Pushdown systems
Example 1

A small program (where \(n \geq 1 \)):

```c
bool g=true;
void main() {
    level1();
    level1();
    assume(g);
}

void level_n() {
    g:=not g;
}
```

Question: Will \(g \) be true when the program terminates?
Example 1 has got finitely many states.
(The call stack is bounded by n.)

Can be treated by “inlining” (replace procedure calls by a copy of the callee).

Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated separately.

Inlining not applicable for recursive procedure calls.
Example 2: Recursive program

procedure \(p \);
\(p_0 \) : if ? then
\(p_1 \) : call \(s \);
\(p_2 \) : if ? then call \(p \); end if;
else
\(p_3 \) : call \(p \);
end if
\(p_4 \) : return

procedure \(s \);
\(s_0 \) : if ? then return; end if;
\(s_1 \) : call \(p \);
\(s_2 \) : return;

procedure \(main \);
\(m_0 \) : call \(s \);
\(m_1 \) : return;

\(S = \{ p_0, \ldots, p_4, s_0, \ldots, s_2, m_0, m_1 \}^* \), initial state \(m_0 \)

\[m_0 \rightarrow s_0 \rightarrow m_1 \]
\[m_1 \rightarrow \varepsilon \]
\[\rightarrow s_1 \rightarrow m_1 \rightarrow p_0 \rightarrow s_2 \rightarrow m_1 \]
\[p_1 \rightarrow s_2 \rightarrow m_1 \rightarrow s_0 \rightarrow p_2 \rightarrow s_2 \rightarrow m_1 \rightarrow \ldots \]
\[p_3 \rightarrow s_2 \rightarrow m_1 \rightarrow p_0 \rightarrow p_4 \rightarrow s_2 \rightarrow m_1 \rightarrow \ldots \]
Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naïvely searching all reachable states.

We shall require a finite representation of infinitely many states.
Example 3: Quicksort

```c
void quicksort (int left, int right) {
    int lo, hi, piv;
    if (left >= right) return;
    piv = a[right]; lo = left; hi = right;
    while (lo <= hi) {
        if (a[hi] > piv) {
            hi = hi - 1;
        } else {
            swap a[lo], a[hi];
            lo = lo + 1;
        }
    }
    quicksort(left, hi);
    quicksort(lo, right);
}
```
Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely many reachable states:

- *finitely* many if the program terminates
- *infinitely* many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.
A computation model for procedural programs

Control flow:

- sequential program (no multithreading)
- procedures
- mutual procedure calls (possibly recursive)

Data:

- global variables (restriction: only finite memory)
- local variables in each procedure (one copy per call)
A pushdown system (PDS) is a triple \((P, \Gamma, \Delta)\), where

\(P\) is a finite set of control states;

\(\Gamma\) is a finite stack alphabet;

\(\Delta\) is a finite set of rules.
Rules have the form $pA \xrightarrow{} qw$, where $p, q \in P$, $A \in \Gamma$, $w \in \Gamma^*$.

Like acceptors for context-free language, but without any input!
Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a PDS and $c_0 \in P \times \Gamma^*$.

With \mathcal{P} we associate a transition system $\mathcal{T}_P = (S, \rightarrow, r)$ as follows:

$S = P \times \Gamma^*$ are the states (which we call configurations);

we have $pA w' \rightarrow q w w'$ for all $w' \in \Gamma^*$ iff $pA \rightarrow q w \in \Delta$;

$r = c_0$ is the initial configuration.
Transition system of a PDS

- \(pA \leftrightarrow qB \)
- \(pA \leftrightarrow pC \)
- \(qB \leftrightarrow pD \)
- \(pC \leftrightarrow pAD \)
- \(pD \leftrightarrow p\varepsilon \)
Procedural programs and PDSs

P may represent the valuations of global variables.

Γ may contain tuples of the form (program counter, local valuations)

Interpretation of a configuration pAw:

- global values in p, current procedure with local variables in A
- “suspended” procedures in w

Rules:

- $pA \rightarrow qB \equiv$ statement within a procedure
- $pA \rightarrow qBC \equiv$ procedure call
- $pA \rightarrow q\varepsilon \equiv$ return from a procedure
Reachability in PDS

Let \mathcal{P} be a PDS and c, c' two of its configurations.

Problem: Does $c \rightarrow^* c'$ hold in $\mathcal{T}_\mathcal{P}$?

Note: $\mathcal{T}_\mathcal{P}$ has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!
Finite automata

To represent (infinite) sets of configurations, we shall employ finite automata.

Let \(\mathcal{P} = (P, \Gamma, \Delta) \) be a PDS. We call \(\mathcal{A} = (Q, \Gamma, P, T, F) \) a \(\mathcal{P} \)-automaton.

The alphabet of \(\mathcal{A} \) is the stack alphabet \(\Gamma \).

The initial states of \(\mathcal{A} \) are the control states \(P \).

