Midterm Exam – Introduction to Verification

November 10, 2023

Time: 2h. Answers can be given in either French or English. Justify all your answers. All course materials are allowed. *Note: The text of the exercises contains a few corrections given during the exam.*

1 LTL and Büchi Automata

(a) Consider the two Büchi automata shown below. Construct a third Büchi automaton accepting the intersection of their languages, using the general Büchi cross product shown in the course.

Solution : Applying the systematic construction from the course, one obtains the following automaton (two unreachable states excluded):

(b) Find an automaton equivalent to the result of (a), with as few states as possible.

Solution : A smaller automaton (with an ad-hoc construction) is shown below. Effectively, the second automaton requires at least one b in the word to accept, while the first requires a finite number of b.

(c) Let $AP = \{p,q\}$ and $\Sigma = 2^{AP}$. Design a Büchi automaton accepting $\llbracket \phi \rrbracket$, for the LTL formula $\phi := \mathsf{G}((p \to (p \cup q)) \land (q \to (q \cup p))).$

Solution : Notice that the implications $p \to (p \cup q)$ and $q \to (q \cup p)$ must be fulfilled in every (infinite) suffix of an accepted sequence.

- Any suffix of the form $\emptyset \Sigma^{\omega}$ fulfils both implications.
- Any other suffix either contains {p,q} or not. If it does, then it must have a prefix of the form ({p} + {q})*{p,q}.
- Moreover, any infinite sequence of the form ({p}+{q})^ω fulfils φ iff both p and q appear infinitely often iff the factor {p}{q} appears infinitely often.

With this in mind, one can construct the following automaton:

2 Subclasses of LTL

Eventuality formulae are a subclass of LTL formulae of the following syntax, where ϕ stands for any LTL formula:

 $\alpha ::= \mathsf{F} \phi \mid \alpha \lor \alpha \mid \alpha \land \alpha \mid \mathsf{X} \alpha \mid \phi \mathsf{U} \alpha \mid \alpha \mathsf{R} \alpha$

Alternating formulae are another subclass defined as follows:

$$\beta ::= \mathsf{G}\,\alpha \mid \neg\beta \mid \beta \lor \beta \mid \mathsf{X}\,\beta \mid \phi \,\mathsf{U}\,\beta$$

Let $\Sigma := 2^{AP}$, for some set of atomic propositions AP.

(a) Let α be an eventuality formula, $w \in \Sigma^{\omega}$, and $0 \leq i \leq j$. Show that $w, j \models \alpha$ implies $w, i \models \alpha$.

Solution : Let α an eventuality formula and $w, j \models \alpha$. We proceed by structural induction:

- If $\alpha = \mathsf{F}\phi$, then there exists $k \ge j \ge i$ such that $w, k \models \phi$, hence $w, i \models \mathsf{F}\phi$.
- If $\alpha = X \alpha_1$, then $w, j+1 \models \alpha_1$, so by induction $w, i+1 \models \alpha_1$ (since $i+1 \le j+1$), so $w, i \models X \alpha_1$.
- If $\alpha = \phi \cup \alpha_1$, then in particular there exists $k \ge j \ge i$ such that $w, k \models \alpha_1$, hence $w, i \models \alpha_1$ and trivially $w, i \models \phi \cup \alpha_1$, too.
- For $\alpha = \alpha_1 \mathbb{R} \alpha_2$, recall that this is equivalent to $(\mathbb{G} \alpha_2) \vee (\alpha_2 \mathbb{U} (\alpha_1 \wedge \alpha_2))$. Either $w, j \models \mathbb{G} \alpha_2$, so $w, \ell \models \alpha_2$ for all $\ell \ge j$, thus by induction $w, \ell \models \alpha_2$ for all $i \le \ell < j$, too; hence $w, i \models \mathbb{G} \alpha_2$. Or $w, j \models \alpha_2 \mathbb{U} (\alpha_1 \wedge \alpha_2)$, then the statement follows directly from the induction hypothesis.
- The cases $\alpha_1 \vee \alpha_2$ and $\alpha_1 \wedge \alpha_2$ are trivial.
- (b) Let β be an alternating formula, $w \in \Sigma^{\omega}$, and $0 \le i \le j$. Show that $w, i \models \beta$ iff $w, j \models \beta$. Solution : Let β be an eventuality formula, we again proceed by structural induction:
 - Suppose $\beta = \mathsf{G} \alpha$. If $w, i \models \mathsf{G} \alpha$, then $w, j \models \mathsf{G} \alpha$ is immediate. If $w, j \models \mathsf{G} \alpha$, then we get $w, i \models \mathsf{G} \alpha$ from (a) on α .
 - Suppose $\beta = \phi \cup \beta_1$. If $w, i \models \beta$, then there exists $k \ge i$ with $w, k \models \beta_1$, so by induction $w, j \models \beta_1$ (which implies $w, j \models \phi \cup \beta_1$). The case $w, j \models \beta$ is analogous.
 - The cases $\neg\beta_1$ or $\beta_1 \lor \beta_2$ are trivial, and for $X\beta_1$ we get it by using the induction hypothesis on β_1 , i + 1, j + 1.

