Abstraction and Refinement
State-space explosion

In practice, model-checking encounters the problem of state-space explosion:

- due to data: var with n bits $\rightarrow 2^n$ states
- due to concurrency: n parallel components with $n!$ different orderings

Countermeasures:

- Compression: efficient representations (e.g. BDDs)
- Reduction: find a simpler, equivalent problem
- Abstraction: identify and ignore “unimportant” information
Example 1 (loop)

Consider the following program with three numeric variables x, y, z.

\begin{align*}
\ell_1: \quad & y = x+1; \\
\ell_2: \quad & z = 0; \\
\ell_3: \quad & \text{while } (z < 100) \ z = z+1; \\
\ell_4: \quad & \text{if } (y < x) \ \text{error};
\end{align*}

Question: Is the error location reachable?
Example 2 (Sorting)

Another program with three numeric variables x, y, z.

$$\ell_1: \text{if } x > y \text{ then } \text{swap } x, y \text{ else skip;}$$

$$\ell_2: \text{if } y > z \text{ then } \text{swap } y, z \text{ else skip;}$$

$$\ell_3: \text{if } x > y \text{ then } \text{swap } x, y \text{ else skip;}$$

$$\ell_4: \text{skip}$$

Assumption: initially, x, y, z are all different

Question: Are x, y, z sorted in ascending order when reaching ℓ_4?
Example 3 (Device driver)

C code for Windows device driver

Operations on a semaphore: lock, release

Lock and release must be used alternatingly
Abstraction

Idea: throw away (abstract from) “unimportant” information

Handling \textit{infinite} state spaces

Reduce (large) finite problems to smaller ones

Alternative point of view: merge “equivalent” states
Example 1

Omit concrete values of x, y, z; retain only the following information: program counter, predicate $y < x$

Resulting (abstract) Kripke structure:

Result: ℓ_4 is reachable only with $y \geq x$; the error will not happen.
Example 2

Omit concrete values of x, y, z; retain only program counter and permutation of x, y, z.

Result: ℓ_4 is reachable only with xyz; no error.
Questions: What is the logical relation between the original programs and their abstract versions? What do the abstract versions really say about the original programs?

In Example 1, the error is unreachable in both the original and the abstract version.

However, in Example 1, the original structure terminates but the abstract version does not.

Which conditions must hold for the abstract structure in order to draw meaningful conclusions about the original structure?
Let $\mathcal{K}_1 = (S, \rightarrow_1, s_0, AP, \nu)$ and $\mathcal{K}_2 = (T, \rightarrow_2, t_0, AP, \mu)$ be two Kripke structures (S, T are possibly infinite), and let $H \subseteq S \times T$ be a relation.

H is called a simulation from \mathcal{K}_1 to \mathcal{K}_2 iff

(i) $(s_0, t_0) \in H$;

(ii) for all $(s, t) \in H$ we have: $\nu(s) = \mu(t)$;

(iii) if $(s, t) \in H$ and $s \rightarrow_1 s'$, then there exists t' such that $t \rightarrow_2 t'$ and $(s', t') \in H$.

We say: \mathcal{K}_2 simulates \mathcal{K}_1 (written $\mathcal{K}_1 \leq \mathcal{K}_2$) if such a simulation H exists.
Intuition: \mathcal{K}_2 can do anything that is possible in \mathcal{K}_1.

\mathcal{K}_2 simulates \mathcal{K}_1 (with $H = \{(a, f), (b, g), (c, g), (d, i), (e, k)\}$).

However, \mathcal{K}_1 does not simulate \mathcal{K}_2!
Bisimulation

A relation H is called a bisimulation between \mathcal{K}_1 and \mathcal{K}_2 iff H is a simulation from \mathcal{K}_1 to \mathcal{K}_2 and $\{(t, s) \mid (s, t) \in H\}$ is a simulation from \mathcal{K}_2 to \mathcal{K}_1.

