
Midterm Exam – Introduction to Verification

November 10, 2023

Time: 2h. Answers can be given in either French or English. Justify all your answers. All
course materials are allowed. Note: The text of the exercises contains a few corrections given
during the exam.

1 LTL and Büchi Automata

(a) Consider the two Büchi automata shown below. Construct a third Büchi automaton ac-
cepting the intersection of their languages, using the general Büchi cross product shown in
the course.

s0 s1
a

a, b a

t0 t1
b

a a, b

Solution : Applying the systematic construction from the course, one obtains the following
automaton (two unreachable states excluded):

s0, t0, 1 s1, t0, 1 s1, t0, 2

s0, t1, 1 s1, t1, 1 s1, t1, 2

a a

a a

b

a, b
a

a

a

(b) Find an automaton equivalent to the result of (a), with as few states as possible.

Solution : A smaller automaton (with an ad-hoc construction) is shown below. Effectively,
the second automaton requires at least one b in the word to accept, while the first requires
a finite number of b.

a, b a

b

1

(c) Let AP = {p, q} and Σ = 2AP . Design a Büchi automaton accepting [[φ]], for the LTL
formula φ := G((p→ (p U q)) ∧ (q → (q U p))).

Solution : Notice that the implications p → (p U q) and q → (q U p) must be fulfilled in
every (infinite) suffix of an accepted sequence.

• Any suffix of the form ∅Σω fulfils both implications.

• Any other suffix either contains {p, q} or not. If it does, then it must have a prefix of
the form ({p}+ {q})∗{p, q}.

• Moreover, any infinite sequence of the form ({p}+{q})ω fulfils φ iff both p and q appear
infinitely often iff the factor {p}{q} appears infinitely often.

With this in mind, one can construct the following automaton:

∅, {p, q} {p}, {q}

{p}, {q}

{p, q}

{p}

{q}

2 Subclasses of LTL

Eventuality formulae are a subclass of LTL formulae of the following syntax, where φ stands for
any LTL formula:

α ::= Fφ | α ∨ α | α ∧ α | Xα | φ U α | α R α

Alternating formulae are another subclass defined as follows:

β ::= Gα | ¬β | β ∨ β | Xβ | φ U β

Let Σ := 2AP , for some set of atomic propositions AP .

(a) Let α be an eventuality formula, w ∈ Σω, and 0 ≤ i ≤ j. Show that w, j |= α implies
w, i |= α.

Solution : Let α an eventuality formula and w, j |= α. We proceed by structural induction:

• If α = Fφ, then there exists k ≥ j ≥ i such that w, k |= φ, hence w, i |= Fφ.

• If α = Xα1, then w, j + 1 |= α1, so by induction w, i+ 1 |= α1 (since i+ 1 ≤ j + 1), so
w, i |= Xα1.

• If α = φ U α1, then in particular there exists k ≥ j ≥ i such that w, k |= α1, hence
w, i |= α1 and trivially w, i |= φ U α1, too.

• For α = α1 R α2, recall that this is equivalent to (Gα2) ∨ (α2 U (α1 ∧ α2)). Either
w, j |= Gα2, so w, ` |= α2 for all ` ≥ j, thus by induction w, ` |= α2 for all i ≤ ` < j,
too; hence w, i |= Gα2. Or w, j |= α2 U (α1 ∧ α2), then the statement follows directly
from the induction hypothesis.

• The cases α1 ∨ α2 and α1 ∧ α2 are trivial.

(b) Let β be an alternating formula, w ∈ Σω, and 0 ≤ i ≤ j. Show that w, i |= β iff w, j |= β.

Solution : Let β be an eventuality formula, we again proceed by structural induction:

• Suppose β = Gα. If w, i |= Gα, then w, j |= Gα is immediate. If w, j |= Gα, then we
get w, i |= Gα from (a) on α.

• Suppose β = φUβ1. If w, i |= β, then there exists k ≥ i with w, k |= β1, so by induction
w, j |= β1 (which implies w, j |= φ U β1). The case w, j |= β is analogous.

• The cases ¬β1 or β1 ∨ β2 are trivial, and for Xβ1 we get it by using the induction
hypothesis on β1, i+ 1, j + 1.

2

(c) Let β be an alternating formula and φ any LTL formula. Show that β, Xβ, φUβ, and φRβ
are all equivalent.