(c) Let β be an alternating formula and ϕ any LTL formula. Show that β , $X\beta$, $\phi U\beta$, and $\phi R\beta$ are all equivalent.

Solution : Let γ be any of the four formulae. If $w \models \gamma$, then in all four cases, there exists at least one k such that $w, k \models \beta$ so by (b) $w, i \models \beta$ for all $i \ge 0$. Then $w \models \mathsf{G}\beta$, which by definition implies $\phi \mathsf{R}\beta$. Also, from $w, 0 \models \beta$ we get $w \models \beta \land (\phi \mathsf{U}\beta)$, and from $w, 1 \models \beta$ we get $w \models \mathsf{X}\beta$.

3 CTL and CTL^*

For any $n \ge 1$, we define a CTL^{*} formula $\phi_n := A((X^n p) \lor (Fq)).$

- (a) Find a CTL formula ψ_1 equivalent to ϕ_1 . Solution : $\psi_1 = q \lor \mathsf{AX}(p \lor \mathsf{AF} q)$.
- (b) Generally for n > 1, find a CTL formula ψ_n equivalent to ϕ_n .

Solution : Every path must either contain a *p*-state after *n* steps or a *q*-state anywhere. In branches that contain a *q*-state before *n* steps, we no longer need to check for *p*. With that in mind, and with ψ_1 from (a), we set $\psi_n = q \lor \mathsf{AX} \psi_{n-1}$.

(c) Prove or refute that the CTL* formula $\phi := \mathsf{A}((\mathsf{X} p) \lor (p \mathsf{U} q))$ can be expressed in CTL.

All paths must either satisfy X p or $p \cup q$. We make a case distinction:

- (i) Either we start with a q-state, in which case $p \cup q$ holds.
- (ii) Or we start with a *p*-state. Then for $p \cup q$, the following state must in particular satisfy p or q. If p holds, the path also satisfies X p, if q holds, it satisfies $p \cup q$; in either case we are done.
- (iii) If we start in a non-p and non-q-state, then no path can satisfy $p \cup q$, and all successors must be p-states.

Each of these three cases translates into a CTL formula, we take their disjunction:

$$q \lor (p \land \mathsf{AX}(p \lor q)) \lor \mathsf{AX} p$$

(d) Prove or refute that the CTL* formula $\phi' := \mathsf{A}((p \cup q) \lor (r \cup s))$ can be expressed in CTL. **Solution :** The formula inside the A-quantifier is a pure LTL formula, call it ψ . For the following, it helps to imagine the following Büchi automaton (BA) for ψ :

(Note: Some edges use set notation where it is more compact, e. g., $\{p, r\}$ means $p \land \neg q \land r \land \neg s$. We shall use the same abbreviations in the formulae below.)