We say that \(\mathcal{A} \) accepts the configuration \(pw \) if \(\mathcal{A} \) has got a path labelled by input \(w \) starting at \(p \) and ending at some final state.
Let $\mathcal{L}(A)$ be the set of configurations accepted by A.

A set C of configurations is called **regular** iff there is some \mathcal{P}-automaton A with $\mathcal{L}(A) = C$.

An automaton is **normalized** if there are no transitions leading into initial states.

Remark: In the following, we shall use the following notation:

$$pw \Rightarrow p'w' \text{ (in the PDS } \mathcal{P}) \quad \text{and} \quad p \xrightarrow{w} q \text{ (in } \mathcal{P}-\text{automata})$$
Reachability in PDS

Let $\text{pre}^*(C) = \{ c' \mid \exists c \in C : c' \Rightarrow c \}$ denote the predecessors of C, and let $\text{post}^*(C) = \{ c' \mid \exists c \in C : c \Rightarrow c' \}$ the successors.

The following result is due to Büchi (1964):

Let C be a regular set and A be a normalized \mathcal{P}-automaton accepting C.

If C is regular, then so are $\text{pre}^*(C)$ and $\text{post}^*(C)$.

Moreover, A can be transformed into an automaton accepting $\text{pre}^*(C)$ resp. $\text{post}^*(C)$.
The basic idea (for \textit{pre})

Saturation rule: Add new transitions to \mathcal{A} as follows:

If $q \xrightarrow{w} r$ currently holds in \mathcal{A} and $p\mathcal{A} \leftrightarrow qw$ is a rule, then add the transition (p, A, r) to \mathcal{A}.

Repeat this until no other transition can be added.

At the end, the resulting automaton accepts $\textit{pre}^*(C)$.

For $\textit{post}^*(C)$: similar procedure.
Automaton A for C
Extending \mathcal{A}

Rule: $pA \rightarrow qB$

Path: $qB \rightarrow s1$

New path: $pA \rightarrow s1$
Extending \mathcal{A}

If the right-hand side of a rule can be read,

Rule: $pA \leftrightarrow qB$ Path: $q \xrightarrow{B} s_1$
Extending \mathcal{A}

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $pA \leftrightarrow qB$
Path: $q \xrightarrow{B} s_1$
New path: $p \xrightarrow{A} s_1$
Extending \mathcal{A}

If the right-hand side of a rule can be read,

Rule: $pC \leftrightarrow pAD$ Path: $p \xrightarrow{A} s_1 \xrightarrow{D} s_2$
Extending \mathcal{A}

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $pC \leftrightarrow pAD$

Path: $p \xrightarrow{A} s_1 \xrightarrow{D} s_2$

New path: $p \xrightarrow{C} s_2$
Complexity:
$O(|Q|^2 \cdot |\Delta|)$ time.
Proof of correctness

We shall show:

Let \(\mathcal{B} \) be the \(\mathcal{P} \)-automaton arising from \(\mathcal{A} \) by applying the saturation rule. Then \(\mathcal{L}(\mathcal{B}) = \text{pre}^*(\mathcal{C}) \).

Part 1: Termination

The saturation rule can only be applied finitely many times because no states are added and there are only finitely many possible transitions.

Part 2: \(\text{pre}^*(\mathcal{C}) \subseteq \mathcal{L}(\mathcal{B}) \)

Let \(c \in \text{pre}^*(\mathcal{C}) \) and \(c' \in \mathcal{C} \) such that \(c' \) is reachable from \(c \) in \(k \) steps. We proceed by induction on \(k \) (simple).
Part 3: $\mathcal{L}(B) \subseteq \text{pre}^*(C)$

Let \rightarrow_i denote the transition relation of the automaton after the saturation rule has been applied i times.

We show the following, more general property: If $p \xrightarrow{w}_i q$, then there exist $p'w'$ with $p' \xrightarrow{w'}_0 q$ and $pw \Rightarrow p'w'$; if $q \in P$, then additionally $w' = \varepsilon$.

Proof by induction over i: The base case $i = 0$ is trivial.

Induction step: Let $t = (p_1, A, q')$ be the transition added in the i-th application and k the number of times t occurs in the path $p \xrightarrow{w}_i q$.

Induction over k: Trivial for $k = 0$. So let $k > 0$.

There exist p_2, p', u, v, w', w_2 with the following properties:

1. $p \xrightarrow{u}_{i-1} p_1 \xrightarrow{A}_i q' \xrightarrow{v}_i q$ (splitting the path $p \xrightarrow{w}_i q$)
2. $p_1 A \rightarrow p_2 w_2$ (pre-condition for saturation rule)
3. $p_2 \xrightarrow{w_2}_{i-1} q'$ (pre-condition for saturation rule)
4. $pu \Rightarrow p_1 \varepsilon$ (ind.hyp. on i)
5. $p_2 w_2 v \Rightarrow p' w'$ (ind.hyp. on k)
6. $p' \xrightarrow{w'}_0 q$ (ind.hyp. on k)

The desired proof follows from (1), (4), (2), and (5).

