of the analysis above, ¥ (Zy) is equivalent to a
formula:

V i@ Av'(@)

where ' () checks that the i** witness of g(z1) makes the
initial formula true. In view of the above, this formula " (Z)

is defined by

Pi(g(z1)) A N\ —(hjio(h(ar)) = g(z1) A Piny 55 (h(a)))
£ (W) #h(zp)ea”
Jj<ig
A A
fi) #h(z)eA”
Jj>io

hig,j(g(z1)) # h(xk)

A N\~ (fio (h(@r) = g(@1) A Qi g, (h(xi)))

y#h(zy)EAF

The special case when A= is empty is a simpler version of
the previous case, only this time it is enough to construct a
set WITNESS which does not depend on v. For details see
Appendix 8.4. [

EXAMPLE A-5. Consider one of the quantified formulas
as derived by Example A4:
Jz y=h(@) A1hfe(2) A f(2) =2
The resulting quantifier-free query has the form:
P(2) A hix) = y

where P(x) is a newly introduced color saying “3z T, ¢,4(2)\
f(2) = x”. The key point is that this new predicate can be
computed in linear time by iterating through all nodes z,
testing whether Ty, 1 4(2) is true and, if this is the case, col-
oring f(z) with color P.

Applying the quantifier elimination process from inside

out using Proposition 2 for each step and then applying Lemma 4

to the result yields:

THEOREM 2. Let C be a class of graphs with bounded
expansion. Let 1() be a query of FO over a recoloring of
oc(0) with at least one free variable. Then one can com-
pute a p and a simple quantifier-free formula ¢(T) over a
recoloring of o¢(p) such that:

for all G € C, we can construct in time O(|G|) a graph

é/ € Cp such that

$(G) = ¥(G)

We will make use of the following useful consequence of
Theorem 2:

COROLLARY 1. Let C be a class of graphs with bounded
expansion and let (Z) be a formula of FO with at least one
free variable. Then, for all Gec, after a preprocessing in
time O(|G|), we can test, given @ as input, whether G =
(@) in constant time.

PROOF. By Theorem 2 it is enough to consider quantifier-
free simple queries. Hence it is enough to consider a query
consisting of a single atom of either P(z) or P(f(x)) or
z = f(y)or f(z) = g(y).

During the preprocessing phase we associate with each
node v of the input graph a list L(v) containing all the pred-
icates satisfied by v and all the images of v by a function

symbol from the signature. This can be computed in linear
time by enumerating all relations of the database and updat-
ing the appropriate lists with the corresponding predicate or
the corresponding image.

Now, because we use the RAM model, given u we can
in constant time recover the list L(u). Using those lists it
is immediate to check all atoms of the formula in constant
time. [

Theorem 1 is a direct consequence of Theorem 2 and Corol-
lary 1: Starting with a sentence, and applying Theorem 2
for eliminating quantifiers from inside out we end up with
a Boolean combination of formulas with one variable. Each
such formula can be tested in O(||G|) by iterating through all
nodes v of G and in constant time (using Corollary 1) check-
ing if v can be substituted for the sole existentially quantified
variable.

On top of Theorem 1 the following corollary is immediate
from Theorem 2 and Corollary 1:

COROLLARY 2. Let C be a class of graphs with bounded
expansion and let 1 (x) be a formula of FO with one free
variable. Then, for all GecC computing the set w(é) can
be done in time O(|G]).

4. ENUMERATION

In this section we consider first-order formulas with free
variables and show that we can enumerate their answers over
any class with bounded expansion with constant delay. More-
over, assuming a linear order on the domain of the input
structure, we will see that the answers can be output in the
lexicographical order. As before we only state the result for
graphs, but it immediately extends to arbitrary structures by
Lemma 3. Recall that we assumed (without loss of general-
ity) the presence of a linear order of the domain.

THEOREM 3. LetC be a class of graphs with bounded ex-
pansion and let ¢(T) be a first-order query over o¢(0). Then
the enumeration problem of ¢ over C is in CONSTANT-DELAY/;,,.
Moreover the answers to ¢ can be output in lexicographical
order.

Before going into details, we start with an outline of the
proof. The reasoning is going to be as follows:

e The proof is by induction on the number of free vari-
ables.

e The case k = 1 is done by Corollary 2.

e For £ > 1, using the normalization and quantification
procedures of the previous sections, it is enough to consider
quantifier-free queries 1 (Zy) of the form:

V1(Z) AT(y) AAT(Ty) A A7 (Zy).

We further set ¢’ (Z) the formula Iy (Zy).

e In the easy case when 1 contains conjunct of the form
f(x;) = y, we enumerate ¥"(Z) by induction and append
f(x;) to each resulting tuple.

e The most interesting case is when ¢/ contains conjunct
of the form f(y) = g(«;). Then the algorithm proceeds as
follows:

o It enumerates all the solutions of ¢"'(Z) by induction
and appends to it all the relevant y.

o For this it computes, during the preprocessing phase,
several successor functions among nodes, such that for each
Z, at least one of them will enumerate the associated y.

o The key point is that only finitely many successor func-
tions need to be precomputed and that the suitable one can
be found by looking only at Z.

We now formalize the above approach:

PROOF. Fix a class C of graphs with bounded expansion
and a query ¢(Z) with k free variables. Let G be the input
graph and V' be its set of vertices.

The proof is by induction on the number of free variables.
The case k = 1 is done by Corollary 2.

Assume now that £ > 1 and that z and y are the free
variables of ¢, where |Z| = k — 1.

