
43/131

Outline

Introduction

Models

3 Temporal Specifications

General Definitions

(Linear) Temporal Specifications

Branching Temporal Specifications

CTL∗

CTL

Satisfiability and Model Checking

More on Temporal Specifications

45/131

Static and dynamic properties

Example: Static properties

Mutual exclusion

¬(Crit1 ∧ Crit2) or ∀t,¬(Crit1(t) ∧ Crit2(t))

Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

∧

i

∀t, (Calli(t) −→ ∃t′ ≥ t, (atLeveli(t
′) ∧ openDoori(t

′)))

The elevator should not cross a level for which a call is pending without stopping.

∧

i

∀t∀t′, (Calli(t) ∧ t ≤ t′ ∧ atLeveli(t
′)) −→

∃t ≤ t′′ ≤ t′, (atLeveli(t
′′) ∧ openDoori(t

′′)))

46/131

Temporal Structures
Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
I ({0, . . . , n}, <): Finite runs of sequential systems.

I (N, <): Infinite runs of sequential systems.

I (R, <): runs of real-time sequential systems.

I Trees: Finite or infinite run-trees of sequential systems.

I Mazurkiewicz traces: runs of distributed systems (rendez-vous).

I Message sequence charts: runs of distributed systems (FIFO).

I and also (Z, <) or (Q, <) or (ω2, <), . . .

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions) and let C be a class of time flows.
A temporal structure over (C,AP) is a triple (T, <, λ) where (T, <) is a time flow
in C and λ : T→ 2AP labels time points with atomic propositions.
The temporal structure (T, <, λ) is also denoted (T, <, h) where h : AP → 2T

assigns time points to atomic propositions: h(p) = {t ∈ T | p ∈ λ(t)} for p ∈ AP.

47/131

Linear behaviors and specifications

Let M = (S, T, I,AP, `) be a Kripke structure (we omit actions: T ⊆ S × S).

Definition: Runs as temporal structures

An infinite run σ = s0s1s2 · · · of M with (si, si+1) ∈ T for all i ≥ 0 defines a linear
temporal structure `(σ) = (N, <, λ) where λ(i) = `(si) for i ∈ N.

Such a temporal structure can be seen as an infinite word over Σ = 2AP:
`(σ) = `(s0)`(s1)`(s2) · · · ∈ Σω

Linear specifications only depend on runs.

Example: The printer manager is starvation free.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:
Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

48/131

Branching behaviors and specifications

The system has an infinite active
run, along which it may always
reach an inactive state.

1

Active

2 3

Active

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S, T, I,AP, `) be a Kripke structure. Wlog. I = {s0} is a singleton.

Let D be a finite set with |D| the outdegree of the transition relation T .

The computation-tree of M is an unordered tree t : D∗ → S (partial map) s.t.

I t(ε) = s0,

I For every node u ∈ dom(t) labelled s = t(u), if T (s) = {s1, . . . , sk} then u
has exactly k children which are labelled s1,. . . ,sk

Associated temporal structure `(t) = (dom(t), <, λ) where

I < is the strict prefix relation over D∗,
I and λ(u) = `(t(u)) for u ∈ dom(t).

(Linear) runs of M are branches of the computation-tree t.

49/131

First-order Specifications
Definition: Syntax of FO(AP, <)

Let Var = {x, y, . . .} be first-order variables.

ϕ ::= ⊥ | p(x) | x = y | x < y | ¬ϕ | ϕ ∨ ϕ | ∃xϕ

where p ∈ AP.

Definition: Semantics of FO(AP, <)

Let w = (T, <, λ) be a temporal structure over AP.
Let ν : Var→ T be an assignment of first-order variables to time points.

w, ν |= p(x) if p ∈ λ(ν(x))

w, ν |= x = y if ν(x) = ν(y)

w, ν |= x < y if ν(x) < ν(y)

w, ν |= ∃xϕ if w, ν[x 7→ t] |= ϕ for some t ∈ T

where ν[x 7→ t] maps x to t and y 6= x to ν(y).

Previous specifications can be written in FO(<) (except the branching one).

50/131

First-order vs Temporal

First-order logic
I FO(<) has a good expressive power

. . . but FO(<)-formulae are not easy to write and to understand.

I FO(<) is decidable
. . . but satisfiability and model checking are non elementary.

Temporal logics
I no variables: time is implicit.

I quantifications and variables are replaced by modalities.

I Usual specifications are easy to write and read.

I Good complexity for satisfiability and model checking problems.

I Good expressive power.

