
Abstraction and Refinement

1

State-space explosion

In practice, model-checking encounters the problem of state-space explosion:

due to data: var with n bits→ 2n states

due to concurrency: n parallel components with n! different orderings

Countermeasures:

Compression: efficient representations (e.g. BDDs)

Reduction: find a simpler, equivalent problem

Abstraction: identify and ignore “unimportant” information

2

Example 1 (loop)

Consider the following program with three numeric variables x , y , z.

`1: y = x+1;

`2: z = 0;

`3: while (z < 100) z = z+1;

`4: if (y < x) error;

Question: Is the error location reachable?

3

Example 2 (Sorting)

Another program with three numeric variables x , y , z.

`1: if x > y then swap x,y else skip;

`2: if y > z then swap y,z else skip;

`3: if x > y then swap x,y else skip;

`4: skip

Assumption: initially, x , y , z are all different

Question: Are x , y , z sorted in ascending order when reaching `4?

4

Example 3 (Device driver)

C code for Windows device driver

Operations on a semaphor: lock, release

Lock and release must be used alternatingly

5

Abstraction

Idea: throw away (abstract from) “unimportant” information

Handling infinite state spaces

Reduce (large) finite problems to smaller ones

Alternative point of view: merge “equivalent” states

6

Example 1

Omit concrete values of x,y,z; retain only the following information: program
counter, predicate y < x

Resulting (abstract) Kripke structure:

l1
y >= x

l1
y < x

l2
y >= x

l3
y >= x

l4
y >= x

Result: `4 is reachable only with y ≥ x ; the error will not happen.

7

Example 2

Omit concrete values of x,y,z; retain only program counter and permutation of
x , y , z

l2
xyz

l3
xyz

l2
xzy

l1
xzy

l1
yzx

l2
zxy

l1
zxy

l1
zyx

l1
xyz

l1
yxz

l3
yxz

l4
xyz

Result: `4 is reachable only with xyz; no error.

8

Questions: What is the logical relation between the original programs and their
abstract versions? What do the abstract versions really say about the original
programs?

In Example 1, the error is unreachable in both the original and the abstract
version.

However, in Example 1, the original structure terminates but the abstract
version does not.

Which conditions must hold for the abstract structure in order to draw meaningful
conclusions about the original structure?

9

Simulation

Let K1 = (S,→1, s0,AP, ν) and K2 = (T ,→2, t0,AP, µ) be two Kripke
structures (S,T are possibly infinite), and let H ⊆ S × T be a relation.

H is called a simulation from K1 to K2 iff

(i) (s0, t0) ∈ H;

(ii) for all (s, t) ∈ H we have: ν(s) = µ(t);

(iii) if (s, t) ∈ H and s →1 s′, then there exists t ′ such that t →2 t ′ and
(s′, t ′) ∈ H.

We say: K2 simulates K1 (written K1 ≤ K2) if such a simulation H exists.

10

Intuition: K2 can do anything that is possible in K1.

a

b c

ed

f

ki

K2

g

K1

K2 simulates K1 (with H = {(a, f), (b, g), (c, g), (d , i), (e, k)}).

However,: K1 does not simulate K2!

11

Bisimulation

A relation H is called a bisimulation between K1 and K2 iff H is a simulation from
K1 to K2 and { (t , s) | (s, t) ∈ H } is a simulation from K2 to K1.

We say: K1 and K2 are bisimilar (written K1 ≡ K2) iff such a relation H exists.

12

Careful: In general, K1 ≤ K2 and K2 ≤ K1 do not imply K1 ≡ K2!

a

b c

ed

f

ki

K2

g

K1

13

(Bi-)Simulation and model checking

Let K1 ≤ K2 and φ an LTL formula. Then:

K2 |= φ implies K1 |= φ (for universal model checking).

The other direction is not guaranteed!

14

Existential abstraction

Let K = (S,→, r ,AP, ν) be a Kripke structure (concrete structure).

Let ≈ be an equivalence relation on S such that for all s ≈ t we have
ν(s) = ν(t) (we say: ≈ respects ν).

Let [s] := { t | s ≈ t } denote the equivalence class of s;
[S] denotes the set of all equivalence classes.

The abstraction of S w.r.t. ≈ denotes the structure K′ = ([S],→′, [r],AP, ν′),
where

[s]→′ [t] for all s → t ;

ν′([s]) = ν(s) (this is well-defined!).

15

Example

Consider the Kripke structure below:

16

States partitioned into equivalence classes:

17

Abstract structure obtained by quotienting:

18

Let K′ be a structure obtained by abstraction from K.

Then K ≤ K′ holds (simulation relation: { (s, [s]) | s ∈ S })

Thus, if K′ satisfies some LTL formula, so does K.

19

What happens if ≈ does not respect ν?

{p} { }
{p}

K K’

Then K 6≤ K′ does not hold.

Example: The abstraction satisfies G p, the concrete system does not.

20

Abstraction gives rise to additional paths in the system:

Every concrete run has got a corresponding run in the abstraction . . .

21

Abstraction gives rise to additional paths in the system:

. . . but not every abstract run has got a corresponding run in the concrete system.