Since this BA is deterministic and complete and its only accepting state is a sink, we can exceptionally obtain its complement by swapping accepting and non-accepting states. We then wish to state that there exists no path that terminally stays in states 0, 1, 2, or 3. A CTL formula equivalent to ϕ' is then $\neg(\chi_0 \lor \chi_1 \lor \chi_2 \lor \chi_{0,3} \lor \chi_{1,3} \lor \chi_{2,3})$, where:

- $\chi_0 := \mathsf{EG}\{p, r\};$
- $\chi_1 := \{p, r\} \mathsf{EU} (\{p\} \land \mathsf{EX} \mathsf{EG}(p \land \neg q));$
- $\chi_2 := \{p, r\} \mathsf{EU} (\{r\} \land \mathsf{EX} \mathsf{EG}(r \land \neg s));$
- $\chi_{0,3} := \{p,r\} \mathsf{EU} \emptyset;$
- $\chi_{1,3} := \{p,r\} \mathsf{EU} (\{p\} \land \mathsf{EX}(\neg q \mathsf{EU} (\neg p \land \neg q));$
- $\chi_{2,3} := \{p, r\} \mathsf{EU}(\{r\} \land \mathsf{EX}(\neg s \mathsf{EU}(\neg r \land \neg s)).$

Note that by using the "weak until" modality EW, we can summarize $\chi_0 \lor \chi_1 \lor \chi_{1,3}$ by τ_1 and likewise $\chi_0 \lor \chi_2 \lor \chi_{2,3}$ by τ_2 as follows:

- $\tau_1 := \{p, r\} \mathsf{EW} (\{p\} \land \mathsf{EX}(\neg q \mathsf{EW} (\neg p \land \neg q)));$
- $\tau_2 := \{p, r\} \mathsf{EW} (\{r\} \land \mathsf{EX}(\neg s \mathsf{EW} (\neg r \land \neg s))).$

An alternative CTL formula equivalent to ϕ' would therefore be

 $\neg(\{p,r\} \mathsf{EW} (\emptyset \lor (\{p\} \land \mathsf{EX}(\neg q \mathsf{EW} (\neg p \land \neg q))) \lor (\{r\} \land \mathsf{EX}(\neg s \mathsf{EW} (\neg r \land \neg s))).$

And if one also allows the release operator ER, one can shorten the above to:

$$\neg(\{p,r\} \mathsf{EW} (\emptyset \lor (\{p\} \land \mathsf{EX}(\neg p \mathsf{ER} \neg q)) \lor (\{r\} \land \mathsf{EX}(\neg r \mathsf{ER} \neg s))).$$

4 ω -automata

An ω -automaton is a tuple $\langle \Sigma, S, s_0, \Delta, \mathcal{F} \rangle$, where Σ is a finite alphabet, S is a finite set of states, s_0 the initial state, and $\Delta \subseteq S \times \Sigma \times S$ the transitions, with the usual notions. \mathcal{F} is an *acceptance* condition, to be clarified below. For a run $\rho \in S^{\omega}$, we note $Inf(\rho) = \{s \mid \forall i \exists j \geq i : \rho(i) = s\}$ the set of states occurring infinitely often in ρ .

The following types of ω -automata were shown to be equivalent in the course and exercises:

- Büchi automata (BA) with $\mathcal{F} \subseteq S$, where a run ρ is accepted if $Inf(\rho) \cap \mathcal{F} \neq \emptyset$;
- generalized BA (GBA) with $\mathcal{F} \subseteq 2^S$, where ρ is accepted if $\forall F \in \mathcal{F} : Inf(\rho) \cap F \neq \emptyset$;

We consider the following additional types of ω -automaton:

- Parity automata (PA), where $\mathcal{F} = \langle F_0, F_1, \dots, F_k \rangle$ (for some $k \geq 1$), where F_0, \dots, F_k are a partition of S; a run ρ is accepted if the maximal n such that $Inf(\rho)$ intersects F_n is even.
- Muller automata (MA) with $\mathcal{F} \subseteq 2^S$, where ρ is accepted if $Inf(\rho) \in \mathcal{F}$.
- (a) Show that PA are equivalent to BA, i.e. for every PA one can construct a BA accepting the same language, and vice versa.

