
59/131

Weaknesses of linear behaviors
Example:

ϕ: Whenever p holds, it is possible to reach a state where q holds.

ϕ cannot be checked on linear behaviors.

We need to consider the computation-trees.

Consider the two models:

M1: 1

p, q

2

p
3

q

4

and M2: 1

p, q
2

p

2’

p

3

q

4

M1 |= ϕ but M2 6|= ϕ

M1 and M2 have the same linear behaviors.

Remark: FO definable on the computation tree

∀x (p(x)→ ∃y (x < y ∧ q(y)))

60/131

Weaknesses of FO specifications

Example:

ψ: The system has an infinite active run, along which it may always reach an inactive
state.

ψ cannot be expressed in FO.

1

Active

2 3

Active

We need quantifications on runs: ψ = EG(Active ∧ EF¬Active)

I E: for some infinite run

I A: for all infinite runs

61/131

MSO Specifications

Definition: Syntax of MSO(AP, <)

ϕ ::= ⊥ | p(x) | x = y | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where p ∈ AP, x, y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(AP, <)

Let w = (T, <, λ) be a temporal structure over AP.
An assignment ν maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

w, ν |= x ∈ X if ν(x) ∈ ν(X)

w, ν |= ∃X ϕ if w, ν[X 7→ T] |= ϕ for some T ⊆ T

where ν[X 7→ T] maps X to T and keeps unchanged the other assignments.

63/131

MSO vs Temporal

MSO logic
I MSO(<) has a good expressive power

. . . but MSO(<)-formulae are not easy to write and to understand.

I MSO(<) is decidable on computation trees
. . . but satisfiability and model checking are non elementary.

We need a temporal logic
I with no explicit variables,

I allowing quantifications over runs,

I usual specifications should be easy to write and read,

I with good complexity for satisfiability and model checking problems,

I with good expressive power.

Computation Tree Logic CTL∗ introduced by Emerson & Halpern (1986).

65/131

CTL∗ (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL∗(AP, SU)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | ϕ SU ϕ | Eϕ | Aϕ

We may also add the past modality SS. Two implicit free variables.

Definition: Semantics of CTL∗(AP, SU)

Let M = (S, T, I,AP, `) be a Kripke structure (encodes the computation tree T).
Let σ = s0s1s2 · · · be an infinte run of M (infinite branch of T).
i ∈ N (current position in the run σ).

M,σ, i |= p if p ∈ `(si)
M,σ, i |= ϕ SU ψ if ∃k > i, M, σ, k |= ψ and ∀i < j < k, M, σ, j |= ϕ

M,σ, i |= Eϕ if M,σ′, i |= ϕ for some infinite run σ′ such that σ′[i] = σ[i]

M,σ, i |= Aϕ if M,σ′, i |= ϕ for all infinite runs σ′ such that σ′[i] = σ[i]

where σ[i] = s0 · · · si.

Remark:
I σ′[i] = σ[i] means that future is branching but past is not.

66/131

CTL∗ (Emerson & Halpern 86)

Example: Some specifications
I EFϕ: ϕ is possible FO-definable on CT

I AGϕ: ϕ is an invariant FO-definable on CT

I AFϕ: ϕ is unavoidable not FO-definable on CT

I EGϕ: ϕ holds globally along some path not FO-definable on CT

Remark: Some equivalences
I Aϕ ≡ ¬E¬ϕ
I E(ϕ ∨ ψ) ≡ Eϕ ∨ Eψ

I A(ϕ ∧ ψ) ≡ Aϕ ∧ Aψ

Theorem: CTL∗ ⊆ MSO

For each ϕ ∈ CTL∗(AP,SU) we can construct an equivalent formula with two free
variables ϕ̃(X,x) ∈ MSO(AP, <).
For all computation tree T , infinite branch B of T and position i in B, we have

T,B, i |= ϕ iff T,X 7→ B, x 7→ i |= ϕ̃.

67/131

Model checking of CTL∗

Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL∗ a formula.

M |=∃ ϕ if M,σ, 0 |= ϕ for some initial infinite run σ of M .
M |=∀ ϕ if M,σ, 0 |= ϕ for all initial infinite runs σ of M .

Remark: M |=∀ ϕ iff M 6|=∃ ¬ϕ

Remark: Often, formulas start with E or A and if M has a single initial state, we do
not need to distinguish between |=∃ and |=∀.

