Outline

Introduction

Models

e Temporal Specifications
@ General Definitions
@ (Linear) Temporal Specifications
@ Branching Temporal Specifications
o CTL*
o CTL

Satisfiability and Model Checking

More on Temporal Specifications




Static and dynamic properties

Example: Static properties

Mutual exclusion
Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

The elevator should not cross a level for which a call is pending without stopping.



Temporal Structures
Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
({0,...,n}, <): Finite runs of sequential systems.
(N, <): Infinite runs of sequential systems.
(R, <): runs of real-time sequential systems.
Trees: Finite or infinite run-trees of sequential systems.
Mazurkiewicz traces: runs of distributed systems (rendez-vous).
Message sequence charts: runs of distributed systems (FIFO).
and also (Z, <) or (Q, <) or (w?,<), ...

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions) and let C be a class of time flows.
A temporal structure over (C, AP) is a triple (T, <, \) where (T, <) is a time flow
in C and \: T — 2AF labels time points with atomic propositions.

The temporal structure (T, <,\) is also denoted (T, <,h) where h : AP — 2T
assigns time points to atomic propositions: h(p) = {t € T | p € A(t)} for p € AP.



Linear behaviors and specifications

Let M = (S,T,1,AP,¢) be a Kripke structure (we omit actions: T'C S x S).

Definition: Runs as temporal structures

An infinite run o = s9$182 - -+ of M with (s;,$;41) € T for all i > 0 defines a linear
temporal structure £(c) = (N, <, \) where \(i) = £(s;) for i € N.
Such a temporal structure can be seen as an infinite word over ¥ = 2AF:
K(O') = E(é())é(él)€<52) e eV

Linear specifications only depend on runs.
Example: The printer manager is starvation free.
On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.



Branching behaviors and specifications

The system has an infinite active
run, along which it may always
reach an inactive state.

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S,T,I,AP,?) be a Kripke structure. Wlog. I = {so} is a singleton.
Let D be a finite set with |D| the outdegree of the transition relation 7.
The computation-tree of M is an unordered tree t : D* — S (partial map) s.t.

t(e’:‘) = S0,
For every node u € dom(¢) labelled s = ¢(u), if T'(s) = {s1,..., Sk} then u
has exactly k children which are labelled sq,...,sg

Associated temporal structure ¢(¢) = (dom(t), <, \) where
< is the strict prefix relation over D*,

and \(u) = £(t(u)) for u € dom(t).

(Linear) runs of M are branches of the computation-tree t.



First-order Specifications
Definition: Syntax of FO(AP, <)
Let Var = {x,y, ...} be first-order variables.
pu=L|p@)|z=ylz<y|-eleVe|dre

where p € AP.

Definition: Semantics of FO(AP, <)

Let w = (T, <, \) be a temporal structure over AP.
Let v : Var — T be an assignment of first-order variables to time points.

w,v = p(x) it peiv(z))

wviEzr=y if v()=vy)
wvEr<y if () v(y)
w,viEJre if ,v[x — t] = ¢ for some t € T

where v[z +— t] maps x to t and y # x to v(y).

Previous specifications can be written in FO(<) (except the branching one).



First-order vs Temporal

First-order logic

FO(<) has a good expressive power
... but FO(<)-formulae are not easy to write and to understand.

FO(<) is decidable
... but satisfiability and model checking are non elementary.

Temporal logics
no variables: time is implicit.
quantifications and variables are replaced by modalities.
Usual specifications are easy to write and read.
Good complexity for satisfiability and model checking problems.

Good expressive power.

Linear Temporal Logic (LTL) over (N, <, AP) introduced by Pnueli (1977) as a
convenient specification language for verification of systems.



Temporal Specifications
Definition: Syntax of TL(AP,SU,SS)
pu=L|p(peAP)[-p|oVe|pSUp|pSSe

Definition: Semantics: w = (T, <, \) temporal structure and i € T

w,i = p if pe i)
w,1 = if  w,ifEp
w,i =@V if w,ikEporw,ikE

wyiiEeSUy if Fki<kandw,klE¢andVj(i<j<k—w,jE o)
wyiE eSSy if Fki>kandw,kE¢Yand Vi (i>ji>k—w,jE )

Previous specifications can be written in TL(AP, SU, SS)
(except the branching one).

Theorem: TL C FO?

For each ¢ € TL(AP,SU,SS) we can construct an equivalent formula with one free
variable $(z) € FO3(AP, <).



Temporal Specifications

Definition: non-strict versions of until and since
eUyp = pV(pAeSUY) Sy = ¢V (pApSS)

w,iEeUy if Fki<kandw,kEvandVj(i<j<k—w,jE=oe)
w,iE=eSy if Jki>kandw,kEvYandVj(i>j>k—w,j =)

Definition: Derived modalities
Xe € 1SUp Next Yo ¥ 1SSy Yesterday

wilkEXe if Jki<kandwkl=pand 35 (i <j<k)
wilkEYe if Jki>kandw k= pand =3 (i >j > k)

SFo ::: TSUg SPy ::: TSSep
Fo d:ef TUe Py d:ef TS
oWy = (Gy)V(pU) Weak Until

PRy £ (Gy)V (YU (pAp)) Release



Temporal Specifications

Example: Specifications on the time flow (N, <)

Safety:

MutEx:
Liveness:
Response:
Response’:
Release:

Strong fairness:
Weak fairness:
Stability:

G good

= F(crity A crity)

G F active

G(request — F grant)

G(request — (—request SU grant))
reset R alarm

(GFrequest) — (G F grant)

(F Grequest) — (GF grant)
G-pV (-pUGp)



Discrete linear time flows
Definition: discrete linear time flows (T, <)
A linear time flow is discrete if SFT — X T and SPT — Y T are valid formulae.

(N, <) and (Z, <) are discrete.
(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

eSUy = X(pUy) Xp = = XTVX-gp
eSSy = Y(pS) Yo = =aYTVY-p
~(eUy) = (G)V(pU(-pA—p))

= YW (-pAy)

= -@9R-Y

Remark: Dense time flow T=Q or T =R
—(¢ U ) does not imply = R —).
For instance, w = (T,<,f) with T = {0} U {2 | n € N} with £(0) = {p},

n

|
Z(%) = {p} and K(inﬂ) = {q}. Then, w,0 = —(pUgq) and w,0 j£ =p R —q.




Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T,1,AP,¢)
A formula ¢ € LTL(AP, SU, SS)

Question: Does M | ¢ ?

Universal MC: M v ¢ if £(0),0 = ¢ for all initial infinite runs o of M.
Existential MC: M 5 ¢ if £(0),0 = ¢ for some initial infinite run o of M.

M ':v %) iff M l;ég %

Theorem [11, Sistla, Clarke 85], [10, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete. Proof later



