Weaknesses of linear behaviors

Example:
: Whenever p holds, it is possible to reach a state where ¢ holds.

@ cannot be checked on linear behaviors.

We need to consider the computation-trees.

Remark: FO definable on the computation tree

vz (p(z) — Jy (z <y Aqy)))

Weaknesses of FO specifications

Example:

1. The system has an infinite active run, along which it may always reach an inactive
state.

1) cannot be expressed in FO.

We need quantifications on runs: ¢ = EG(Active A EF ~Active)

E: for some infinite run

A: for all infinite runs

MSO Specifications

Definition: Syntax of MSO(AP, <)

pu=L]p@)|z=ylz<ylzcX|-p|leVe|Izp|IX¢p

where p € AP, z,y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(AP, <)

Let w = (T, <, \) be a temporal structure over AP.
An assignment v maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

wwvkErzeX if v)evX)
w,vEIXp if wv[X—=T]EpforsomeT CT

where v[X — T] maps X to T and keeps unchanged the other assignments.

MSO vs Temporal

MSO logic

MSO(<) has a good expressive power
... but MSO(<)-formulae are not easy to write and to understand.

MSO(<) is decidable on computation trees
... but satisfiability and model checking are non elementary.

We need a temporal logic
with no explicit variables,
allowing quantifications over runs,
usual specifications should be easy to write and read,
with good complexity for satisfiability and model checking problems,
with good expressive power.
Computation Tree Logic CTL" introduced by Emerson & Halpern (1986).

CTL* (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL*(AP, SU)

pu=L|p(peAP)|-ploVe|eSUp|Ep|Ap
We may also add the past modality SS. Two implicit free variables.

Definition: Semantics of CTL*(AP, SU)

Let M = (S,T,1,AP,?) be a Kripke structure (encodes the computation tree T').
Let 0 = sps182 -+ be an infinte run of M (infinite branch of T').
i € N (current position in the run o).

M,o,i=p if pel(s;)

M,o,ilE@SUY if 3k >1i, M,o,kEvYandVi<j<k, M,o,j=¢
M,o,i = Ep if M,o’,i}= ¢ for some infinite run ¢’ such that o'[i] = o]i]
M,o,i E Ap if M,o’ i = ¢ for all infinite runs ¢’ such that o'[i] = o]

where o[i] = sg - - - s;.

Remark:

o'[i] = o[i] means that future is branching but past is not.

CTL* (Emerson & Halpern 86)

Example: Some specifications

EF : ¢ is possible FO-definable on CT
AG p: ¢ is an invariant FO-definable on CT
AF : ¢ is unavoidable not FO-definable on CT
EG ¢: ¢ holds globally along some path not FO-definable on CT

Remark: Some equivalences
Ap=-E-p
E(pvy) =EpVEY
Al ANP)=Ap ANAY

Theorem: CTL* C MSO

For each ¢ € CTL*(AP, SU) we can construct an equivalent formula with two free

variables (X, z) € MSO(AP, <).

For all computation tree T, infinite branch B of T" and position i in B, we have
T,BiEoiff)X — Bx—iE@.

Model checking of CTL"

Definition: Existential and universal model checking
Let M = (S,T,I,AP,?) be a Kripke structure and ¢ € CTL" a formula.

M E3¢ if M,0,0 |= ¢ for some initial infinite run o of M.
M Ey ¢ if M,0,0 = @ for all initial infinite runs o of M.

Remark: M =y ¢ iff M -5 —p

Remark: Often, formulas start with E or A and if M has a single initial state, we do
not need to distinguish between =3 and |=y.

Definition: Model checking problems MCy« and MCZp -
Input: A Kripke structure M = (S, T, I, AP,¢) and a formula ¢ € CTL"

Question: Does M |y ¢ ? or Does M =3¢ ?

Theorem:
The model checking problem for CTL* is PSPACE-complete. Proof later

State formulae and path formulae
Definition: State formulae
» € CTL" is a state formula if VM, o, 0,1, 7 such that o(i) = o’(j) we have
M,o,ilEp < M,o',jE¢
If ¢ is a state formula and M = (S,T, I, AP, ¥), define
M,s =@ if M,0,0=¢ for some infinite run o of M with ¢(0) = s
and [l = {s € S | M,s |= 0}

Example: State formulae

Atomic propositions are state formulae: [pl ={se S|pels)}
State formulae are closed under boolean connectives.

