Midterm Exam — Introduction to Verification

November 10, 2023

Time: 2h. Answers can be given in either French or English. Justify all your answers. All
course materials are allowed. Note: The text of the exercises contains a few corrections given
during the exam.

1 LTL and Buchi Automata

(a) Consider the two Biichi automata shown below. Construct a third Biichi automaton ac-

cepting the intersection of their languages, using the general Biichi cross product shown in
the course.
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Solution : Applying the systematic construction from the course, one obtains the following
automaton (two unreachable states excluded):

(b) Find an automaton equivalent to the result of (a), with as few states as possible.

Solution : A smaller automaton (with an ad-hoc construction) is shown below. Effectively,
the second automaton requires at least one b in the word to accept, while the first requires
a finite number of b.
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(c) Let AP = {p,q} and ¥ = 24P, Design a Biichi automaton accepting [¢], for the LTL
formula ¢ := G((p — (pU q)) A (¢ = (¢ U p))).
Solution : Notice that the implications p — (p U ¢) and ¢ — (¢ U p) must be fulfilled in
every (infinite) suffix of an accepted sequence.

e Any suffix of the form @X¢ fulfils both implications.

e Any other suffix either contains {p, ¢} or not. If it does, then it must have a prefix of
the form ({p} + {¢})"{p, ¢}.

e Moreover, any infinite sequence of the form ({p}+{q})* fulfils ¢ iff both p and g appear
infinitely often iff the factor {p}{q} appears infinitely often.

With this in mind, one can construct the following automaton:

0,{p.q} {r}.{q}

2 Subclasses of LTL

Eventuality formulae are a subclass of LTL formulae of the following syntax, where ¢ stands for
any LTL formula:

az=F¢|aValarna|Xa|pUa|aRa

Alternating formulae are another subclass defined as follows:

Bu=Ga|-B[BVB[XBloUB
Let ¥ := 247 for some set of atomic propositions AP.

(a) Let « be an eventuality formula, w € ¢, and 0 < ¢ < j. Show that w,j E « implies
w,i = a.
Solution : Let « an eventuality formula and w, j = a. We proceed by structural induction:
o If @ = F ¢, then there exists k > j > 4 such that w, k | ¢, hence w, i = F ¢.
o If &« = Xay, then w,j+ 1 | ay, so by induction w,i+ 1 = aq (since i +1 < j 4+ 1), so
w,i = Xay.

o If &« = ¢ U, then in particular there exists k > j > i such that w,k | a3, hence
w,i |« and trivially w,i = ¢ U aq, too.

e For @ = a; R aw, recall that this is equivalent to (Gasg) V (az U (ag A ag)). Either
w,j | Gag, so w,{ = ag for all £ > j, thus by induction w, £ = «ay for all i < £ < j,
too; hence w,i = Gag. Or w,j | as U (a1 A as), then the statement follows directly
from the induction hypothesis.

e The cases a1 V ap and a1 A g are trivial.

(b) Let 8 be an alternating formula, w € 3%, and 0 <4 < j. Show that w,i = 8 iff w,j = 5.
Solution : Let 8 be an eventuality formula, we again proceed by structural induction:

e Suppose 8 = Ga. If w,i = Ga, then w,j = Ga is immediate. If w, j = G a, then we
get w,i = Ga from (a) on a.

e Suppose 3 = ¢UB;. If w,i = B, then there exists k > ¢ with w, k |= 31, so by induction
w,j = 1 (which implies w, j = ¢ U B1). The case w, j = 8 is analogous.

e The cases —f; or 1 V By are trivial, and for X 8, we get it by using the induction
hypothesis on 1,7+ 1, 5+ 1.
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Let 8 be an alternating formula and ¢ any LTL formula. Show that 5, X 3, U 3, and ¢ R 3
are all equivalent.

Solution : Let v be any of the four formulae. If w |= v, then in all four cases, there exists
at least one k such that w,k = 8 so by (b) w,i = for all i > 0. Then w = G 3, which by
definition implies ¢ R 8. Also, from w,0 = 8 we get w = A (¢ U 5), and from w, 1 = B we
get w = X B.

CTL and CTL*

any n > 1, we define a CTL* formula ¢,, := A((X"p) V (Fq)).

Find a CTL formula v equivalent to ¢;.
Solution : ¥; = gV AX(p V AFq).

Generally for n > 1, find a CTL formula ),, equivalent to ¢,,.

Solution : Every path must either contain a p-state after n steps or a g-state anywhere.
In branches that contain a g-state before n steps, we no longer need to check for p. With
that in mind, and with ¢ from (a), we set 1, = ¢V AX )5 _1.

Prove or refute that the CTL* formula ¢ := A((Xp) V (p U q)) can be expressed in CTL.
All paths must either satisfy Xp or p U g. We make a case distinction:

(i) Either we start with a g-state, in which case p U ¢ holds.

(ii) Or we start with a p-state. Then for pU ¢, the following state must in particular satisfy
p or q. If p holds, the path also satisfies X p, if ¢ holds, it satisfies p U ¢; in either case
we are done.

(iii) If we start in a non-p and non-g¢-state, then no path can satisfy pU g, and all successors
must be p-states.

Each of these three cases translates into a CTL formula, we take their disjunction:

qV(pANAX(pV q)) VAXp

Prove or refute that the CTL* formula ¢’ := A((p U ¢) V (r U s)) can be expressed in CTL.