We apply Theorem 2 to get a simple quantifier-free query

1/
©(Zy) and a structure G € Cp, for some p that does not
1/

depend on G, such that (G) = ¢(G) and G’ can be com-

—

puted in linear time from G.
We normalize the resulting simple quantifier-free query
using Proposition 1, and obtain an equivalent quantifier-free

—//
formula ¢ and a structure G € C,, where ¢ depends only
—// —/
on p and ¢, G can be computed in linear time from G,

o(G) = (G") and % is a disjunction of formulas of the
form (1):

U1(2) AT(y) A AT (TY) A AT (TY),
where A=(Zy) is either empty or contains one clause of the
form y = f(x;) or one clause of the form f(y) = g(z;) for
some suitable i, f and g; and A7 (Zy) contains arbitrarily
many clauses of the form y # f(x;) or f(y) # g(z;).

By Lemma 1 it is enough to show that we can enumerate
each disjunct separately. In the sequel we then assume that
1) has the form described in (1). We let ¥’ (y) be the formula
Az (Zy) and ¥’ (Z) the formula Jyy(zy).

If A= contains an equality of the form y = f(x;) then we
replace y by f(z;) in 7 and A7, enumerate by induction the
formula ¢)”” and replace each of its output @ with (af(a;)) in
order to obtain the desired constant delay enumeration algo-
rithm. We therefore now assume that A= does not contain
such equality.

We now define two functions L : V — 2Y and W :
V=1 — V depending on whether A= is empty or consists
of a single clause of the form f(y) = g(x;). If A= is empty

—//

we pick an arbitrary node w in G and set L(w) =¢'(G),
L(v) = 0 for v # w, and W () = w for all tuples v. If
A= ={f(y) = g(z;)} we set W (o) = g(v;) for all tuples
¥ and define L using the following procedure. We initialize
L(v) to () for each v € V. Then, for each v € w’(é//), we
add v to the set L(f(v)).

10

Notice that L can be computed in time linear in ||GW | (us-
ing Corollary 2), that each list L(v) is sorted with respect
to the linear order on the domain and that, given v, W (?)
can be computed in constant time. Moreover, for each vu,
G’ = o(vu) implies u € L(W (7)) and if u € L(W (7))
then A= (vu) is true.

By induction we can enumerate v" (Z) with constant de-
lay.

On top of the linear time preprocessing necessary for enu-
merating 1" we do the following extra preprocessing. We
first compute L(v) for all v € V. Then, for each v € V, we
perform the following procedure on L(v). Each procedure
will work in time linear in the size of L(v), hence the total
preprocessing will take time O(|V|).

Fix v and set L = L(v). We denote by < the order on L.
(Recall that this order is consistent with the initial order on
the domain.)

For S1,...,S84.(q) €V we define
,,,,, Foe(@)sSec(@ (u) to be the first element w > u
of L such that fi(w) ¢ Si,..., and fo.(q)(w) & Sac(q)- If
such w does not exist, the value of NEXTy, g, oo Fore (@) Serg (@) (u)
is NULL. When all S; are empty, we write nexty(u) and by
the above definitions we always have nextg(u) = u. We
denote such functions as shortcut pointers of u. We write

NEXTfl,S{,..A,fac(q),S;c(q) (u) = NEXTf17SI1'“~,fac(q)7‘sac(q) (u)
if for each 1 < i < ac(q) we have S, C S;. Note that
for a given u the < relation is a partial order on the set
of shortcut pointers of u. A trivial observation is that if
NEXTf1,57,. fac @S 0 (w) X NEXT 81, fa (0 See o) (0>
then
NEXT £ S0 o 0105y (o (W) S NEXT S0 fai ()8 o (8-
The size of a §h0rtcut pointer NEXT ;8. ..., fur, () +Seg (o) ()
is the sum of sizes of the sets S;.

In order to avoid writing too long expressions containing
shortcut pointers, we introduce the following abbreviations:

® NEXT, 81, fup(@)Sac (o) (u) is denoted with NEXT g(u),

) NEXTf1 7517"')fiaSiU{u'i}7“'7fac(q)7sac(q) (U) is denoted with

NEXT g5, 4 (ui}) (%)

Set B, = (k—1) - ac(q).

Computing all shortcut pointers of size /3, would take
more than linear time. We therefore compute a subset of
those, denoted SCy, that will be sufficient for our needs.
SC/, is defined in an inductive manner. For all u, nexty(u) €
SCpr. Moreover, if the shortcut pointer NULL # NEXTg(u) €
SCy, and has a size smaller than 3, then, for each 1,

NEXT (5, 4 — fui}] (u) € SCr, where u; = f;(NEXTg(u)).
We then say that NEX.Tg(u) is the origin of NEXTg(s, 4)] (u).
Note that SCy, contains all the shortcut pointers of the form
NEXTy, 14, (u)}(w) for u € L and these are exactly the short-

cut pointers of u of size 1. By SCy(u) C SCy, we denote
the shortcut pointers of « that are in SCyp..

The set SCy, has the following properties:

CLAIM 1. Let NEXTg(u) be a shortcut pointer of size not
greater than [3;. Then there exists NEXTg, (u) € SCp, such
that NEXTg(u) = NEXTg,(u). Moreover, such NEXT g (u)
can be found in constant time.

PROOF. The desired shortcut pointer is NEXT g, (u) € SCp,
that is maximal in terms of size shortcut pointer of u such
that NEXT g (u) < NEXTg(u). (See Appendix 8.5.) [

CLAIM 2. There exists a constant ((q, k) such that for
every node u we have |SCr(u)| < ((q, k).

