Pushdown systems

Example 1

A small program (where n > 1):

bool g=true; void level; () {
void main () { leveljp ();
levelq () ; leveljpq();
levelq (); }
assume (qg) ;
t
volid levelpn() {
g:=not g;
h

Question: Will g be true when the program terminates?

Example 1 has got finitely many states.
(The call stack is bounded by n.)

Can be treated by “inlining” (replace procedure calls by a copy of the callee).
Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated
separately.

Inlining not applicable for recursive procedure calls.

Example 2: Recursive program

procedure p; procedure s;
po: if ?7then So: if ? then return; end if;
p1: call s; s1: call p;
po: if ? then call p; end if; So>: return;
else
p3: call p; procedure main;
end if mg: call s;
ps4: return my . return;
S={po,.-.-,Ps4,50,---,S2, Mg, M }*, initial state mg

mil — ¢
—>m0—>50m1\ p1s2mi1 — s0p2s2mi
si1m1 — p0s2 mi
p3s2m1 — p0p4s2mi

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naively searching all reachable states.

We shall require a finite representation of infinitely many states.

Example 3: Quicksort

void quicksort (int left, int right) {
int lo,hi,piv;
1f (left >= right) return;
piv = a[right]° lo = left; hi = right;
while (lo <= hi) {
if (alhi]l>piv) {
hi = hi - 1;
} else {
swap al[lol,alhi];
lo = lo + 1;

}
}

quilcksort (left,hi);
quicksort (lo, right) ;

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely
many reachable states:

finitely many if the program terminates

infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

A computation model for procedural programs

Control flow:

sequential program (no multithreading)

procedures

mutual procedure calls (possibly recursive)

Data:

global variables (restriction: only finite memory)

local variables in each procedure (one copy per call)

Pushdown systems

A pushdown system (PDS) is a triple (P, ", A), where

P is a finite set of control states;

[is a finite stack alphabet;

A is a finite set of rules.

Rules have the form pA — qw, where p,g e P, Ac ', we ™.

© (A

@ W W

Like acceptors for context-free language, but without any input!

10

Behaviour of a PDS

Let P = (P,I',A)beaPDSandcyc P x I .

With P we associate a transition system 7p = (S, —, r) as follows:

S = P x I'* are the states (which we call configurations);

we have pAw’' — qww’ for all w’ € IT* iff pA — gw € A;

r = Cp is the initial configuration.

11

Transition system of a PDS

P
?
p:D<—q,B <—p,,A<—p,DA<—
pA — QB p,C =———p,DC =
pA — pC
y
pC — pAD
y

l

p,DDD =— q,BDD =— p,ADD =— p,DADD —=— -

T !

12

Procedural programs and PDSs

P may represent the valuations of global variables.
[C may contain tuples of the form (program counter, local valuations)

Interpretation of a configuration pAw:

global values in p, current procedure with local variables in A

“suspended” procedures in w

Rules:

pA — gB = statement within a procedure

pA — gBC = procedure call

pPA — ge = return from a procedure

13

Reachability in PDS

Let P be a PDS and ¢, ¢’ two of its configurations.

Problem: Does ¢ —* ¢’ hold in 7p?

Note: 7p has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

14

Finite automata

To represent (infinite) sets of configurations, we shall employ finite automata.
Let P = (P,I"',A) beaPDS.Wecall A= (Q,I,P, T, F)aP-automaton.
The alphabet of A is the stack alphabet I".

The initial states of .4 are the control states P.

We say that A accepts the configuration pw if A has got a path labelled by input
w starting at p and ending at some final state.

15

Let £L(A) be the set of configurations accepted by .A.

A set C of configurations is called regular iff there is some P-automaton A with
L(A) = C.

An automaton is normalized if there are no transitions leading into initial states.

Remark: In the following, we shall use the following notation:

pw = p'w (inthe PDS P) and p-% g (in P-automata)

16

Reachability in PDS

Let pre*(C) = {c’ | dc € C: ¢’ = ¢} denote the predecessors of C,
and let post*(C) = {c’ | dc € C: ¢ = ¢’ } the successors.

The following result is due to Bluchi (1964):

Let C be a regular set and A be a normalized P-automaton accepting C.

If C is regular, then so are pre*(C) and post™(C).

Moreover, A can be transformed into an automaton accepting pre*(C) resp.
post™(C).

17

The basic idea (for pre)

Saturation rule: Add new transitions to A as follows:

If g % r currently holds in A and pA < qw is a rule, then add the
transition (p, A, r) to A.

Repeat this until no other transition can be added.
At the end, the resulting automaton accepts pre*(C).

For post™(C): similar procedure.

18

Automaton A for C

P
pD<——gB =—pA=<——pDA =~— -
Y
D D p,DD =— q,BD =—— p,AD =—— p,DAD —=
A

B Y
— p,CD =—p,DCD —=— -~

p,DDD =— q,BDD =— p,ADD =— p,DADD —=— -

T !

