Pushdown systems

Example 1

A small program (where $n \ge 1$):

```
bool g=true;
void level;() {

void main() {
    level;();
    level;();
    level;();
}
assume(g);
}

void level;() {
    level;();
    level;();
}

assume(g);
}
```

Question: Will g be true when the program terminates?

Example 1 has got *finitely* many states. (The call stack is bounded by *n*.)

Can be treated by "inlining" (replace procedure calls by a copy of the callee).

Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated separately.

Inlining not applicable for recursive procedure calls.

Example 2: Recursive program

```
procedure p;
                                               procedure s;
   p_0: if ? then
                                               s_0: if ? then return; end if;
   p_1: call s;
                                               s_1: call p;
   p_2: if ? then call p; end if; s_2: return;
        else
                                               procedure main;
       call p;
   p<sub>3</sub>:
        end if
                                               m_0: call s;
   p<sub>4</sub>: return
                                               m_1: return;
S = \{p_0, \dots, p_4, s_0, \dots, s_2, m_0, m_1\}^*, initial state m_0
                                               p1 s2 m1 → s0 p2 s2 m1
                                               p3 s2 m1 → p0 p4 s2 m1 → ...
```

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naïvely searching all reachable states.

We shall require a *finite* representation of infinitely many states.

Example 3: Quicksort

```
void quicksort (int left, int right) {
   int lo, hi, piv;
   if (left >= right) return;
   piv = a[right]; lo = left; hi = right;
   while (lo <= hi) {</pre>
     if (a[hi]>piv) {
       hi = hi - 1;
     } else {
       swap a[lo],a[hi];
       10 = 10 + 1;
   quicksort (left, hi);
   quicksort(lo,right);
```

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely many reachable states:

finitely many if the program terminates

infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

A computation model for procedural programs

```
Control flow:
   sequential program (no multithreading)
   procedures
   mutual procedure calls (possibly recursive)
Data:
   global variables (restriction: only finite memory)
   local variables in each procedure (one copy per call)
```

Pushdown systems

A pushdown system (PDS) is a triple (P, Γ, Δ) , where

P is a finite set of control states;

□ is a finite stack alphabet;

 \triangle is a finite set of rules.

Rules have the form $pA \hookrightarrow qw$, where $p, q \in P$, $A \in \Gamma$, $w \in \Gamma^*$.

Like acceptors for context-free language, but without any input!

Behaviour of a PDS

```
Let \mathcal{P} = (P, \Gamma, \Delta) be a PDS and c_0 \in P \times \Gamma^*.
```

With \mathcal{P} we associate a transition system $\mathcal{T}_{\mathcal{P}} = (S, \rightarrow, r)$ as follows:

 $S = P \times \Gamma^*$ are the states (which we call configurations);

we have $pAw' \to qww'$ for all $w' \in \Gamma^*$ iff $pA \hookrightarrow qw \in \Delta$;

 $r = c_0$ is the initial configuration.

Transition system of a PDS

$$pA \hookrightarrow qB$$

 $pA \hookrightarrow pC$
 $qB \hookrightarrow pD$
 $pC \hookrightarrow pAD$
 $pD \hookrightarrow p\varepsilon$

Procedural programs and PDSs

P may represent the valuations of global variables.

□ may contain tuples of the form (*program counter*, *local valuations*)

Interpretation of a configuration *pAw*:

global values in p, current procedure with local variables in A

"suspended" procedures in w

Rules:

 $pA \hookrightarrow qB \cong$ statement within a procedure

 $pA \hookrightarrow qBC \cong \text{procedure call}$

 $pA \hookrightarrow q\varepsilon \cong$ return from a procedure

Reachability in PDS

Let \mathcal{P} be a PDS and \mathbf{c} , $\mathbf{c'}$ two of its configurations.

Problem: Does $c \to^* c'$ hold in $\mathcal{T}_{\mathcal{P}}$?

Note: $\mathcal{T}_{\mathcal{P}}$ has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

Finite automata

To represent (infinite) sets of configurations, we shall employ finite automata.

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a PDS. We call $\mathcal{A} = (Q, \Gamma, P, T, F)$ a \mathcal{P} -automaton.

The alphabet of \mathcal{A} is the stack alphabet Γ .

The initial states of \mathcal{A} are the control states \mathcal{P} .