Solution : Let γ be any of the four formulae. If w |= γ, then in all four cases, there exists
at least one k such that w, k |= β so by (b) w, i |= β for all i ≥ 0. Then w |= Gβ, which by
definition implies φR β. Also, from w, 0 |= β we get w |= β ∧ (φU β), and from w, 1 |= β we
get w |= Xβ.

3 CTL and CTL∗

For any n ≥ 1, we define a CTL∗ formula φn := A((Xn p) ∨ (F q)).

(a) Find a CTL formula ψ1 equivalent to φ1.

Solution : ψ1 = q ∨ AX(p ∨ AF q).

(b) Generally for n > 1, find a CTL formula ψn equivalent to φn.

Solution : Every path must either contain a p-state after n steps or a q-state anywhere.
In branches that contain a q-state before n steps, we no longer need to check for p. With
that in mind, and with ψ1 from (a), we set ψn = q ∨ AXψn−1.

(c) Prove or refute that the CTL∗ formula φ := A((X p) ∨ (p U q)) can be expressed in CTL.

All paths must either satisfy X p or p U q. We make a case distinction:

(i) Either we start with a q-state, in which case p U q holds.

(ii) Or we start with a p-state. Then for pUq, the following state must in particular satisfy
p or q. If p holds, the path also satisfies X p, if q holds, it satisfies p U q; in either case
we are done.

(iii) If we start in a non-p and non-q-state, then no path can satisfy pUq, and all successors
must be p-states.

Each of these three cases translates into a CTL formula, we take their disjunction:

q ∨ (p ∧ AX(p ∨ q)) ∨ AX p

(d) Prove or refute that the CTL∗ formula φ′ := A((p U q) ∨ (r U s)) can be expressed in CTL.

Solution : The formula inside the A-quantifier is a pure LTL formula, call it ψ. For the
following, it helps to imagine the following Büchi automaton (BA) for ψ:

0

1

2

3

4

{p, r}
{p}

{r}

q ∨ s
∅

p ∧ ¬q

q

¬p ∧ ¬q

r ∧ ¬s

s

¬r ∧ ¬s

>

>

(Note: Some edges use set notation where it is more compact, e. g., {p, r} means p ∧ ¬q ∧
r ∧ ¬s. We shall use the same abbreviations in the formulae below.)

Since this BA is deterministic and complete and its only accepting state is a sink, we can
exceptionally obtain its complement by swapping accepting and non-accepting states. We
then wish to state that there exists no path that terminally stays in states 0, 1, 2, or 3. A
CTL formula equivalent to φ′ is then ¬(χ0 ∨ χ1 ∨ χ2 ∨ χ0,3 ∨ χ1,3 ∨ χ2,3), where:

3

• χ0 := EG{p, r};
• χ1 := {p, r} EU ({p} ∧ EXEG(p ∧ ¬q));
• χ2 := {p, r} EU ({r} ∧ EXEG(r ∧ ¬s));
• χ0,3 := {p, r} EU ∅;
• χ1,3 := {p, r} EU ({p} ∧ EX(¬q EU (¬p ∧ ¬q));
• χ2,3 := {p, r} EU ({r} ∧ EX(¬s EU (¬r ∧ ¬s)).

Note that by using the “weak until” modality EW, we can summarize χ0 ∨ χ1 ∨ χ1,3 by τ1
and likewise χ0 ∨ χ2 ∨ χ2,3 by τ2 as follows:

• τ1 := {p, r} EW ({p} ∧ EX(¬q EW (¬p ∧ ¬q)));
• τ2 := {p, r} EW ({r} ∧ EX(¬s EW (¬r ∧ ¬s))).

An alternative CTL formula equivalent to φ′ would therefore be

¬({p, r} EW (∅ ∨ ({p} ∧ EX(¬q EW (¬p ∧ ¬q))) ∨ ({r} ∧ EX(¬s EW (¬r ∧ ¬s))).

And if one also allows the release operator ER, one can shorten the above to:

¬({p, r} EW (∅ ∨ ({p} ∧ EX(¬p ER ¬q)) ∨ ({r} ∧ EX(¬r ER ¬s))).