[=¢l = S\ [+l [o1V 2] =[] U [2]
Formulae of the form E ¢ or A ¢ are state formulae, provided ¢ is future.

Remark: ME3piff IN[E@] #0 M vy piff I C[Ag]

Definition: Alternative syntax

State formulae @ =1L |p (p € AP) |~ |V |EL|AY
Path formulae Y= ||V |pSUY

CTL (Clarke & Emerson 81)
Definition: Computation Tree Logic CTL(AP, X, U)

Syntax:
pu=L|p(PEAP)|~p|oVe|EXp|AXp[EpUp|ApUyp

The semantics is inherited from CTL*.

Remark: E @ U is not FO-definable on the computation tree.

Remark: All CTL formulae are state formulae

[e]” ={s €S| M,s ¢}

Examples: Macros
EFp=ETUy¢ and AGp=-EF-p
AFp=ATUp and EGp=-AF-p
AG(req — EF grant)
AG(req — AF grant)

CTL (Clarke & Emerson 81)

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S,T,1,AP,?) be a Kripke structure without deadlocks and let s € S.

M,sEp if
M,s EEXp if
M,sk=AXe if
M,sEEpUy if

M,sEApUy if

p € {(s)
ds — s with M, s" = ¢
Vs — s’ we have M,s' = ¢
ds = 59 — 1 — 89 — - - - 8, finite path, with
M,sp Evand M,s; =pforall 0 <j<k
Vs =89 — §1 — Sg — --- infinite paths, Ik > 0 with
M,spEvYand M,s; =pforall 0 <j<k

Theorem: CTL C MSO

For each ¢ € CTL(AP, X, U) we can construct an equivalent formula with one free

variable ¢(z) € MSO(AP, <).
NB. Here models are computation trees.

CTL (Clarke & Emerson 81)

Example:

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
AXp = EX g, assuming no deadlocks
(pUy) =GV (-9 U (mp A1) discrete time
ApUtp=-EGp A—E(=yp U (mp A 1))
AG(req — F grant) = AG(req — AF grant)
AGFp=AGAFyp
EFGy =EFEGyp

EGAFp — EGF¢ = EGEFy
but M, =EEGF ¢y, My = EGAF ¢ and My = EGEF ¢, My = EGF .

EGAFp ZEGF o # EGEF ¢
AFEGy £ AF Gy % AFAGp
EGEXy % EGX ¢ % EGAX ¢

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S,T,1,AP,?) be a Kripke structure and ¢ € CTL a formula.
MEsp if M,s = ¢ for some s € I.

MEye ifM,skEgforall sel.

Remark:
MEse ifft IN[e]#0
My iff 1C[p]
MEyye iff M3 -p

Definition: Model checking problems MCYp; and MCZ;

Input: A Kripke structure M = (S,T,I,AP,¢) and a formula ¢ € CTL
Question: Does M |y ¢ ? or Does M 3¢ ?
Theorem:

Let M = (S,T,1,AP,?) be a Kripke structure and ¢ € CTL a formula.
The model checking problem M =5 ¢ is decidable in time O(|M| - |¢|)

References

[1] Christel Baier and Joost-Pieter Katoen.

[2

—

[3]

[4]

[5]

[o]

Principles of Model Checking.

MIT Press, 2008.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.

Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

E.M. Clarke, O. Grumberg, D.A. Peled.

Model Checking.

MIT Press, 1999.

Z. Manna and A. Pnueli.

The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

Z. Manna and A. Pnueli.

Temporal Verification of Reactive Systems: Safety.

Springer, 1995.

Ph. Schnoebelen.

The Complexity of Temporal Logic Model Checking.

In AiIML’02, 393-436. King's College Publication, 2003.

References

[7] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, 11ISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php
[8] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.
[9] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163-173. ACM Press.
[10] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL'85, 97-107.
[11] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