Solution : Given a BA $\langle \Sigma, S, s_0, \Delta, F \rangle$, an equivalent PA is $\langle \Sigma, S, s_0, \Delta, \langle \emptyset, S \setminus F, F \rangle \rangle$.

Let $\mathcal{P} := \langle \Sigma, S, s_0, \Delta, \mathcal{F} \rangle$ be a PA, with $\mathcal{F} = \langle F_0, \ldots, F_{2k+1} \rangle$ for some $k \geq 0$. (If the highest index in \mathcal{F} was even, we could always add an additional empty set to reach an odd number.) Suppose that in a run ρ , n is the highest index such that $Inf(\rho)$ intersects F_n . Then all sets with higher indices will stop occurring after some time. So we will build an equivalent BA \mathcal{B} that has all the states from \mathcal{P} and k + 1 additional copies of \mathcal{P} . At any point, the automaton can transition to the *j*-th copy (for any $0 \leq j \leq k$), however movement in the *j*-th copy is restricted to states up to index 2j (with states from F_{2j} being accepting. Formally, $\mathcal{B} = \langle \Sigma, Q, s_0, \Delta', F \rangle$, where:

- $Q = S \cup (S \times \{0, \dots, k\});$
- $F = \bigcup_{j=0}^{k} (F_{2j} \times \{j\});$
- $\Delta' := \Delta \cup \Delta_t \cup \bigcup_{i=0}^k \Delta_i$, where

$$-\Delta_{t} = \{ \langle s, a, \langle s', j \rangle \rangle \mid \langle s, a, s' \rangle \in \Delta, \ 0 \le j \le k \}; \\ -\Delta_{j} = \{ \langle \langle s, j \rangle, a, \langle s', j \rangle \rangle \mid \langle s, a, s' \rangle \in \Delta, \ s, s' \in F_{0} \cup \dots \cup F_{2j} \}$$

(Note: In each copy of \mathcal{P} there will be some useless states (whose index is too high), in which the computation will get stuck; it was simply easier to write it up like this.)

(b) Same question for MA. *Hint:* In an MA, it may be useful to say that $\mathcal{F} = \{F_1, \ldots, F_n\}$ for some n, and that every $F_i = \{q_{i,1}, \ldots, q_{i,k_i}\}$, for every $1 \le i \le n$ and some $k_i \ge 1$.

Solution : Given a BA $\langle \Sigma, S, s_0, \Delta, F \rangle$, an equivalent MA is $\langle \Sigma, S, s_0, \Delta, F' \rangle$, where \mathcal{F}' contains every subset of S that intersects F.

If \mathcal{M} is an MA (with the form above), it is easiest to construct a GBA \mathcal{B}_i for each $1 \leq i \leq n$, which accepts the runs ρ such that $Inf(\rho) = F_i$ in \mathcal{M} . Then one exploits that GBA=BA and that BA are closed under union.

 \mathcal{B}_i consists of two copies of \mathcal{M} , where we can go to the second copy when no more states from $S \setminus F_i$ will occur. The acceptance condition then assures that all states of F_i will occur in the second copy. Formally, $\mathcal{B}_i = \langle \Sigma, S \times \{0, 1\}, \langle s_0, 0 \rangle, \Delta', \mathcal{F}' \rangle$, where:

- $\Delta' = \{ \langle \langle s, b \rangle, a, \langle s', b' \rangle \rangle \mid \langle s, a, s' \rangle \in \Delta \land (b = 0 \lor b' = 1) \land (b = 1 \Rightarrow s \in F_i) \};$
- $\mathcal{F}' = \langle \{ \langle q_{i,1}, 1 \rangle \}, \dots, \{ \langle q_{i,k_i}, 1 \rangle \} \rangle$

Note: Again, for simplicity, there are some superfluous states in the second copy from which no movement is possible.