Pushdown systems

Example 1

A small program (where $n \geq 1$):

```
bool g=true;
void main() {
    level1();
    level1();
}
void leveln() {
    g:=not g;
}
```

Question: Is g true when the program terminates?

Example 1 has got finitely many states.
(The call stack is bounded by n.)

Can be treated by "inlining" (replace procedure calls by a copy of the callee).

Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated separately.

Inlining not applicable for recursive procedure calls.

Example 2: Drawing skylines

procedure p;
p_{0} : if ? then
$p_{1}: \quad$ call s; right;
p_{2} : if ? then call p; end if;
else
p_{3} : up; call p; down;
end if
p_{4} : return
procedure s;
s_{0} : if ? then return; end if;
s_{1} : up; call p; down;
s_{2} : return;
procedure main;
m_{0} : call s;
m_{1} : return;
$S=\left\{p_{0}, \ldots, p_{4}, s_{0}, \ldots, s_{2}, m_{0}, m_{1}\right\}^{*}, \quad$ initial state m_{0}

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naïvely searching all reachable states.

We shall require a finite representation of infinitely many states.

Example 3: Quicksort

```
void quicksort (int left, int right) {
    int lo,hi,piv;
    if (left >= right) return;
    piv = a[right]; lo = left; hi = right;
    while (lo <= hi) {
        if (a[hi]>piv) {
            hi = hi - 1;
        } else {
            swap a[lo],a[hi];
            lo = lo + 1;
        }
    }
    quicksort(left,hi);
    quicksort(lo,right);
}
```

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely many reachable states:
finitely many if the program terminates
infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

A computation model for procedural programs

Control flow:
sequential program (no multithreading)
procedures
mutual procedure calls (possibly recursive)
Data:
global variables (restriction: only finite memory)
local variables in each procedure (one copy per call)

Pushdown systems

A pushdown system (PDS) is a triple (P, Γ, Δ), where
P is a finite set of control states;
Γ is a finite stack alphabet;
Δ is a finite set of rules.

Rules have the form $p A \hookrightarrow q w$, where $p, q \in P, A \in \Gamma, w \in \Gamma^{*}$.

Like acceptors for context-free language, but without any input!

Behaviour of a PDS

Let $\mathcal{P}=(P, \Gamma, \Delta)$ be a PDS and $c_{0} \in P \times \Gamma^{*}$.

With \mathcal{P} we associate a transition system $\mathcal{T}_{\mathcal{P}}=(S, \rightarrow, r)$ as follows:
$S=P \times \Gamma^{*}$ are the states (which we call configurations);
we have $p A w^{\prime} \rightarrow q w w^{\prime}$ for all $w^{\prime} \in \Gamma^{*}$ iff $p A \hookrightarrow q w \in \Delta$;
$r=c_{0}$ is the initial configuration.

Transition system of a PDS

$$
\begin{aligned}
& p A \hookrightarrow q B \\
& p A \hookrightarrow p C \\
& q B \hookrightarrow p D \\
& p C \hookrightarrow p A D \\
& p D \hookrightarrow p \varepsilon
\end{aligned}
$$

Procedural programs and PDSs

P may represent the valuations of global variables.
「 may contain tuples of the form (program counter, local valuations)
Interpretation of a configuration $p A w$:
global values in p, current procedure with local variables in A
"suspended" procedures in w
Rules:
$p A \hookrightarrow q B \widehat{=}$ statement within a procedure
$p A \hookrightarrow q B C \cong$ procedure call
$p A \hookrightarrow q \varepsilon \widehat{=}$ return from a procedure

Reachability in PDS

Let \mathcal{P} be a PDS and c, c^{\prime} two of its configurations.

Problem: Does $c \rightarrow^{*} c^{\prime}$ hold in $\mathcal{T}_{\mathcal{P}}$?

Note: $\mathcal{T}_{\mathcal{P}}$ has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

Finite automata for configurations

To represent (infinite) sets of configurations, we shall employ finite automata.
Let $\mathcal{P}=(P, \Gamma, \Delta)$ be a PDS. We call $\mathcal{A}=(Q,\ulcorner, P, T, F)$ a \mathcal{P}-automaton.
The alphabet of \mathcal{A} is the stack alphabet Γ.
The initial states of \mathcal{A} are the control states P.

We say that \mathcal{A} accepts the configuration $p w$ if \mathcal{A} has got a path labelled by input w starting at p and ending at some final state.

Remark: In the following, we shall use the following notation:

$$
\left.p w \Rightarrow p^{\prime} w^{\prime} \text { (in the PDS } \mathcal{P}\right) \quad \text { and } \quad p \xrightarrow{w} q(\text { in } \mathcal{P} \text {-automata) }
$$

Reachability in PDS

An automaton is normalized if there are no transitions leading into initial states. (And any automaton can be brought into a normalized form.)