Solution : The formula inside the A-quantifier is a pure LTL formula, call it ). For the
following, it helps to imagine the following Biichi automaton (BA) for «:

PN g

r A\ s

(Note: Some edges use set notation where it is more compact, e. g., {p,r} means p A =g A
r A —s. We shall use the same abbreviations in the formulae below.)

Since this BA is deterministic and complete and its only accepting state is a sink, we can
exceptionally obtain its complement by swapping accepting and non-accepting states. We
then wish to state that there exists no path that terminally stays in states 0, 1, 2, or 3. A
CTL formula equivalent to ¢’ is then =(xo V x1 V x2 V X0,3 V X1,3 V X2,3), Where:



e Yo :=EG{p,r};

* x1:={p,7} EU ({p} ANEXEG(p A =q));

o x2:={p,7} EU ({r} A EXEG(r A —s));

e xo03:={p,r} EUO;

e x13:={p,r} EU ({p} AEX(—¢q EU (=p A —=q));

o x2.3:={p,r} EU ({r} A EX(=s EU (=r A =s)).
Note that by using the “weak until” modality EW, we can summarize xo V x1 V X1,3 by 71
and likewise xo V x2 V Xx2,3 by 72 as follows:

o 7= {p,r} EW ({p} A EX(=¢ EW (=p A =9)));

o 75 :={p,r} EW ({r} A EX(—s EW (-1 A =8))).

An alternative CTL formula equivalent to ¢’ would therefore be

“({p, 7} EW (D V ({p} NEX(=g EW (=p A —q))) V ({r} A EX(=s EW (=1 A —s))).

And if one also allows the release operator ER, one can shorten the above to:

“({p,7} EW (0 V ({p} NEX(=p ER =q)) V ({r} A EX(=r ER —s))).

4 w-automata

An w-automaton is a tuple (3, S, so, A, F), where X is a finite alphabet, S is a finite set of states,
8o the initial state, and A C S x ¥ xS the transitions, with the usual notions. F is an acceptance
condition, to be clarified below. For a run p € S¥, we note Inf(p) = {s | Vidj > i: p(i) = s}
the set of states occurring infinitely often in p.

The following types of w-automata were shown to be equivalent in the course and exercises:

e Biichi automata (BA) with F C S, where a run p is accepted if Inf(p) N F # 0;
e generalized BA (GBA) with F C 2%, where p is accepted if VF € F : Inf(p) N F # 0;
We consider the following additional types of w-automaton:

e Parity automata (PA), where F = (Fy, Fi,..., Fi) (for some k > 1), where Fy,..., F}, are
a partition of S; a run p is accepted if the maximal n such that Inf(p) intersects F, is
even.

e Muller automata (MA) with F C 2%, where p is accepted if Inf(p) € F.

(a) Show that PA are equivalent to BA, i.e. for every PA one can construct a BA accepting the
same language, and vice versa.

Solution : Given a BA (2,5, s9, A, F), an equivalent PA is (2,5, s, A, (0, S\ F, F)).

Let P:= (%, S, 80, A, F) be a PA, with F = (Fy, ..., For11) for some k > 0. (If the highest
index in F was even, we could always add an additional empty set to reach an odd number.)
Suppose that in a run p, n is the highest index such that Inf(p) intersects Fj,. Then all
sets with higher indices will stop occurring after some time. So we will build an equivalent
BA B that has all the states from P and k + 1 additional copies of P. At any point, the
automaton can transition to the j-th copy (for any 0 < j < k), however movement in
the j-th copy is restricted to states up to index 2j (with states from F5; being accepting.
Formally, B = (X, Q, sg, A’, F'), where:

e Q=5SU(Sx{0,...,k});
o F=Uj_o(Fy x {j});
e AN =AUAU U?:o Aj, where



- At = <Saa7 <S/7j>> ‘ <87a351> € Aa 0 S]S k}7
- AJ :{<<Saj>7a7<5/7j>> | <57a55,> EA) 5’5/ GFOUUFZ)}

(Note: In each copy of P there will be some useless states (whose index is too high), in
which the computation will get stuck; it was simply easier to write it up like this.)

Same question for MA. Hint: In an MA, it may be useful to say that F = {Fy,..., F,} for
some n, and that every F; = {q;1,..., ¢k, }, for every 1 <i <n and some k; > 1.
Solution : Given a BA (XS5, s9, A, F), an equivalent MA is (3,5, s0, A, F'), where F’
contains every subset of S that intersects F'.

If M is an MA (with the form above), it is easiest to construct a GBA B; for each 1 < i < n,

which accepts the runs p such that Inf(p) = F; in M. Then one exploits that GBA=BA
and that BA are closed under union.

B; consists of two copies of M, where we can go to the second copy when no more states
from S\ F; will occur. The acceptance condition then assures that all states of F; will occur
in the second copy. Formally, B; = (X, S x {0,1}, (s0,0), A", F'), where:

o A ={{(s,b),a,(s, b)) | (s,a,8Y eAND=0VV =1)A(b=1=s€EF,)};
4 ‘7:1 = <{<qi,171>}7'"’{<qi,km1>}>

Note: Again, for simplicity, there are some superfluous states in the second copy from which
no movement is possible.