4 ω-automata

An ω-automaton is a tuple 〈Σ, S, s0,∆,F〉, where Σ is a finite alphabet, S is a finite set of states,
s0 the initial state, and ∆ ⊆ S×Σ×S the transitions, with the usual notions. F is an acceptance
condition, to be clarified below. For a run ρ ∈ Sω, we note Inf (ρ) = { s | ∀i∃j ≥ i : ρ(i) = s }
the set of states occurring infinitely often in ρ.

The following types of ω-automata were shown to be equivalent in the course and exercises:

• Büchi automata (BA) with F ⊆ S, where a run ρ is accepted if Inf (ρ) ∩ F 6= ∅;

• generalized BA (GBA) with F ⊆ 2S , where ρ is accepted if ∀F ∈ F : Inf (ρ) ∩ F 6= ∅;

We consider the following additional types of ω-automaton:

• Parity automata (PA), where F = 〈F0, F1, . . . , Fk〉 (for some k ≥ 1), where F0, . . . , Fk are
a partition of S; a run ρ is accepted if the maximal n such that Inf (ρ) intersects Fn is
even.

• Muller automata (MA) with F ⊆ 2S , where ρ is accepted if Inf (ρ) ∈ F .

(a) Show that PA are equivalent to BA, i.e. for every PA one can construct a BA accepting the
same language, and vice versa.

Solution : Given a BA 〈Σ, S, s0,∆, F 〉, an equivalent PA is 〈Σ, S, s0,∆, 〈∅, S \ F, F 〉〉.
Let P := 〈Σ, S, s0,∆,F〉 be a PA, with F = 〈F0, . . . , F2k+1〉 for some k ≥ 0. (If the highest
index in F was even, we could always add an additional empty set to reach an odd number.)
Suppose that in a run ρ, n is the highest index such that Inf (ρ) intersects Fn. Then all
sets with higher indices will stop occurring after some time. So we will build an equivalent
BA B that has all the states from P and k + 1 additional copies of P. At any point, the
automaton can transition to the j-th copy (for any 0 ≤ j ≤ k), however movement in
the j-th copy is restricted to states up to index 2j (with states from F2j being accepting.
Formally, B = 〈Σ, Q, s0,∆′, F 〉, where:

• Q = S ∪ (S × {0, . . . , k});

• F =
⋃k

j=0(F2j × {j});

• ∆′ := ∆ ∪∆t ∪
⋃k

j=0 ∆j , where

4

– ∆t = { 〈s, a, 〈s′, j〉〉 | 〈s, a, s′〉 ∈ ∆, 0 ≤ j ≤ k };
– ∆j = { 〈〈s, j〉, a, 〈s′, j〉〉 | 〈s, a, s′〉 ∈ ∆, s, s′ ∈ F0 ∪ · · · ∪ F2j }

(Note: In each copy of P there will be some useless states (whose index is too high), in
which the computation will get stuck; it was simply easier to write it up like this.)

(b) Same question for MA. Hint: In an MA, it may be useful to say that F = {F1, . . . , Fn} for
some n, and that every Fi = {qi,1, . . . , qi,ki

}, for every 1 ≤ i ≤ n and some ki ≥ 1.

Solution : Given a BA 〈Σ, S, s0,∆, F 〉, an equivalent MA is 〈Σ, S, s0,∆,F ′〉, where F ′
contains every subset of S that intersects F .

IfM is an MA (with the form above), it is easiest to construct a GBA Bi for each 1 ≤ i ≤ n,
which accepts the runs ρ such that Inf (ρ) = Fi in M. Then one exploits that GBA=BA
and that BA are closed under union.

Bi consists of two copies of M, where we can go to the second copy when no more states
from S \Fi will occur. The acceptance condition then assures that all states of Fi will occur
in the second copy. Formally, Bi = 〈Σ, S × {0, 1}, 〈s0, 0〉,∆′,F ′〉, where:

• ∆′ = { 〈〈s, b〉, a, 〈s′, b′〉〉 | 〈s, a, s′〉 ∈ ∆ ∧ (b = 0 ∨ b′ = 1) ∧ (b = 1⇒ s ∈ Fi) };
• F ′ = 〈{〈qi,1, 1〉}, . . . , {〈qi,ki

, 1〉}〉

Note: Again, for simplicity, there are some superfluous states in the second copy from which
no movement is possible.

5

