Initiation à la Vérification

Emptiness Test for BA

Stefan Schwoon

MPRI, 2014/15
November 18, 2014
Overview

As we have seen, the model-checking problem for LTL reduces to checking whether the language of a certain Büchi automaton B is empty.

Reminder: B arises from the intersection of a Kripke structure K with a BA for the negation of ϕ.

If B accepts some word, we call such a word a counterexample.

$K \models \phi$ iff B accepts the empty language.
Typical instances:

Size of \mathcal{K}: between several hundreds to millions of states.

Size of $B_{\neg \phi}$: usually just a couple of states

Typical setting:

\mathcal{K} indirectly given in some description language (C, Java / modelling language); model-checking tools will generate \mathcal{K} internally.

$B_{\neg \phi}$ generated from ϕ before start of emptiness check.
Typical setting:

\mathcal{B} generated “on-the-fly” from (the description of) \mathcal{K} and from $\mathcal{B}_{\neg \phi}$ and tested for emptiness \textit{at the same time}.

As a consequence, the size of \mathcal{K} (and of \mathcal{B}) is not known initially!

At the beginning, only the initial state is known, and we have a function $\text{succ} : S \rightarrow 2^S$ for computing the immediate successors of a given state (the function implements the semantics of the description).
Simple solution I: Check for Lassos

Let $\mathcal{B} = (\Sigma, S, s_0, \delta, F)$ be a Büchi automaton.

$\mathcal{L}(\mathcal{B}) \neq \emptyset$ iff there is $s \in F$ such that $s_0 \rightarrow^* s \rightarrow^+ s$

Naïve solution:

Check for each $s \in F$ whether there is a cycle around s; let $F_\circ \subseteq F$ denote the set of states with this property.

Check whether s_0 can reach some state in F_\circ.

Time requirement: Each search takes linear time in the size of \mathcal{B}, altogether quadratic run-time → unacceptable for millions of states.
Strongly connected components

$C \subseteq S$ is called a **strongly connected component** (SCC) iff

$$s \rightarrow^* s' \text{ for all } s, s' \in C;$$

C is maximal w.r.t. the above property, i.e. there is no proper superset of C satisfying the above.

An SCC C is called **trivial** if $|C| = 1$ and for the unique state $s \in C$ we have $s \not\rightarrow s$ (single state without loop).
Example: SCCs

The SCCs \{s_0\} and \{s_1\} are trivial.
Depth-first search (basic version)

```plaintext
nr = 0;
hash = {};
dfs(s0);
exit;

dfs(s) {
    add s to hash;
    nr = nr+1;
    s.num = nr;

    for (t in succ(s)) {
        // deal with transition s -> t
        if (t not yet in hash) { dfs(t); }
    }
}
```
Memory usage

Global variables: counter nr, hash table for states

Auxiliary information: “DFS number” $s.num$

search path: Stack for memorizing the “unfinished” calls to dfs
Solution (1): based on SCCs

The algorithm of Tarjan (1972), based on depth-first search, can identify the SCCs in linear time (i.e. proportional to $|S| + |\delta|$).

Given the SCCs, one can then check if there exists a non-trivial SCC containing an accepting state.
Solution (2): nested DFS

The nested-DFS algorithm is an alternative requiring only two bits per state.

States are white initially.

A first DFS makes all the state that it visits blue.

Whenever the first (blue) DFS backtracks from an accepting state s, it starts a second (red) DFS to see if there is a cycle around s.

The red DFS only visits states that are not already red (including from a previous visit). Thus, every state and edge are considered at most twice.
Nested DFS

Two (nested) phases: Start at initial state.
Visit states depth-first, colouring them blue.
Nested DFS

Simply backtrack from non-accepting states.
Nested DFS

Continue blue search …
Nested DFS

Continue blue search until backtracking from an accepting state.
Nested DFS

Before backtracking, start a “red” DFS …
Nested DFS

…that searches for a loop back to that accepting state.
Nested DFS

If red search is unsuccessful, backtrack.
Nested DFS

Carry on …
Future red searches only consider non-red states.