Let $p r e^{*}(C)=\left\{c^{\prime} \mid \exists c \in C: c^{\prime} \Rightarrow c\right\}$ denote the predecessors of C.

The following result is due to Büchi (1964):

Let C be a regular set and \mathcal{A} be a normalized \mathcal{P}-automaton accepting C.

If C is regular, then so is $p r e^{*}(C)$.

Moreover, \mathcal{A} can be transformed into an automaton accepting pre* (C).

The basic idea (for pre)

Saturation rule: Add new transitions to \mathcal{A} as follows:
If $q \xrightarrow{w} r$ currently holds in \mathcal{A} and $p A \hookrightarrow q w$ is a rule, then add the transition (p, A, r) to \mathcal{A}.

Repeat this until no other transition can be added.

At the end, the resulting automaton accepts $\operatorname{pre} e^{*}(C)$.

Complexity: $\mathcal{O}\left(|Q|^{2} \cdot|\Delta|\right)$ time.

Automaton \mathcal{A} for C

Extending \mathcal{A}

Extending \mathcal{A}

If the right-hand side of a rule can be read,

Rule: $p A \hookrightarrow q B \quad$ Path: $q \xrightarrow{B} s_{1}$

Extending \mathcal{A}

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $p A \hookrightarrow q B$ Path: $q \xrightarrow{B} s_{1} \quad$ New path: $p \xrightarrow{A} s_{1}$

Extending \mathcal{A}

If the right-hand side of a rule can be read,

Rule: $p C \hookrightarrow p A D \quad$ Path: $p \xrightarrow{A} s_{1} \xrightarrow{D} s_{2}$

Extending \mathcal{A}

If the right-hand side of a rule can be read, add the left-hand side.

Rule: $p C \hookrightarrow p A D$
Path: $p \xrightarrow{A} s_{1} \xrightarrow{D} s_{2}$
New path: $p \xrightarrow{C} s_{2}$

Final result

Proof of correctness

We shall show:
Let \mathcal{B} be the \mathcal{P}-automaton arising from \mathcal{A} by applying the saturation rule. Then $\mathcal{L}(\mathcal{B})=\operatorname{pre}^{*}(\boldsymbol{C})$.

Part 1: Termination

The saturation rule can only be applied finitely many times because no states are added and there are only finitely many possible transitions.

Part 2: $\operatorname{pre}^{*}(C) \subseteq \mathcal{L}(\mathcal{B})$

Let $c \in \operatorname{pre} e^{*}(C)$ and $c^{\prime} \in C$ such that c^{\prime} is reachable from c in k steps. We proceed by induction on k (simple).

Part 3: $\mathcal{L}(\mathcal{B}) \subseteq p r e^{*}(C)$
Let $\underset{i}{ }$ denote the transition relation of the automaton after the saturation rule has been applied i times.

We show the following, more general property: If $p \xrightarrow[i]{w} q$, then there exist $p^{\prime} w^{\prime}$ with $p^{\prime} \xrightarrow[0]{\stackrel{w^{\prime}}{\rightarrow}} q$ and $p w \Rightarrow p^{\prime} w^{\prime}$; if $q \in P$, then additionally $w^{\prime}=\varepsilon$.

Proof by induction over i : The base case $i=0$ is trivial.
Induction step: Let $t=\left(p_{1}, A, q^{\prime}\right)$ be the transition added in the i-th application and k the number of times t occurs in the path $p \xrightarrow[i]{w} q$.

Induction over k : Trivial for $k=0$. So let $k>0$.

There exist $p_{2}, p^{\prime}, u, v, w^{\prime}, w_{2}$ with the following properties:
(1) $p \underset{i-1}{u} p_{1} \xrightarrow[i]{A} q^{\prime} \xrightarrow[i]{v} q \quad$ (splitting the path $p \xrightarrow[i]{w} q$)
(2) $p_{1} A \hookrightarrow p_{2} w_{2} \quad$ (pre-condition for saturation rule)
(3) $p_{2} \xrightarrow[i-1]{\stackrel{w_{2}}{2}} q^{\prime} \quad$ (pre-condition for saturation rule)
(4) $p u \Rightarrow p_{1} \varepsilon \quad$ (ind.hyp. on i)
(5) $p_{2} w_{2} v \Rightarrow p^{\prime} w^{\prime} \quad$ (ind.hyp. on k)
(6) $p^{\prime} \xrightarrow[0]{w^{\prime}} q$
(ind.hyp. on k)
The desired proof follows from (1), (4), (2), and (5).
If $q \in P$, then the second part follows from (6) and the fact that \mathcal{A} is normalized.