If $q \in P$, then the second part follows from (6) and the fact that A is normalized.
Example: $post^*$ (without proof)

If the *left-hand side* of a rule can be read, add the *right-hand side*.

Rule: $pC \leftrightarrow pAD$ Path: $p \xrightarrow{C} s_2$
Example: *post*\(^\star\) (without proof)

If the *left-hand side* of a rule can be read, add the *right-hand side*.

Rule: \(pC \iff pAD\) Path: \(p \xrightarrow{C} s_2\) New Path: \(p \xrightarrow{AD} s_2\)
LTL and Pushdown Systems

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a PDS with initial configuration c_0, let $\mathcal{T}_\mathcal{P}$ denote the corresponding transition system, AP a set of atomic propositions, and $\nu: P \times \Gamma^* \rightarrow 2^{AP}$ a valuation function.

$\mathcal{T}_\mathcal{P}$, AP, and ν form a Kripke structure \mathcal{K}; let ϕ be an LTL formula (over AP).

Problem: Does $\mathcal{K} \models \phi$?

Undecidable for arbitrary valuation functions!
(could encode undecidable decision problems in ν . . .)

However, LTL model checking *is* decidable for certain “reasonable” restrictions of ν.
In the following, we consider “simple” valuation functions satisfying the following restriction:

\[\nu(pAw) = \nu(pA), \text{ for all } p \in P, A \in \Gamma, \text{ and } w \in \Gamma^*. \]

In other words, the “head” of a configuration holds all information about atomic propositions.

LTL model checking is decidable for such “simple” valuations.
Approach

Same principle as for finite Kripke structures:

Translate $\neg \phi$ into a Büchi automaton \mathcal{B}.

Build the cross product of \mathcal{K} and \mathcal{B}.

Test the cross product for emptiness.

Note that the cross product is not a Büchi automaton in this case, but another pushdown system (with a Büchi-style acceptance condition).
Büchi PDS

The cross product is a new pushdown system Q, as follows:

Let $P = (P, \Gamma, \Delta)$ be a PDS, p_0w_0 the initial configuration, and AP, ν as usual.

Let $B = (Q, 2^{AP}, q_0, T, F)$ be the Büchi automaton for $\neg\phi$.

Construction of Q:

$Q = (P \times Q, \Gamma, \Delta')$, where

$(p, q)A \leftrightarrow (p', q')w \in \Delta'$ iff

- $pA \leftrightarrow p'w \in \Delta$ and
- $(q, L, q') \in T$ such that $\nu(pA) = L$.

Initial configuration: $(p_0, q_0)w_0$
Let ρ be a run of Q with $\rho(i) = (p_i, q_i)w_i$.

We call ρ accepting if $q_i \in F$ for infinitely many values of i.

The following is easy to see:

\mathcal{P} does not satisfy ϕ iff there exists an accepting run in Q.
Characterization of accepting runs

Question: If there an accepting run starting at \((p_0, q_0)w_0\)?

In the following, we shall consider the following, more general global model-checking problem:

Compute all configurations \(c\) such that there exists an accepting run starting at \(c\).

Lemma: There is an accepting run starting at \(c\) iff there exists \((p, q) \in P \times Q\), \(A \in \Gamma\) with the following properties:

\[(1) \quad c \Rightarrow (p, q)Aw \text{ for some } w \in \Gamma^*\]
\[(2) \quad (p, q)A \Rightarrow (p, q)Aw' \text{ for some } w' \in \Gamma^*, \text{ where}\]

the path from \((p, q)A\) to \((p, q)Aw'\) contains at least one step;
the path contains at least one accepting Büchi state.
Repeating heads

We call \((p, q)A\) a repeating head if \((p, q)A\) satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads.
 E.g., check for each pair \((p, q)A\) whether \((p, q)A \in \text{pre}^{*}(\{(p, q)Aw \mid w \in \Gamma^{*}\})\). Visiting an accepting state can be encoded into the control state. (This is a simple but naïve method, one can do better.)

2. Compute the set \(\text{pre}^{*}(\{(p, q)Aw \mid (p, q)A \text{ is a repeating head}, w \in \Gamma^{*}\})\)
Remarks

Other temporal logics for PDS are also decidable (sketch):

CTL: Translate formula into an *alternating* automaton, adapt \(\text{pre}^* \) algorithm to alternating automata, then apply a technique similar to LTL.

CTL\(^*\): Adapt the technique from finite-state systems: Find an \(E \)-free subformula \(\phi \), compute the (regular) set configurations \(C \) satisfying \(E\phi \). Then encode the states of the automaton for \(C \) into the stack, replace \(E\phi \) by a fresh atomic proposition \(p \) that is true whenever the modified stack tells us that we are in a configuration satisfying \(E\phi \).