PROOF. The proof is a direct consequence of the recur-
sive definition of SCp,(u). (See Appendix 8.5.) [J

The following claim guarantees that SC; can be com-
puted in linear time and has therefore a linear size.

CLAIM 3. SCy, can be computed in time linear in |L|.

PROOF. SCy, can be constructed in an inductive manner
starting from the last node on the list L and moving back-
ward. Claim 1 plays the key role in constructing each short-
cut pointer in constant time, while Claim 2 guarantees that
the total size of SCy, is linear in | L|. (See Appendix 8.5.) [

The computation of SC, concludes the preprocessing phase
and it follows from Claim 3 that it can be done in linear time.
We now turn to the enumeration phase.

We enumerate one by one the solutions to ¢ (Z) by sim-
ulating the enumeration algorithm obtained from the induc-
tion.

Having a solution ¥ to %" by construction we know that
all nodes u such that G E ¢(vu) are in L = L(W(9)).
Recall also that all elements v € L make 7(u) A A= (vu)
true. For 1 < i < ac(q) weset S; = {g(v;) : g(x;) #
fi(y) is a conjunct of A7 }. Starting with u the first node of
the sorted list L, we apply the following procedure:

1. If u = NULL, finish the nested enumeration procedure
for . If not, let NEXTg, (u) be the shortcut pointer
from the application of Claim 1 to NEXTg(u). Set
u' = NEXTg (u). If u' = NULL, finish the nested
enumeration procedure for v.

2. 1t G |= ¢(3u’), output (7u).

3. Reinitialize u to the successor of v’ in L and continue
with Step 1.

We now show that the algorithm is correct, i.e. that it
—//
outputs all 1)(G) with no repetition.
—//
The algorithm clearly outputs a subset of z/;(G/) as it tests
—//
whether G |= v (vu') before outputting tuple (Tu’).

By the definition, list L contains no duplicates and as the
algorithm moves only forward on that list, there are no rep-
etitions during the output process.

By the definition of sets S; and NEXTg(u), for each u <
w < ' there is a suitable ¢ and j such that g(v;) = fi(w)

11

and g(x;) # fi(y) is a conjunct of A7. This way the algo-
rithm does not skip any solutions at Step 1 and so it outputs

exactly w(é”).

It remain to show that there is a constant time between any
two outputs.

By construction, for each o, L = L(W (7)) contains an
element u such that (vu) is a solution. We therefore need to
show that there is a constant time between any two outputs
involving an element in L. Step 1 takes constant time due
to Claim 1. From there the algorithm either immediately
outputs a solution at Step 2 or jumps to Step 3. This means

that G ¥ ¢ (vu’), but from the definitions of list L, sets
S; and shortcut pointers NEXT g(u) it is only the A7 that is
falsified and it is because of an inequality of the form y #
g(z;) for some suitable g and j (where g may possibly be
identity). This implies that u’ = g(v;). As all the elements
on L are distinct, the algorithm can skip over Step 2 up to
(k—1) - (ac(q) + 1) times for each tuple v (there are up
to that many different images of nodes from © under a¢(q)
different functions and the initial values of v). This way
the delay is bounded by up to & - (ac(q) + 1) consecutive
applications of Claim 1 and is in fact constant.

As the list L was sorted with respect to the linear order on
the domain, it is clear that the enumeration procedure out-
puts the set of solutions in lexicographical order.

This concludes the proof of the theorem. [

O

5. COUNTING

In this section we investigate the problem of counting the
number of solutions to a query, i.e. computing |¢(D)|. As
usual we only state and prove our results over graphs but they
generalize to arbitrary relational structures via Lemma 3.
The proof goes by induction on the number of free variables
and follows the same outline as for enumeration. It only
replaces the step of enumeration pre-computing several suc-
cessor functions by a combinatorial argument counting their
number.

THEOREM 4. Let C be class of graphs with bounded ex-
pansion and let ¢(T) be a first-order formula. Then, for all
G < C, we can compute |$(G)| in time O(|G]|).

PROOF. The key idea is to prove a weighted version of
the desired result. Assume ¢ () has exactly k free variables
and for 1 <4 < k we have functions #; : V' — N. We will
compute in time linear in |G/ the following number:

(G = Y [#iw).
acp(G) 1<isk
By setting all #; to be constant functions with value 1 we
get the regular counting problem. Hence Theorem 4 is an
immediate consequence of the next lemma.

LEMMA 6. Let C be class of graphs with bounded expan-
sion and let ¢(T) be a first-order formula with exactly k free
variables.

For1 < i < klet#; : V — N be functions such that for
each v the value of #;(v) can be computed in constant time.

Then, for all G € C, we can compute |$(G)\# in time O(|G)).

PROOF. The proof is by induction on the number of free
variables.

The case k = 1 is trivial: in time linear in |G| we compute
#(G) using Corollary 2. By hypothesis, for each v € ¢(G),
we can compute the value of #1(v) in constant time. There-

fore the value
> #)

vED(G)

can be computed in linear time as desired.

Assume now that £k > 1 and that Z and y are the free
variables of ¢, where |Z| = k — 1.

We apply Theorem 2 to get a simple quantifier-free query

—/
©(Zy) and a structure G € C,, for some p that does not
depend on G, such that gp(é/) $(G) and G’ can be com-
puted in linear time from G. Note that |¢(G)| 4 = (G
so it is enough to compute the latter value.