22

Suppose that K′ 6|= φ, where ρ is a counterexample.

Check whether there is a run in K that “corresponds” to ρ.

If yes, then K 6|= φ.

If no, then we can use ρ to refine the abstraction; i.e. we remove some
equivalences from the relation H, introducing additional distinct states in K′

so that ρ disappears.

The refinement can be repeated until a definite answer for K |= φ (positive or
negative) can be determined. This technique is called counterexample-guided
abstraction refinement (CEGAR) [Clarke et al, 1994].

23

The abstraction-refinement cycle

Input: K, φ

Compute K’

K’ |=

yes

K |=

yes
K |= φ

φ

φ?

Determine
Refine

no, counterexample ρ

realizable in K?ρ

no

24

Simulation of ρ

Problem: Given a counterexample ρ, is there a run corresponding to ρ in K?

Solution: “Simulate” ρ on K.

Remark: Any counterexample ρ can be partitioned into a finite stem and a finite
loop, i.e. ρ = wSwω

L for suitable wS,wL.

Case distinction: The simulation may fail in the stem or in the loop.

25

Example 1: G¬black

s1

s2

s3
s4

s6
s7

s5

a1
a2

a3
a4

s9

s8

Abstraction yields a counterexample with stem a1a2a3a4 and loop a4.

26

Simulating the stem

Let wS = b0 · · · bk .

Start with S0 = {r}. (We have b0 = [r].)

For i = 1, . . . , k , compute Si = { t | t ∈ bi ∧ ∃s ∈ Si−1 : s → t }.

If Sk 6= ∅, then there is a concrete correspondence for wS.

If Sk = ∅: Find the smallest index ` with S` = ∅: The refinement should
distinguish the states in S`−1 and those b`−1-states that have immediate
successors in b`.

27

Example: wS = a1a2a3a4

S0 = {s2}, S1 = {s4}, S2 = {s5}, S3 = ∅.

s1

s2

s3

s4

s5

s6

s8

s9

s7

In the next refinement, s5 and s7 must be distinguished.

Possible new equivalence classes: {s5, s6}, {s7} or {s5}, {s6, s7}.

28

Next try: G¬black with refinement

s1

s2

s3
s4

s6
s7

s5

a1
a2

a4

s9

s8

a3’
a3

The new abstraction does not yield any counterexample; therefore, G¬black
also holds in the concrete system.

29

Example 2: FG red

s1

s2

s3
s4

s6
s7

s5

a1
a2

a3
a4

s9

s8

The abstraction yields a counterexample with stem a1a2 and loop a3a2.

30

Simulating a loop

Assume wS = b0 · · · bk , wL = c1 · · · c`

wS is simulated as before, however wL may have to be simulated multiple
times.

Let m be the size of the smallest equivalence class in wL:

m = min
i=1,...,`

|ci |

Then we simulate the path wSwm+1
L ; doing so, either the simulation will fail,

or we will discover a real counterexample.

Refinement: same as before.

31

Example: wS = a1a2, wL = a3a2, m = 2

s4

s3s5

s6

s7

s4

s3s5

s6

s7

s4

s3s5

s6

s7

s4

s3s1

s2

The simulation succeeds because there is a loop around s4.
Thus, there is a real counterexample, so K 6|= φ.

32

CEGAR: first discussed in 1994

Since about 2000: software model checkers using CEGAR

SLAM / SDV (Microsoft Research)

Blast (Standford / EPFL)

Magic (CMU)

“canonical application:” device drivers (many lines of code but few data
dependencies)

33

Typical properties of existing CEGAR systems:

Input: C program

Property: Reachability or safety property

Abstraction: predicates, boolean programs

34

Example: Device driver verification

(example taken from Ball, Rajamani 2000)

Input: C program (device driver)

Safety property given by a finite automaton,
e.g. “acquire/release” operations must be in proper order:

unlocked locked
acquire

release
acquirerelease

error

More complicated property: up to 30 states

Preprocessing: embed the automaton into the C program using assertions

35

Abstraction in Boolean Programs

Set of predicates P (boolean expressions, e.g. x==y)

equivalence classes distinguish lines of code and fulfilled predicates

Implementation: Translate the C program into a “boolean program”, where all
variables are of type Boolean.

BDD-based model checker, tests for reachability of failed assertions and returns
an execution (of the boolean program) that reaches the failed assertion.

36

Generating the predicates

Initial predicates: State of the property automaton.

Every instruction of the C program translated into an assignment of the predicate
variables.

Compute the weakest precondition for validity or invalidity of each predicate
after the instruction.

Find out which predicates imply the weakest precondition.

37

Example: predicate p := (x = y), instruction x = x +1

weakest precondition: x +1 = y

p implies ¬(x +1 = y).

Neither p nor ¬p imply x +1 = y .

⇒ translate the statement into:

if p then p:=false else p:=unknown

38

Use of theorem provers to find the right preconditions (theories for arithmetics,
pointers etc required!)

Not always decidable!
(The theorem prover may reply “I don’t know”.)

Many calls to the theorem prover, generating the abstraction becomes the
bottleneck.

39