Definition: Model checking problems MC∀CTL∗ and MC∃CTL∗

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL∗

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

Theorem:

The model checking problem for CTL∗ is PSPACE-complete. Proof later

69/131

State formulae and path formulae
Definition: State formulae

ϕ ∈ CTL∗ is a state formula if ∀M,σ, σ′, i, j such that σ(i) = σ′(j) we have

M,σ, i |= ϕ ⇐⇒ M,σ′, j |= ϕ

If ϕ is a state formula and M = (S, T, I,AP, `), define

M, s |= ϕ if M,σ, 0 |= ϕ for some infinite run σ of M with σ(0) = s

and [[ϕ]]M = {s ∈ S |M, s |= ϕ}

Example: State formulae

Atomic propositions are state formulae: [[p]] = {s ∈ S | p ∈ `(s)}
State formulae are closed under boolean connectives.

[[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

Formulae of the form Eϕ or Aϕ are state formulae, provided ϕ is future.

Remark: M |=∃ ϕ iff I ∩ [[Eϕ]] 6= ∅ M |=∀ ϕ iff I ⊆ [[Aϕ]]

Definition: Alternative syntax

State formulae ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ
Path formulae ψ ::= ϕ | ¬ψ | ψ ∨ ψ | ψ SU ψ

70/131

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic CTL(AP,X,U)

Syntax:

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

The semantics is inherited from CTL∗.

Remark: Eϕ U ψ is not FO-definable on the computation tree.

Remark: All CTL formulae are state formulae

[[ϕ]]M = {s ∈ S |M, s |= ϕ}

Examples: Macros
I EFϕ = E> U ϕ and AGϕ = ¬EF¬ϕ
I AFϕ = A> U ϕ and EGϕ = ¬AF¬ϕ
I AG(req→ EF grant)

I AG(req→ AF grant)

71/131

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, `) be a Kripke structure without deadlocks and let s ∈ S.

M, s |= p if p ∈ `(s)
M, s |= EXϕ if ∃s→ s′ with M, s′ |= ϕ

M, s |= AXϕ if ∀s→ s′ we have M, s′ |= ϕ

M, s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sk finite path, with
M, sk |= ψ and M, sj |= ϕ for all 0 ≤ j < k

M, s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · infinite paths, ∃k ≥ 0 with
M, sk |= ψ and M, sj |= ϕ for all 0 ≤ j < k

Theorem: CTL ⊆ MSO

For each ϕ ∈ CTL(AP,X,U) we can construct an equivalent formula with one free
variable ϕ̃(x) ∈ MSO(AP, <).
NB. Here models are computation trees.

72/131

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] =

{1, 2, 3, 5, 6}

[[AX p]] =

{3, 6}

[[EF p]] =

{1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] =

{2, 3, 5, 6, 7}

[[E q U r]] =

{1, 2, 3, 4, 5, 6}

[[A q U r]] =

{2, 3, 4, 5, 6}

73/131

CTL (Clarke & Emerson 81)
Remark: Equivalent formulae

I AXϕ ≡ ¬EX¬ϕ, assuming no deadlocks

I ¬(ϕ U ψ) ≡ G¬ψ ∨ (¬ψ U (¬ϕ ∧ ¬ψ)) discrete time

I Aϕ U ψ ≡ ¬EG¬ψ ∧ ¬E(¬ψ U (¬ϕ ∧ ¬ψ))

I AG(req→ F grant) ≡ AG(req→ AF grant)

I A G Fϕ ≡ AG AFϕ

infinitely often

I E F Gϕ ≡ EF EGϕ

ultimately

I EG AFϕ =⇒ E G Fϕ =⇒ EG EFϕ
but M1 |= E G Fϕ, M1 6|= EG AFϕ and M2 |= EG EFϕ, M2 6|= E G Fϕ.

I EG AFϕ 6≡ E G Fϕ 6≡ EG EFϕ

I AF EGϕ 6≡ A F Gϕ 6≡ AF AGϕ

I EG EXϕ 6≡ E G Xϕ 6≡ EG AXϕ

M2 1 2 3

M1 1 2

¬ϕ ϕ ¬ϕ

¬ϕ ϕ

74/131

Model checking of CTL
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL a formula.

M |=∃ ϕ if M, s |= ϕ for some s ∈ I.
M |=∀ ϕ if M, s |= ϕ for all s ∈ I.

Remark:

M |=∃ ϕ iff I ∩ [[ϕ]] 6= ∅
M |=∀ ϕ iff I ⊆ [[ϕ]]

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Definition: Model checking problems MC∀CTL and MC∃CTL

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ϕ ∈ CTL

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

Theorem:

Let M = (S, T, I,AP, `) be a Kripke structure and ϕ ∈ CTL a formula.
The model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|)

75/131

References
[1] Christel Baier and Joost-Pieter Katoen.

Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

[6] Ph. Schnoebelen.
The Complexity of Temporal Logic Model Checking.
In AiML’02, 393–436. King’s College Publication, 2003.

76/131

References

[7] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[8] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[9] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[10] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[11] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