We normalize the resulting simple quantifier-free query

using Proposition 1, and obtain an equivalent quantifier-free

—/
)

—//
formula ¢ and a structure G € C,, where ¢ depends only
— /! —/
on p and ¢, G can be computed in linear time from G,

@(él) = ¢((§//) and 1 is a disjunction of formulas of the
form (1):

P1(Z) AT(y) A AT (TY) A AT (TY),

where A= (Zy) is either empty or contains one clause of the
form y = f(x;) or one clause of the form f(y) = g(x;) for
some suitable 4, f and g; and A7 (Zy) contains arbitrarily
many clauses of the form y # f(z;) or f(y) # g(x;). Note

that [o(G)| = (G
latter value.

Observe that it is enough to solve the weighted counting
problem for each disjunct separately, as we can then com-
bine the results using a simple inclusion-exclusion reason-
ing. In the sequel we then assume that 1) has the form de-
scribed in (1).

The proof now goes by induction on the number of in-
equalities in A7. While the inductive step turns out to be
fairly easy, the difficult part is the base step of the induction.

We start with proving the inductive step. Let g(y) #
f(z;) be an arbitrary inequality from A7 (where g might
possibly be the identity). Let 1)~ be v with this inequality
removed and 9" = 9~ A g(y) = f(z;). Of course v and
1™ have disjoint sets of solutions and we have:

(G)y = 19 (G)] — [0 (G)]

Note that 9)~ and 1)+ have one less conjunct in A7, The

1
)|, so it is enough to compute the

12

problem is that ¢ is not of the form (1) as it may now con-
tain two elements in A=. However it can be seen that the
removal of the extra equality in A= as described in the proof
of Proposition 1 does not introduce any new elements in A7 .
See also Appendix 8.6. We can therefore remove the extra
elementin AT and assume that 1™ has the desired form. We
can now use the inductive hypothesis on the size of A7 to

both 7,/1* and ¢ in order to compute both |@/F((§

[+ (G”)| 4 and derive [1)(G)] 4.
It remains to show the base of the inner induction. In the

following we assume that A7 is empty. The rest of the proof
is a case analysis on the content of A=. Due to space limita-
tions we analyze in full details only the situation when A=
consists of an atom of the form y = f(x1). Although this
case is not the most difficult, we find it the most explanatory
and still generic enough.

Assume then that A= consists of an atom of the form y =

f(z1).

Note that the solutions to ¢ are of the form (af(ay)). We

have:
<#k(v) II #i(%‘))
1<i<k—1

")l and

W(@E"e=>"

(wv)ep(G’)

- ¥

(@f(u1))€p(G”)

=2

(#1(u1 #i(f
(af(u1))€P(G")

H #i (uz)>

2<z<k 1

—//
In linear time we now iterate through all nodes u in G and
set

#1(u) = #1(u) - #u(f ()
#i(u) = #i(u)
Let ¥(Z) be ¢ with all occurrences of y replaced with f(x1).
>

‘We then have:
<#'1<“1> I1 #;wi))
(@f(u1))€p(G) 2<i<k—1

> I #iw

aey(G)1<i<k—1

for2 <i<k-—1.

1W(G)y =

7/
[9(G)|

By induction on the number of free variables, as #/(u)
can be computed in constant time for each ¢ and u, we can

G’ | and we are done.

f(x1)

compute |19((_‘;H)|#r in time linear in ||

For the case when A= consists of an atom g(y) =
we use the same approach, only this time we set:

#w) =) S #)

{ve@zy(ay))(G)
g(v)=u}

#i(u) == #(u)

for2<i<k-1

and conclude with |(3yw(fy))(é//)|#/ = |1/J(é”)|#- For
more details on this and the case when A= is empty, see
Appendix 8.6. [

As we said earlier, Theorem 4 is an immediate consequence
of Lemma6. [0 [

6. CONCLUSIONS

Queries written in first-order logic can be efficiently pro-
cessed over the class of structures having bounded expan-
sion. We have seen that over this class the problems inves-
tigated in this paper can be computed in time linear in the
size of the input structure. The constant factor however is
not very good. The approach taken here, as well as the ones
of [10, 12], yields a constant factor that is a tower of ex-
ponentials whose height depends on the size of the query.
This nonelementary constant factor is unavoidable already
on the class of unranked trees, assuming FPTAAW [*] [11].
In comparison, this factor can be triply exponential in the
size of the query in the bounded degree case [20, 13].

It is possible that the results presented here can be gen-
eralized to a larger class of structures. In [18] the class of
nowhere dense graphs was introduced and it generalizes the
notion of bounded expansion. It seems that nowhere dense
graphs do enjoy good algorithmic properties. However, we
do not know yet whether the model checking problem of
first-order logic can be done in linear time over nowhere
dense structures. Actually, we do not even know whether
the model checking problem is Fixed Parameter Tractable
(FPT) over nowhere dense graphs.

The class of nowhere dense structures seems to be the
limit for having good algorithmic properties for first-order
logic. Indeed, it is known that the model checking prob-
lem of first-order logic over a class of structures that is not
nowhere dense cannot be FPT [15] (modulo some complex-
ity assumptions and closure of the class under substructures).

For structures of bounded expansion, an interesting open
question is whether a sampling of the solutions can be per-
formed in linear time. For instance: can we compute the
j-th solution in constant time after a linear preprocessing?
This can be done in the bounded degree case [7] and in the
bounded treewidth case [5]. We leave the bounded expan-
sion case for future research.

7. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[2] Noga Alon, Raphael Yuster, and Uri Zwick.
Color-Coding. J. ACM, 42(4):844-856, 1995.

[3] Stefan Arnborg, Jens Lagergren, and Detlef Seese.
Easy Problems for Tree-Decomposable Graphs. J. of
Algorithms, 12(2):308-340, 1991.

[4] Guillaume Bagan. MSO Queries on Tree
Decomposable Structures Are Computable with
Linear Delay. In Conf. on Computer Science Logic
(CSL), pages 167-181, 2006.

13

[5] Guillaume Bagan. Algorithmes et complexité des
probléemes d’énumération pour I’évaluation de
requétes logiques. PhD thesis, Université de Caen,
2009.

Guillaume Bagan, Arnaud Durand, and Etienne

Grandjean. On Acyclic Conjunctive Queries and

Constant Delay Enumeration. In Conf. on Computer

Science Logic (CSL), pages 208222, 2007.

Guillaume Bagan, Arnaud Durand, Etienne

Grandjean, and Frédéric Olive. Computing the jth

solution of a first-order query. RAIRO Theoretical

Informatics and Applications, 42(1):147-164, 2008.

Bruno Courcelle. Graph Rewriting: An Algebraic and

Logic Approach. In Handbook of Theoretical

Computer Science, Volume B: Formal Models and

Sematics (B), pages 193-242. 1990.

Arnaud Durand and Etienne Grandjean. First-order

queries on structures of bounded degree are

computable with constant delay. ACM Trans. on

Computational Logic (ToCL), 8(4), 2007.

Zdenék Dvordk, Daniel Kral, and Robin Thomas.

Deciding First-Order Properties for Sparse Graphs. In

Symp. on Foundations of Computer Science (FOCS),

pages 133-142, 2010.

Markus Frick and Martin Grohe. The complexity of

first-order and monadic second-order logic revisited.

Ann. Pure Appl. Logic, 130(1-3):3-31, 2004.

[12] Martin Grohe and Stephan Kreutzer. Model Theoretic
Methods in Finite Combinatorics, chapter Methods for
Algorithmic Meta Theorems. American Mathematical
Society, 2011.

[13] Wojciech Kazana and Luc Segoufin. First-order query
evaluation on structures of bounded degree. Logical
Methods in Computer Science (LMCS), 7(2), 2011.

[14] Wojciech Kazana and Luc Segoufin. Enumeration of
monadic second-order queries on trees. ACM Trans.
on Computational Logic (ToCL), to appear.

[15] Stephan Kreutzer and Anuj Dawar. Parameterized
complexity of first-order logic. Electronic Colloquium
on Computational Complexity (ECCC), 16:131, 20009.

[16] Jaroslav Nesetril and Patrice Ossona de Mendez. Grad
and classes with bounded expansion L.
Decompositions. Eur. J. Comb., 29(3):760-776, 2008.

[17] Jaroslav Nesetfil and Patrice Ossona de Mendez. Grad
and classes with bounded expansion II. Algorithmic
aspects. Eur. J. Comb., 29(3):777-791, 2008.

[18] Jaroslav Nesetril and Patrice Ossona de Mendez. On
nowhere dense graphs. European J. of Combinatorics,
32(4):600-617, 2011.

[19] Christos H. Papadimitriou and Mihalis Yannakakis.
On the Complexity of Database Queries. J. on
Computer and System Sciences (JCSS),
58(3):407-427, 1999.

[20] Detlef Seese. Linear Time Computable Problems and

(6]

(7]

(8]

(9]

[10]

[11]

First-Order Descriptions. Mathematical Structures in
Computer Science, 6(6):505-526, 1996.

8. APPENDIX

8.1 Graphs with bounded expansion

To avoid confusion with the notion of size of a structure,
we use the following notion in the case of graphs: we write
|G|verr to denote the number of nodes of G (i.e. the size
of V from the sequel), while we write |G|gpce to denote the
number of edges of G (i.e. the size of E from the sequel).

Let G = (V, E) be an uncolored graph. It is unoriented if
for each (u,v) € E we also have that (v,u) € E. Assume G
is unoriented. For any node v € V and any r € N we denote
by B, (v) the r-ball around v, i.e. the set of nodes of G that
are reachable from v by paths of lengths up to . We say that
a graph H is a r-minor of G if all the nodes vy, ..., v; of H
are also nodes of G and for 1 < i < k there exists 1 < r; <
r, such that, inside G, the balls By, (v1),..., By, (vy) are
pairwise non-overlapping and there is an edge between v;
and v; in H iff there is an edge in G from a node of B, (v;)
to anode of B, (v;). The set of all 7-minors of G is denoted
by GV ,. For a graph G the greatest reduced average density
(grad) of G with rank 7 is:

|H‘EDGE
V., (G) = max .
(G) HeGY . |H|ygrr
THEOREM 5. [16] Let C be a class of graphs. The fol-
lowing conditions are equivalent:

1. there exists a computable function f : N — R such that
Sfor all graphs G € C and for all v € N we have:

Vi (G) < f(r),
2. C has bounded expansion.

In fact in [16] it is stated the other way around: the initial
definition of class of graphs with bounded expansion is the
one from point 1 from the above theorem and its equivalence
with Definition 1 is a theorem there.