We say: \mathcal{K}_1 and \mathcal{K}_2 are bisimilar (written $\mathcal{K}_1 \equiv \mathcal{K}_2$) iff such a relation H exists.
Careful: In general, $\mathcal{K}_1 \leq \mathcal{K}_2$ and $\mathcal{K}_2 \leq \mathcal{K}_1$ do not imply $\mathcal{K}_1 \equiv \mathcal{K}_2$!
Let $\mathcal{K}_1 \leq \mathcal{K}_2$ and ϕ an LTL formula.

Then we have: $\mathcal{K}_2 \models \phi$ implies $\mathcal{K}_1 \models \phi$ (for universal model checking).

Let $\mathcal{K}_1 \equiv \mathcal{K}_2$ and ϕ a CTL* formula.

Then we have: $\mathcal{K}_1 \models \phi$ iff $\mathcal{K}_2 \models \phi$.
Proofs

Lemma: Bisimulation on paths

Assume $\mathcal{K}_1 \leq \mathcal{K}_2$ with relation H and $(s_0, t_0) \in H$. Let $s_0 s_1 \ldots$ be a path in \mathcal{K}_1. Then there exists a path $t_0 t_1 \ldots$ in \mathcal{K}_2 such that $(s_i, t_i) \in H$ for all $i \geq 0$.

Proof: Immediate for (s_0, t_0), proceed by induction on i.

Note: The claim about LTL follows directly from the lemma. For the claim on CTL*, one first proves the claim for a subformula $E \phi$ or $A \phi$ such that ϕ does not contain any E or A. Then, one replaces the subformula by a new atomic proposition which is true on all states satisfying $E \phi$ (resp. $A \phi$). The resulting system is still bisimilar. One proceeds until all nested quantifiers are eliminated.
Existential abstraction

Let $\mathcal{K} = (S, \rightarrow, r, AP, \nu)$ be a Kripke structure (concrete structure).

Let \approx be an equivalence relation on S such that for all $s \approx t$ we have $\nu(s) = \nu(t)$ (we say: \approx respects ν).

Let $[s] := \{ t \mid s \approx t \}$ denote the equivalence class of s; $[S]$ denotes the set of all equivalence classes.

The abstraction of S w.r.t. \approx denotes the structure $\mathcal{K}' = ([S], \rightarrow', [r], AP, \nu')$, where

$$[s] \rightarrow' [t] \text{ for all } s \rightarrow t;$$

$$\nu'([s]) = \nu(s) \text{ (this is well-defined!)}. $$
Example

Consider the Kripke structure below:
States partitioned into equivalence classes:
Abstract structure obtained by quotienting:
Let \mathcal{K}' be a structure obtained by abstraction from \mathcal{K}.

Then $\mathcal{K} \leq \mathcal{K}'$ holds.

Thus, if \mathcal{K}' satisfies some LTL formula, so does \mathcal{K}.
What happens if \(\approx \) does not respect \(\nu \)?

Then \(K \not\leq K' \) does not hold.

Example: The abstraction satisfies \(Gp \), the concrete system does not.
Let \mathcal{K}' be a structure obtained by abstracting \mathcal{K}.

Then $\mathcal{K} \leq \mathcal{K}'$ holds; thus, if \mathcal{K}' satisfies some LTL formula, then so does \mathcal{K}.

However, if $\mathcal{K}' \not\models \phi$, then $\mathcal{K} \models \phi$ may or may not hold!
Abstraction gives rise to additional paths in the system:

Every concrete run has got a corresponding run in the abstraction . . .
Abstraction gives rise to additional paths in the system:

...but not every abstract run has got a corresponding run in the concrete system.
Suppose that $K' \not\models \phi$, where ρ is a counterexample.

Check whether there is a run in K that “corresponds” to ρ.

If yes, then $K \models \phi$.

If no, then we can use ρ to refine the abstraction; i.e. we remove some equivalences from the relation H, introducing additional distinct states in K' so that ρ disappears.