We say that \mathcal{A} accepts the configuration pw if \mathcal{A} has got a path labelled by input w starting at p and ending at some final state.

Let $\mathcal{L}(\mathcal{A})$ be the set of configurations accepted by \mathcal{A} .

A set C of configurations is called regular iff there is some \mathcal{P} -automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = C$.

An automaton is normalized if there are no transitions leading into initial states.

Remark: In the following, we shall use the following notation:

$$pw \Rightarrow p'w'$$
 (in the PDS \mathcal{P}) and $p \xrightarrow{w} q$ (in \mathcal{P} -automata)

Reachability in PDS

```
Let pre^*(C) = \{ c' \mid \exists c \in C : c' \Rightarrow c \} denote the predecessors of C, and let post^*(C) = \{ c' \mid \exists c \in C : c \Rightarrow c' \} the successors.
```

The following result is due to Büchi (1964):

Let C be a regular set and A be a normalized P-automaton accepting C.

If C is regular, then so are $pre^*(C)$ and $post^*(C)$.

Moreover, \mathcal{A} can be transformed into an automaton accepting $pre^*(C)$ resp. $post^*(C)$.

The basic idea (for pre)

Saturation rule: Add new transitions to A as follows:

If $q \stackrel{w}{\to} r$ currently holds in \mathcal{A} and $pA \hookrightarrow qw$ is a rule, then add the transition (p, A, r) to \mathcal{A} .

Repeat this until no other transition can be added.

At the end, the resulting automaton accepts $pre^*(C)$.

For $post^*(C)$: similar procedure.

Automaton \mathcal{A} for C

Extending \mathcal{A}

If the right-hand side of a rule can be read,

Rule: $pA \hookrightarrow qB$ Path: $q \stackrel{B}{\rightarrow} s_1$

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $pA \hookrightarrow qB$ Path: $q \xrightarrow{B} s_1$ New path: $p \xrightarrow{A} s_1$

If the right-hand side of a rule can be read,

Rule: $pC \hookrightarrow pAD$ Path: $p \xrightarrow{A} s_1 \xrightarrow{D} s_2$

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $pC \hookrightarrow pAD$ Path: $p \xrightarrow{A} s_1 \xrightarrow{D} s_2$ New path: $p \xrightarrow{C} s_2$

Final result

Complexity:

 $\mathcal{O}(|Q|^2 \cdot |\Delta|)$ time.

Proof of correctness

We shall show:

Let \mathcal{B} be the \mathcal{P} -automaton arising from \mathcal{A} by applying the saturation rule. Then $\mathcal{L}(\mathcal{B}) = pre^*(C)$.

Part 1: Termination

The saturation rule can only be applied finitely many times because no states are added and there are only finitely many possible transitions.

Part 2:
$$pre^*(C) \subseteq \mathcal{L}(B)$$

Let $c \in pre^*(C)$ and $c' \in C$ such that c' is reachable from c in k steps. We proceed by induction on k (simple).

Part 3: $\mathcal{L}(\mathcal{B}) \subseteq pre^*(C)$

Let $\underset{i}{\rightarrow}$ denote the transition relation of the automaton after the saturation rule has been applied *i* times.

We show the following, more general property: If $p extstyle \frac{w}{i} q$, then there exist p'w' with $p' extstyle \frac{w'}{i} q$ and $pw \Rightarrow p'w'$; if $q \in P$, then additionally $w' = \varepsilon$.

Proof by induction over *i*: The base case i = 0 is trivial.

Induction step: Let $t = (p_1, A, q')$ be the transition added in the *i*-th application and *j* the number of times *t* occurs in the path $p \stackrel{w}{\underset{i}{\rightarrow}} q$.

Induction over j: Trivial for j = 0. So let j > 0.

There exist p_2 , p', u, v, w', w_2 with the following properties:

(1)
$$p \xrightarrow[j-1]{u} p_1 \xrightarrow{A} q' \xrightarrow{v} q$$
 (splitting the path $p \xrightarrow{w} q$)

(2)
$$p_1 A \hookrightarrow p_2 w_2$$
 (pre-condition for saturation rule)

(3)
$$p_2 \xrightarrow[i=1]{w_2} q'$$
 (pre-condition for saturation rule)

(4)
$$pu \Rightarrow p_1 \varepsilon$$
 (ind.hyp. on *i*)

(5)
$$p_2 w_2 v \Rightarrow p' w'$$
 (ind.hyp. on j)

(6)
$$p' \xrightarrow{w'} q$$
 (ind.hyp. on j)

The desired proof follows from (1), (4), (2), and (5).