8.2 A remark about o (i)

It would be tempting to set oc (i) to be the functional
structure with T'¢(7) functional symbols that would then be
used to encode up to ['¢ (i) predecessors of each node. We
could then easily have properties 1 and 2, but it would not
be the case for property 3. To see this consider the following
simple example:

EXAMPLE 1. CissuchthatTc(i) = 2 foralliand G € C
is defined as G = (V = {u,v,w}, E = {(u,w), (v,w)}).
Wilog assume that the functional structure describing G is
G, = (V= {u7vvw}7{f1(w) = u}v{f2(w) = U}) and
so we need to show a transitive fraternal augmentation G =
éo C 61 C G2 C ... with the desired properties 1, 2 and 3.

Note that (u,v) is a fraternal pair of nodes in Gy and
so Gy must describe an edge between u and v (in at least

14

one of the directions). To match property 2, ég must con-
tain G1 and wlog we may assume that Gy contains (V. =
{u,v,w}, {fi(w) = u, fi(u) = v}, {fa(w) = v}).
Consider now the following query ¢ over oc(0):
¢(I,y)5f1($):g\/f2(m):2- .
Clearly (u,v) € ¢(G2), but (u,v) ¢ ¢(G1) and although
A~(G5) < 2, two functional symbols in ¢ (1) are not enough
to retain property 3.

The general idea behind the above example is that in order
to have property 3, we cannot “re-use” functions used in G;
to encode edges that appeared in G;4 1.

8.3 From structures to graphs

In this section we use the definition of bounded expansion
from Theorem 5.

Recall the definition of Adjacency(D) from Section 2.4.
In particular, nodes of Adjacency(D) are divided into two
sets: D and T'. Note that Adjacency(D) is a bipartite graph
(neither any two nodes from D nor any two nodes from 7" are
ever connected) and the maximal in-degree of a node from
T is bounded by the maximal arity of a relation in D. We
call nodes from D real nodes and nodes from 7" tuple nodes.

The Gaifman graph of a relational structure D, denoted
by Gaifman(D), is defined as follows: the set of vertices of
Gaifman(D) is D and there is an edge (a, b) in Gaifman(D)
iff there exists a relation R; and a tuple ¢ € R, such that both
a and b occur in ¢.

In the literature, a class C of relational structures is said to
have bounded expansion if the class C* of Gaifman graphs
of structures from C has bounded expansion. Our definition
is more liberal (possibly equivalent).

Let D be a relational structure over signature o with uni-
verse V, let R be a relation from o of arity r and lett € R
be a tuple of R in D. The effective arity of t is the number of
different elements in ¢.

LEMMA 7. Let C be class of relational structures and let
C’ be the underlying class of Gaifman graphs of structures
from C. If C’ has bounded expansion, then there exists a
constant k such that for any structure D € C and for any
tuple t € D the effective arity of t is less than k.

PROOF. Fix class C of structures and let C’ be the class
of Gaifman graphs of structures from C. Let f be the func-
tion from Theorem 5 witnessing the fact that C’ has bounded
expansion.

Set k = 2f(0). Let D € C and t be an arbitrary tuple from
D with effective arity s. Let A = {ay,...,as} be the set of
different elements in ¢. By the definition of Gaifman(D) ver-
tices from A are pairwise connected. Consider the 0-minor
H of Gaifman(D) induced by A. We have that “Hﬂllﬁ =
B4 = =51 By the definition Vo(Gaifman(D)) >

llHH“ﬁ > Sgl. On the other hand the definition of bounded
expansion from Theorem 5 gives f(0) > V(Gaifman(D))

and we have k > s as desired. [

PROPOSITION 3. Let C be a class of structures such that
the class C’ of Gaifman graphs of structures from C has
bounded expansion. Then the class C” of adjacency graphs
of structures from C also has bounded expansion.

It is a consequence of the following lemma.

LEMMA 8. Let C be a class of structures such that the
class C’ of Gaifman graphs of structures from C has bounded
expansion. There exists a constant k such that for any struc-
ture D € C and for any natural number r we have that
V. (Adjacency(A)) < V,(Gaifiman(A)) + k.

PROOF. Fix class C of structures such that the class C’
of Gaifman graphs of structures from C has bounded expan-
sion.

Let k be the constant given by Lemma 7.

Let D € C and let r be a natural number and H be a r-
minor of Adjacency(D). From H we construct a graph H’
which is a r-minor of Gaifman(D) and such that:

|H/ |EDGE

|H‘EDGE

|H‘VF_RT - |H/|VF.RT + k

This immediately yields the result.

Recall from Section 2.4 that Adjacency(D) is a bipartite
graph that contains fuple nodes and real nodes and such that
neither any two tuple nodes nor any two real nodes are con-
nected. By the definition of constant k from Lemma 7, each
tuple node has up to k neighbors in Adjacency(D).

Consider a node v of H. By construction, v is derived
from a r,-ball S, of Adjacency(D), where 1 < r, <r.

If S, contains no real nodes, then it simply is a single
tuple node. As each tuple node has up to k neighbors in
Adjacency(D), then if S, contains no real nodes, v has at
most k neighbors in H. Let X be the set of all such nodes v
in H.

Otherwise, let S/, be the set of real nodes of S,,. By defini-
tion S, is not empty and it is easy to verify that it forms a %3-
ball in Gaifman(D): for every u € S, the longest path from
vtouin S, is v = u1,t(1,2), u2,t(2,3), - -
u, where each t(; ;4 1) is a tuple node. By the definition of
Gaifman(D) we have that w; is connected to u;11 (which is
witnessed by Z(; ;4 1)), which yields that v = uy, ua, ..
wis a path in S!. Let H' be the r-minor of Gaifman(D) con-
structed from the elements S,f], v X.

