Exam – Initiation à la vérification

March 12, 2014

Duration: 2.5 hours. All course materials can be used. Answers can be given in either French or English. Justify all your answers.

1. Binary decision diagrams.
 Let \(V_n = \{ x_1, \ldots, x_n \} \) be a set of variables for \(n \geq 1 \), where \(x_i < x_j \) iff \(i < j \).
 Remark: In the following, when talking about the number of nodes of a BDD, we only count those nodes that are labelled by variables.

 (a) Give a BDD with variables from \(V_4 \) that has as many nodes as possible. (Be careful to avoid redundant nodes or isomorphic subgraphs!)

 (b) What is the maximal number of nodes in a BDD if the set of variables is \(V_5 \) or \(V_6 \)?

 (c) Generally, if the set of variables is \(V_n \), for arbitrary \(n \), let \(N^*_n \) be the maximal number of nodes labelled by \(x_i \). Give a formula to compute \(N^*_n \).

2. Coverability graphs.
 (a) The construction of coverability graphs, as defined in the lecture slides, is not entirely deterministic: e.g., the order in which nodes are taken from the worklist is undefined. Give an example of a net \(N \) and two possible coverability graphs of \(N \) that are non-isomorphic to each other. In each case, indicate the order in which nodes were treated in the worklist.

 (b) A marking of a net \(N \) is said to be a deadlock if no transition can fire in it. Clearly, \(N \) contains a reachable deadlock iff the reachability graph of \(N \) contains a node with no outgoing edges. Can the same be said of \(N \) and any of its coverability graphs?

 Let \(\phi \) be an LTL-formula. We define the \(X \)-depth of \(\phi \) as the maximal nesting of \(X \)-operators in \(\phi \), i.e., \(d_X(\phi) = 0 \) if \(\phi \) does not contain any occurrence of \(X \); \(d_X(\phi) = \max\{d_X(\phi_1), d_X(\phi_2)\} \) if \(\phi = \phi_1 U \phi_2 \), and \(d_X(\phi) = d_X(\phi_1) + 1 \) if \(\phi = X \phi_1 \). The \(U \)-depth \(d_U(\phi) \) is defined analogously for the nesting depth of the \(U \)-operator. The language \(LTL(U^m, X^n) \) signifies the language of LTL formulae \(\phi \) with \(d_U(\phi) \leq m \) and \(d_X(\phi) \leq n \), where \(m = \infty \) or \(n = \infty \) indicates no restriction of the operator in question.

 Let \(\alpha \in \Sigma^\omega \) (for some alphabet \(\Sigma \)), and let \(\alpha(i) \) denote the \(i \)-th letter of \(\alpha \) (beginning at \(i = 0 \)). We say that \(\alpha(i) \) is \(n \)-redundant in \(\alpha \) (for \(n \geq 0 \)) if \(\alpha(i) = \alpha(i+1) = \cdots = \alpha(i+n+1) \) and there is \(j > i \) with \(\alpha(j) \neq \alpha(i) \). The \(n \)-canonical form of \(\alpha \) is obtained by deleting from it all \(n \)-redundant letters, and two words \(\alpha, \beta \) are \(n \)-stutter-equivalent if they have the same canonical form. A language \(L \subseteq \Sigma^\omega \) is called \(n \)-stutter-closed if it is closed under \(n \)-stutter-equivalence.

 (a) We learned in the course that every language definable in \(LTL(U^\infty, X^0) \) is \(0 \)-stutter-closed. Prove that for any \(n \geq 0 \), the languages in \(LTL(U^\infty, X^n) \) are \(n \)-stutter-closed.
(b) A similar principle can be formulated when the U-depth is restricted. Let $\phi \in LTL(U^m, X^0)$, where $m \geq 1$. Prove that for all $u, v \in \Sigma^*$ and $\alpha \in \Sigma^\omega$ we have that $u^m \alpha$ satisfies ϕ iff $u^{m+1} \alpha$ does.

(c) Using the results above, show that the language $(aa|ab)^\omega$ cannot be defined by any LTL formula. (Remark: The language can, however, be accepted by a Büchi automaton.)

4. Bisimulation

(a) In the figure below, determine for each pair of Kripke structures K_i, K_j whether $K_i \equiv K_j$, either by giving a bisimulation or reasoning that none exists. (As usual, identical colours - black and white - indicate identical labellings.)

(b) Prove or refute (by a counterexample) the following claims:

- Let H be a bisimulation between structures K_1 and K_2 and J a bisimulation between K_2 and K_3. Is $H \circ J$ a bisimulation between K_1 and K_3?
- Let H, J be bisimulations between structures K_1 and K_2. Is $H \cup J$ a bisimulation?