If $q \in P$, then the second part follows from (6) and the fact that A is normalized.

Example: *post** (without proof)

If the left-hand side of a rule can be read,

Rule: $pC \hookrightarrow pAD$ Path: $p \stackrel{C}{\rightarrow} s_2$

Example: *post** (without proof)

If the *left-hand side* of a rule can be read, add the *right-hand side*.

Rule: $pC \hookrightarrow pAD$ Path: $p \xrightarrow{C} s_2$ New Path: $p \xrightarrow{AD} s_2$

LTL and Pushdown Systems

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a PDS with initial configuration c_0 , let $\mathcal{T}_{\mathcal{P}}$ denote the corresponding transition system, AP a set of atomic propositions, and $\nu : P \times \Gamma^* \to 2^{AP}$. a valuation function.

 $\mathcal{T}_{\mathcal{P}}$, AP, and ν form a Kripke structure \mathcal{K} ; let ϕ be an LTL formula (over AP).

Problem: Does $\mathcal{K} \models \phi$?

Undecidable for arbitrary valuation functions! (could encode undecidable decision problems in ν ...)

However, LTL model checking *is* decidable for certain "reasonable" restrictions of ν .

In the following, we consider "simple" valuation functions satisfying the following restriction:

$$\nu(pAw) = \nu(pA)$$
, for all $p \in P$, $A \in \Gamma$, and $w \in \Gamma^*$.

In other words, the "head" of a configuration holds all information about atomic propositions.

LTL model checking is decidable for such "simple" valuations.

Approach

Same principle as for finite Kripke structures:

Translate $\neg \phi$ into a Büchi automaton \mathcal{B} .

Build the cross product of \mathcal{K} and \mathcal{B} .

Test the cross product for emptiness.

Note that the cross product is not a Büchi automaton in this case, but another pushdown system (with a Büchi-style acceptance condition).

Büchi PDS

The cross product is a new pushdown system Q, as follows:

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a PDS, $p_0 w_0$ the initial configuration, and AP, ν as usual.

Let $\mathcal{B} = (Q, 2^{AP}, q_0, T, F)$ be the Büchi automaton for $\neg \phi$.

Construction of Q:

$$Q = (P \times Q, \Gamma, \Delta')$$
, where

$$(p,q)A \hookrightarrow (p',q')w \in \Delta'$$
 iff

- $-pA \hookrightarrow p'w \in \Delta$ and
- $-(q, L, q') \in T$ such that $\nu(pA) = L$.

Initial configuration: $(p_0, q_0)w_0$

Let ρ be a run of \mathcal{Q} with $\rho(i) = (p_i, q_i)w_i$.

We call ρ accepting if $q_i \in F$ for infinitely many values of i.

The following is easy to see:

 \mathcal{P} does *not* satisfy ϕ iff there exists an accepting run in \mathcal{Q} .

Characterization of accepting runs

Question: If there an accepting run starting at $(p_0, q_0)w_0$?

In the following, we shall consider the following, more general global model-checking problem:

Compute *all* configurations *c* such that there exists an accepting run starting at *c*.

Lemma: There is an accepting run starting at c iff there exists $(p, q) \in P \times Q$, $A \in \Gamma$ with the following properties:

- (1) $c \Rightarrow (p, q)Aw$ for some $w \in \Gamma^*$
- (2) $(p,q)A \Rightarrow (p,q)Aw'$ for some $w' \in \Gamma^*$, where the path from (p,q)A to (p,q)Aw' contains at least one step; the path contains at least one accepting Büchi state.

Repeating heads

We call (p, q)A a repeating head if (p, q)A satisfies properties (1) and (2).

Strategy:

- 1. Compute all repeating heads.
- E.g., check for each pair (p,q)A whether $(p,q)A \in pre^*(\{(p,q)Aw \mid w \in \Gamma^*\})$. Visiting an accepting state can be encoded into the control state. (This is a simple but naïve method, one can do better.)
- 2. Compute the set $pre^*(\{(p,q)Aw \mid (p,q)A \text{ is a repeating head, } w \in \Gamma^*\})$