By construction we have : |H'|ygrr + | X| = [H|verr-

Consider now an edge (u,v) in H where both u and v
are not in X. This means that there is an edge (a,b) in
Adjacency(A) witha € S, and b € S,,. As Adjacency(A) is
bipartite, this means that a is a real node and b a tuple node
(or vice versa). Wlog assume that a is the real node. As v is
not in X, S, contains a real node b’ adjacent to b. Hence b
witnesses that (a, b’) is an edge in Gaifman(D) and so (u, v)
is an edge in H'. As we have seen that there are at most
k- | X| edges (u,v) in H where either « or v belongs to X,
we get: [H|epor < [H' |epce + k| X|.

Summing up we get:

.,t(%_

9 T =
) Uy

L, Ury
2

15

[Hlepce < [H' |epgetk-| X | < 1 e k| X|

<
|H‘VERT - |H/|VLRT‘HX| - |H/|VERT+|X| + ‘H/‘VERT+|X‘ -
|HI|F_DGF.
W 1 F

as desired. OO

8.4 Model checking

We now give the details of the skipped part of the proof of
Proposition 2, namely the case when A= is empty.

In this case we construct a set WITNESS which does not
depend on v. It is constructed as in the previous case and

verifies: for all tuples v of é//, if G = 1¢(vu) for some

—//
node u, then there is a node u’ € WITNESS such that G =
1(vu). Moreover, |[WITNESS| < ~,,.

. /1
Recoloring of G .
=/

Based on WITNESS we recolor G as follows. Let v,
(B, +1)P»*+1. We order WITNESS and we can now speak of
the 7" witness.

For each i < «, we introduce a new unary predicate F;

—//
and for each v € G we set P;(v) if WITNESS contains at
least ¢ elements.

For each i < ~y, and each h € o¢(¢q) we introduce a new

=1/
unary predicate P; ;, and for each v € G we set P, j,(v) if
the 7*" witness is a element u with h(u) = v.
For each i < ~,, h € o¢(q) we introduce a new unary

predicate (Q; and for each v € G we set Qi (v) if the *?
witness is v. N

We denote by G the resulting graph and notice that it can
be computed in linear time from G.

Finally, note thatif y is the i'" witness, the equality f;(y) =

h(zxy) is equivalent over G to P; 5, (h(xr)) and the equality
y = h(xy) is equivalent over G to Qi(h(xg)).

The desired formula ¢ is computed as for the previous
case when A= was not empty.

8.5 Enumeration

We now present the omitted proofs from Section 4, namely
the proofs of Claims 1, 2 and 3.

CLAIM 1| Let NEXTg(u) be a shortcut pointer of size not
greater than f3;. Then there exists NEXTg, (u) € SCp, such
that NEXTg(u) = NEXTg, (u). Moreover, such NEXT g (u)
can be found in constant time.

PROOF. If NEXTg(u) € SCp, then we have nothing to
prove. Assume then that NEXTg(u) ¢ SCr. Let NEXTg, (u) €
SCr, be a maximal in terms of size shortcut pointer of u such
that NEXTg, (u) = NEXTg(u) (recall that this means that for
1 <i < ac(q)wehave S! C S;). Such a shortcut pointer al-
ways exists as nexty(u) = NEXTg(u) and nexty(u) € SCr.
Note that the size of NEXT g, (u) is strictly smaller than the
size of NEXTg(u), so it is strictly smaller than j3,. Clearly,
NEXTg, (u) can be found in constant time. We claim that
NEXTg(u) = NEXTg, (u).

Let v = NEXTg(u). We know that v < NEXTg(u).
Assume now that there would exists 1 < ¢ < ac¢(g) such
that u; = fi(v) € S;. Then u; ¢ S, and as the size of
NEXTg, (u) is smaller than /3, we have that
NEXTg(g. g,y () € SCL. BULNEXTg5 (o (u) has
size strictly greater than NEXT g, (u) and
NEXTg(g, 4 — fu:}] (u) = NEXTg(u), which contradicts the
maximality of NEXTg, (u). This means that such an i does

not exist and concludes the fact that NEXT g(u) = NEXT g, (u).

O

CLAIM 2 There exists a constant ((q, k) such that for ev-
ery node u we have |SCr(u)| < (g, k).

PROOF. Fix u. Note that there is exactly 1 shortcut pointer
of u of size 0 (nexty(u)) and «c(q) shortcut pointers of u
of size 1. By the definition of SCy, any shortcut pointer
NEXT g(u) can be an origin of up to ac(q) shortcut pointers
of the form NEXTgg (1) (u), where u; = f;(NEXTg(u))
and the size Of NEXTg5 _ (1) (u) is either the same as the
size of NEXTg(u) (if u; € S;) or greater by 1. This way
we see that SC,(u) contains up to ac(q)? shortcut pointers
of size 2 and, in general, up to a¢(q)?® shortcut pointers of
size s. As the maximal size of a computed shortcut pointer
is bounded by S, we have [SCp(u)| < >Z<;<g, ac(q)t.
Both a¢(g) and 8, depend only on ¢ and k, which concludes
the proof. [

CLAIM 3 SCy, can be computed in time linear in | L|.

PROOF. In linear time we set nexty(u) = u foru € L.

We first show how to compute shortcut pointers of size 1
of each node u € L. We do it in an inductive manner, start-
ing from the last node of L and moving backwards. Recall

that these shortcut pointers are of the form NEXTy, ¢, ()} ().