19

Extending A

20

Extending A

If the right-hand side of a rule can be read,

Rule: pA — gB Path: q§> S1

21

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

nONGRO,

A
D||D

~O—)

Rule: pA — gB Path: q§> S1 New path: pi S1

22

Extending A

If the right-hand side of a rule can be read,

nONGRC,

A
D||D

~O—)

Rule: pC — pAD Path: pi S1 L4 S5

23

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

O ®
ADD

~O—)

Rule: pC — pAD Path: p A S1 124 S5 New path: p < S5

24

Final result

P
C f
> pD<——qgB =——pA=<——pDA=~— -
A l
p,C =——p,DC =— =
C 4 D! |D
D v

A
y

Complexity: l
O(|Q|? - |Al) time. p,.DDD =— q,BDD =— p,ADD <— p,DADD =— -

T !

25

p,CD =—p,DCD =— -

Proof of correctness

We shall show:

Let B be the P-automaton arising from A by applying the saturation rule.
Then L(B) = pre*(C).

Part 1: Termination

The saturation rule can only be applied finitely many times because no states
are added and there are only finitely many possible transitions.

Part 2: pre*(C) C L(B)

Let ¢ € pre*(C) and ¢’ € C such that ¢’ is reachable from ¢ in k steps. We
proceed by induction on k (simple).

26

Part 3: £L(B) C pre*(C)

Let — denote the transition relation of the automaton after the saturation rule
/
has been applied i times.

We show the following, more general property: If pi@ g, then there exist p’w’
/

with p’ %; qg and pw = p'w’; if g € P, then additionally w’ = ¢.
Proof by induction over i: The base case i = 0 is trivial.

Induction step: Let t = (p1, A, @’) be the transition added in the i-th
application and j the number of times t occurs in the path pl',@ qg.
/

Induction over j: Trivial for j = 0. So let j > O.

27

There exist po, o/, u, v, w’, wo with the following properties:

(1) p = p1 AgLq (spliting the path p% q)
1— I I /

(2) p1A — powo (pre-condition for saturation rule)
(3) po ,-Vl% q (pre-condition for saturation rule)
(4) pu = pqc (ind.hyp. on /)

(5) poworv = p'w (ind.hyp. on j)

® P %q (ind.hyp. on j)

The desired proof follows from (1), (4), (2), and (5).
If g € P, then the second part follows from (6) and the fact that A is normalized.

28

Example: post™ (without proof)

If the left-hand side of a rule can be read,

@

Rule: pC — pAD Path: p < So

29

Example: post™ (without proof)

If the left-hand side of a rule can be read, add the right-hand side.

*@A /’D@

Rule: pC — pAD Path: p < S5 New Path: pA—D> S5

30

LTL and Pushdown Systems

Let P = (P, I, A) be a PDS with initial configuration cg, let 7 denote the
corresponding transition system, AP a set of atomic propositions, and
v: P x I — 24P g valuation function.

Tp, AP, and v form a Kripke structure K; let ¢ be an LTL formula (over AP).
Problem: Does K = ¢?

Undecidable for arbitrary valuation functions!
(could encode undecidable decision problemsinv ...)

However, LTL model checking /s decidable for certain “reasonable” restrictions of

V.

31

In the following, we consider “simple” valuation functions satisfying the following
restriction:

v(pAw) = v(pA),forallpe P, Ael,andw € ",

In other words, the “head” of a configuration holds all information about
atomic propositions.

LTL model checking is decidable for such “simple” valuations.

32

Approach

Same principle as for finite Kripke structures:

Translate —¢ into a Blchi automaton B.

Build the cross product of K and B.

Test the cross product for emptiness.

Note that the cross product is not a Buchi automaton in this case, but another
pushdown system (with a Blchi-style acceptance condition).

33

Blchi PDS

The cross product is a new pushdown system Q, as follows:

Let P = (P,I", A) be a PDS, pgwy the initial configuration, and AP, v as
usual.

Let B = (Q,24F, qo, T, F) be the Blichi automaton for —.

Construction of O:

Q= (PxQ,TI,A", where
(P, DA — (P, q)w e A iff
— PA— p'w e A and

— (q,L,q") € T such that v(pA) = L.

Initial configuration: (pg, go) wo

34

Let p be a run of Q with p(i) = (p;, ;) w;.

We call p accepting if g; € F for infinitely many values of /.

The following is easy to see:

P does not satisfy ¢ iff there exists an accepting run in Q.

35

Characterization of accepting runs

Question: If there an accepting run starting at (pg, go)wp?

In the following, we shall consider the following, more general global
model-checking problem:

Compute all configurations ¢ such that there exists an accepting run starting
at c.

Lemma: There is an accepting run starting at c iff there exists (p,q) € P x Q,
A € " with the following properties:

(1) c = (p,q)Aw for some w € I'*
2) (p,q9)A = (p,q)Aw’ for some w’ € I'*, where

the path from (p, g)Ato (p, @) Aw’ contains at least one step;

the path contains at least one accepting Blchi state.

36

Repeating heads

We call (p, g)A a repeating head if (p, q) A satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads.

E.g., check for each pair (p, g) A whether

(p,q)A € pre*({ (p,q)Aw | w € T* }). Visiting an accepting state can be
encoded into the control state. (This is a simple but naive method, one can do

better.)

2. Compute the set pre*({ (p,q)Aw | (p, q)Ais a repeating head, w € '* })

37