LTL and Pushdown Systems

Let $\mathcal{P}=(P, \Gamma, \Delta)$ be a PDS with initial configuration c_{0}, let $\mathcal{T}_{\mathcal{P}}$ denote the corresponding transition system, $A P$ a set of atomic propositions, and $\nu: P \times \Gamma^{*} \rightarrow 2^{A P}$ a valuation function.
$\mathcal{T}_{\mathcal{P}}, A P$, and ν form a Kripke structure \mathcal{K}; let ϕ be an LTL formula (over $A P$).

Problem: Does $\mathcal{K} \models \phi$?

Undecidable for arbitrary valuation functions! (could encode undecidable decision problems in $\nu \ldots$)

However, LTL model checking is decidable for certain restrictions of ν.

In the following, we consider "simple" valuation functions satisfying the following restriction:

$$
\nu(p A w)=\nu(p A), \text { for all } p \in P, A \in \Gamma, \text { and } w \in \Gamma^{*}
$$

In other words, the "head" of a configuration holds all information about atomic propositions.

LTL model checking is decidable for such "simple" valuations.

Approach

Same principle as for finite Kripke structures:

Translate $\neg \phi$ into a Büchi automaton \mathcal{B}.

Build the cross product of \mathcal{K} and \mathcal{B}.

Test the cross product for emptiness.

Note that the cross product is not a Büchi automaton in this case, but another pushdown system (with a Büchi-style acceptance condition).

Büchi PDS

The cross product is a new pushdown system \mathcal{Q}, as follows:
Let $\mathcal{P}=(P, \Gamma, \Delta)$ be a PDS, $p_{0} w_{0}$ the initial configuration, and $A P, \nu$ as usual.

Let $\mathcal{B}=\left(Q, 2^{A P}, q_{0}, T, F\right)$ be the Büchi automaton for $\neg \phi$.
Construction of \mathcal{Q} :
$\mathcal{Q}=\left(P \times Q, \Gamma, \Delta^{\prime}\right)$, where
$(p, q) A \hookrightarrow\left(p^{\prime}, q^{\prime}\right) w \in \Delta^{\prime}$ iff
$-p A \hookrightarrow p^{\prime} w \in \Delta$ and
$-\left(q, L, q^{\prime}\right) \in T$ such that $\nu(p A)=L$.

Initial configuration: $\left(p_{0}, q_{0}\right) w_{0}$

Let ρ be a run of \mathcal{Q} with $\rho(i)=\left(p_{i}, q_{i}\right) w_{i}$.

We call ρ accepting if $q_{i} \in F$ for infinitely many values of i.

The following is easy to see:
\mathcal{P} does not satisfy ϕ iff there exists an accepting run in \mathcal{Q}.

Characterization of accepting runs

Question: If there an accepting run starting at $\left(p_{0}, q_{0}\right) w_{0}$?
In the following, we shall consider the following, more general global model-checking problem:

Compute all configurations c such that there exists an accepting run starting at c.

Lemma: There is an accepting run starting at c iff there exists $(p, q) \in P \times Q$, $A \in \Gamma$ with the following properties:
(1) $c \Rightarrow(p, q) A w$ for some $w \in \Gamma^{*}$
(2) $(p, q) A \Rightarrow(p, q) A w^{\prime}$ for some $w^{\prime} \in \Gamma^{*}$, where
the path from $(p, q) A$ to $(p, q) A w^{\prime}$ contains at least one step;
the path contains at least one accepting Büchi state.

Repeating heads

We call (p, q) A a repeating head if (p, q) A satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads $(p, q) A$.
E.g., check for each head if $(p, q) A \in \operatorname{pre}^{*}\left(\left\{(p, q) A w \mid w \in \Gamma^{*}\right\}\right)$. (Additionally, one needs to check whether an accepting state is visited along the way, which can be encoded into the control state.)
2. Compute the set $p r e^{*}\left(\left\{(p, q) A w \mid(p, q) A\right.\right.$ is a repeating head, $\left.\left.w \in \Gamma^{*}\right\}\right)$

Remarks

Other temporal logics for PDS are also decidable (sketch):

CTL: Translate formula into an alternating automaton, adapt pre* algorithm to alternating automata, then apply a technique similar to LTL.

CTL*: Adapt the technique from finite-state systems: Find an E-free subformula ϕ, compute the (regular) set configurations C satisfying $E \phi$. Then encode the states of the automaton for C into the stack, replace $E \phi$ by a fresh atomic proposition p that is true whenever the modified stack tells us that we are in a configuration satisfying $E \phi$.