The refinement can be repeated until a definite answer for $K \models \phi$ (positive or negative) can be determined. This technique is called counterexample-guided abstraction refinement (CEGAR) [Clarke et al, 1994].
The abstraction-refinement cycle

Input: \mathcal{K}, ϕ

- **Determine \approx**
- **Compute K'**
 - $K' \models \phi$?
 - yes
 - **K $\models \phi$**
 - no, counterexample ρ
- **Refine \approx**
 - no
 - ρ realizable in K?
 - yes
 - **K $\not\models \phi$**
 - no

Simulation of ρ

Problem: Given a counterexample ρ, is there a run corresponding to ρ in K?

Solution: “Simulate” ρ on K.

Remark: Any counterexample ρ can be partitioned into a finite stem and a finite loop, i.e. $\rho = w_S w_L^\omega$ for suitable w_S, w_L.

Case distinction: The simulation may fail in the stem or in the loop.
Example 1: $G \models \neg black$

Abstraction yields a counterexample with stem $a_1a_2a_3a_4$ and loop a_4.
Simulating the stem

Let \(w_S = b_0 \cdots b_k \).

Start with \(S_0 = \{ r \} \). (We have \(b_0 = [r] \).)

For \(i = 1, \ldots, k \), compute \(S_i = \{ t \mid t \in b_i \land \exists s \in S_{i-1}: s \rightarrow t \} \).

If \(S_k \neq \emptyset \), then there is a concrete correspondence for \(w_S \).

If \(S_k = \emptyset \): Find the smallest index \(\ell \) with \(S_\ell = \emptyset \): The refinement should distinguish the states in \(S_{\ell-1} \) and those \(b_{\ell-1} \)-states that have immediate successors in \(b_\ell \).
Example: $w_S = a_1a_2a_3a_4$

$$S_0 = \{s_2\}, \quad S_1 = \{s_4\}, \quad S_2 = \{s_5\}, \quad S_3 = \emptyset.$$

In the next refinement, s_5 and s_7 must be distinguished.

Possible new equivalence classes: $\{s_5, s_6\}, \{s_7\}$ or $\{s_5\}, \{s_6, s_7\}$.
The new abstraction does not yield any counterexample; therefore, $G \not\black$ also holds in the concrete system.
The abstraction yields a counterexample with stem a_1a_2 and loop a_3a_2.
Simulating a loop

Assume $w_S = b_0 \cdots b_k$, $w_L = c_1 \cdots c_\ell$

w_S is simulated as before, however w_L may have to be simulated multiple times.

Let m be the size of the smallest equivalence class in w_L:

$$m = \min_{i=1,\ldots,\ell} |c_i|$$

Then we simulate the path $w_S w_L^{m+1}$; doing so, either the simulation will fail, or we will discover a real counterexample.

Refinement: same as before.
Example: \(w_S = a_1 a_2, \ w_L = a_3 a_2, \ m = 2 \)

The simulation succeeds because there is a loop around \(s_4 \).
Thus, there is a real counterexample, so \(\mathcal{K} \not\models \phi \).
Constructing the abstraction

Problem: Abstract system should be generated without generating the concrete system! (too big or even infinite)

Here: Example for the case where the concrete system is given using BDDs.

\[\mathcal{K} = (S, \rightarrow, r, AP, \nu) \]: concrete transition relation \(\rightarrow \subseteq S \times S \) given as BDD \(R \) with variables \(\vec{x}, \vec{y} \)

Equivalence classes given as BDDs \(V_1, \ldots, V_m \) (over \(\vec{x} \))
Introduce two sets of m new BDD variables \vec{v}, \vec{w}.

Compute $R' := \exists \vec{x}, \vec{y}: R \land \bigwedge_{i=1}^{m} (v_i \leftrightarrow V_i) \land \bigwedge_{i=1}^{m} (w_i \leftrightarrow V_i[\vec{x}/\vec{y}])$

Then R' is the abstract transition relation.

Checking a counterexample: use adequate operations to compute $S_i = \{ t \mid t \in b_i \land \exists s \in S_{i-1}: s \rightarrow t \}$.

Refinement: If $S_{\ell+1} = \emptyset$, choose new class S_ℓ.