Linear Temporal Logic (LTL) over (N, <,AP) introduced by Pnueli (1977) as a
convenient specification language for verification of systems.

52/131

Temporal Specifications
Definition: Syntax of TL(AP, SU, SS)

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | ϕ SU ϕ | ϕ SS ϕ

Definition: Semantics: w = (T, <, λ) temporal structure and i ∈ T
w, i |= p if p ∈ λ(i)

w, i |= ¬ϕ if w, i 6|= ϕ

w, i |= ϕ ∨ ψ if w, i |= ϕ or w, i |= ψ

w, i |= ϕ SU ψ if ∃k i < k and w, k |= ψ and ∀j (i < j < k → w, j |= ϕ)

w, i |= ϕ SS ψ if ∃k i > k and w, k |= ψ and ∀j (i > j > k → w, j |= ϕ)

Previous specifications can be written in TL(AP,SU,SS)
(except the branching one).

Theorem: TL ⊆ FO3

For each ϕ ∈ TL(AP,SU,SS) we can construct an equivalent formula with one free
variable ϕ̃(x) ∈ FO3(AP, <).

53/131

Temporal Specifications
Definition: non-strict versions of until and since

ϕ U ψ
def
= ψ ∨ (ϕ ∧ ϕ SU ψ) ϕ S ψ

def
= ψ ∨ (ϕ ∧ ϕ SS ψ)

w, i |= ϕ U ψ if ∃k i ≤ k and w, k |= ψ and ∀j (i ≤ j < k → w, j |= ϕ)

w, i |= ϕ S ψ if ∃k i ≥ k and w, k |= ψ and ∀j (i ≥ j > k → w, j |= ϕ)

Definition: Derived modalities

Xϕ
def
= ⊥ SU ϕ Next Yϕ

def
= ⊥ SS ϕ Yesterday

w, i |= Xϕ if ∃k i < k and w, k |= ϕ and ¬∃j (i < j < k)

w, i |= Yϕ if ∃k i > k and w, k |= ϕ and ¬∃j (i > j > k)

SFϕ
def
= > SU ϕ SPϕ

def
= > SS ϕ

Fϕ
def
= > U ϕ Pϕ

def
= > S ϕ

Gϕ
def
= ¬F¬ϕ Hϕ

def
= ¬P¬ϕ

ϕW ψ
def
= (Gϕ) ∨ (ϕ U ψ) Weak Until

ϕ R ψ
def
= (Gψ) ∨ (ψ U (ϕ ∧ ψ)) Release

55/131

Temporal Specifications

Example: Specifications on the time flow (N, <)
I Safety: G good

I MutEx: ¬F(crit1 ∧ crit2)

I Liveness: G F active

I Response: G(request→ F grant)

I Response’: G(request→ (¬request SU grant))

I Release: reset R alarm

I Strong fairness: (G F request)→ (G F grant)

I Weak fairness: (F G request)→ (G F grant)

I Stability: G¬p ∨ (¬p U G p)

56/131

Discrete linear time flows
Definition: discrete linear time flows (T, <)

A linear time flow is discrete if SF> → X> and SP> → Y> are valid formulae.

(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

ϕ SU ψ ≡ X(ϕ U ψ) ¬Xϕ ≡ ¬X> ∨ X¬ϕ
ϕ SS ψ ≡ Y(ϕ S ψ) ¬Yϕ ≡ ¬Y> ∨ Y¬ϕ

¬(ϕ U ψ) ≡ (G¬ψ) ∨ (¬ψ U (¬ϕ ∧ ¬ψ))
≡ ¬ψ W (¬ϕ ∧ ¬ψ)
≡ ¬ϕ R ¬ψ

Remark: Dense time flow T = Q or T = R
¬(ϕ U ψ) does not imply ¬ϕ R ¬ψ.

For instance, w = (T, <, `) with T = {0} ∪ { 1
n | n ∈ N} with `(0) = {p},

`(1
2n) = {p} and `(1

2n+1) = {q}. Then, w, 0 |= ¬(p U q) and w, 0 6|= ¬p R ¬q.

57/131

Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ϕ ∈ LTL(AP,SU,SS)

Question: Does M |= ϕ ?

I Universal MC: M |=∀ ϕ if `(σ), 0 |= ϕ for all initial infinite runs σ of M .

I Existential MC: M |=∃ ϕ if `(σ), 0 |= ϕ for some initial infinite run σ of M .

M |=∀ ϕ iff M 6|=∃ ¬ϕ

Theorem [11, Sistla, Clarke 85], [10, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete. Proof later