If u is the last node on L, then all these values are NULL.
‘We now assume that u is not last on L and that for all v > u
all the shortcut pointers of v of size 1 were computed. We
show how to compute shortcut pointers of u of size 1.

For each 1 < i < ac(q) we compute NEXTy, 7, ()} ().
Let v be the node successor of w in L. If f;(u) # f;(v), then
NEXTfi,{fi(u)}(u) =wv. If fz (u) = fz (U), then
NEXTy, £ f;(u)} (u) = NEXTy, {#;(next(v))} (HCXt(’U)) and the
later shortcut pointer has already been computed.

Clearly all the shortcut pointers of size 1 are computed in
time linear in the size of L.

We now turn to the computation of arbitrary NEXTg(u) €
SCyp, for u € L. We again do it in an inductive manner
starting from the last node on L and move backwards. If
v is the last node on L then we are already done as all the
shortcut pointers of u of size 1 are NULL and by definition
there are no shortcut pointers of w of greater sizes in SCy,.
‘We now assume that v is not last on L and that for all v > u
set SC,(v) is computed. We show how to compute SCp, (u).

Consider now NEXTg(u). If Vi f;(u) ¢ S; then we are
done, as NEXTg(u) = u. Otherwise Ji such that f;(u) €

16

Si. Let v = NEXTy, 14, (u)}(u). Clearly v < NEXTg(u)
and NEXTg(u) = NEXTg(v). We can conclude this case
NEXTg(v) = NEXTg, (v), where NEXTg (v) € SCr(v) is
the shortcut pointer of v from the application of Claim 1 to
NEXTg(v). Claim 1 assures that we can find NEXTg, (v) in
constant time and thus NEXTg(u) is computed in constant
time. As Claim 2 shows that we only need to consider con-
stantly many shortcut pointers for each u, the whole process
takes time O(|L|). O

8.6 Counting

CLAIM 4. . There exists a query g such that: its size
depends only on the size of W, \ng is in the normal form
given by (1), it contains an inequality conjunct h(y) # g1(x;)
(where h might possibly be identity) iff 1" also contains
such conjunct and %(@”) =t (é”). Moreover, . can
be constructed in time linear in the size of .

PROOF. The proof is a simple case analysis of the content
of A= of 9.

If its empty, then 9. is already in the desired form.

If it contains an atom of the form y = hqy(x;), then equal-
ity g(y) = f(x;)is equivalent to g(ha(x;)) = f(x;) and we
are done.

If it contains an atom of the form h3(y) = ho(x;) and g is
identity, then h3(y) = ho(x;) is equivalent to hg(f(x;)) =
ha(z;). If g is not identity, then 7(y) ensures us that either
g(y) determines h3(y) or vice versa. If we have hy(g(y)) =
hs(y), then hs(y) = ha(x;) is equivalent to hy(f(z;)) =
ha(z;). The other case is symmetric.

The fact that 1/t does not contain any additional inequal-

ities, that it can be computed in time linear in the size of
"

1T and that wﬁF((_}w) = ¢T(G) follows from the above
construction. [

LEMMA 6 Let C be class of graphs with bounded expan-
sion and let ¢() be a first-order formula with exactly k free
variables.

For1 < i < klet#; : V — N be functions such that for
each v the value of #;(v) can be computed in constant time.
Then for all G € C we can compute |¢(G) | in time O(|G]).

PROOF. We now give the omitted details from the proof
of Lemma 6, that is the remaining cases of the analysis of
the content of A=,

Assume now that A= consists of an atom g(y) = f(x1).
Let ¢ (y) be the formula 37 (Zy) and 1" (Z) the formula

Jyp(ZTy). We first compute set o’ ((3//) in linear time using
Corollary 2. We now define a function #}, : V' — N as:

#y(u) == Z #i(v).
{vey'(6")
g(v)=u}

Note that this function can be easily computed in linear time
by going through all nodes v and adding # (v) to #).(g(v)).

Finally we set:

#1(u) == F1 () #5,(f (w))
#/(u) = #i(u) for2 <i:<k-—1.

2

Let uy,us € w’(éu) be such that g(u;) = g(uz). Be-

cause A7 is empty, observe that G’ = VZ(yY(zuy) <> Y(Tug)).

Based on this observation we now group the solutions to
according to their last £ — 1 values and get:

W@ e= > (#uv) IT #i(un>
<k

(av)ew(G")

1<i
= (#k(v H #i(%‘))

uEw”(G 9] {véw (G")
g(v)=f(uv1)}

= > > #k) [T #i(w)

=11

aey’(6") | {vew’'(G") 1<i<k—1
g(v)=F(u1)}

> (#mum I1 #¢<ui>>

716111”(6”) 1<i<k—1
= > (#1(u1)#§c(f(u1)) II #Q(Ui))
ﬂew//«j”) 2<i<k—1

= > [T #iw)

uGiJJ'/(@//) 1<i<k-—1

=" (G")]

By induction on the number of free variables, as #;(u)
can be computed in constant time for each ¢ and u, we can

—//
compute [¢)”(G)|x and we are done with this case.
The remaining case when A= is empty is handled simi-
larly to the previous one. We then have

P(@Y) = 1(T) AT(Y)-
After setting

#i(u) = Ha(u) - Y #1(v)

ver(G)
#i(u) = F#ip1(u) for2<i<k-—1
we see that

(G)4 = [¥1(G) |

and we conclude again by induction on the number of free
variables. []

17

