Midterm Exam - Introduction to Verification

November 10, 2023

Time: 2h. Answers can be given in either French or English. Justify all your answers. All course materials are allowed. Note: The text of the exercises contains a few corrections given during the exam.

1 LTL and Büchi Automata

(a) Consider the two Büchi automata shown below. Construct a third Büchi automaton accepting the intersection of their languages, using the general Büchi cross product shown in the course.

Solution : Applying the systematic construction from the course, one obtains the following automaton (two unreachable states excluded):

(b) Find an automaton equivalent to the result of (a), with as few states as possible.

Solution : A smaller automaton (with an ad-hoc construction) is shown below. Effectively, the second automaton requires at least one b in the word to accept, while the first requires a finite number of b.

(c) Let $A P=\{p, q\}$ and $\Sigma=2^{A P}$. Design a Büchi automaton accepting $\llbracket \phi \rrbracket$, for the LTL formula $\phi:=\mathrm{G}((p \rightarrow(p \cup q)) \wedge(q \rightarrow(q \cup p)))$.
Solution : Notice that the implications $p \rightarrow(p \cup q)$ and $q \rightarrow(q \cup p)$ must be fulfilled in every (infinite) suffix of an accepted sequence.

- Any suffix of the form $\emptyset \Sigma^{\omega}$ fulfils both implications.
- Any other suffix either contains $\{p, q\}$ or not. If it does, then it must have a prefix of the form $(\{p\}+\{q\})^{*}\{p, q\}$.
- Moreover, any infinite sequence of the form $(\{p\}+\{q\})^{\omega}$ fulfils ϕ iff both p and q appear infinitely often iff the factor $\{p\}\{q\}$ appears infinitely often.

With this in mind, one can construct the following automaton:

2 Subclasses of LTL

Eventuality formulae are a subclass of LTL formulae of the following syntax, where ϕ stands for any LTL formula:

$$
\alpha::=\mathrm{F} \phi|\alpha \vee \alpha| \alpha \wedge \alpha|\mathrm{X} \alpha| \phi \cup \alpha \mid \alpha \mathrm{R} \alpha
$$

Alternating formulae are another subclass defined as follows:

$$
\beta::=\mathrm{G} \alpha|\neg \beta| \beta \vee \beta|\mathrm{X} \beta| \phi \mathrm{\cup} \beta
$$

Let $\Sigma:=2^{A P}$, for some set of atomic propositions $A P$.
(a) Let α be an eventuality formula, $w \in \Sigma^{\omega}$, and $0 \leq i \leq j$. Show that $w, j \models \alpha$ implies $w, i \models \alpha$.
Solution : Let α an eventuality formula and $w, j \vDash \alpha$. We proceed by structural induction:

- If $\alpha=\mathrm{F} \phi$, then there exists $k \geq j \geq i$ such that $w, k \models \phi$, hence $w, i \models \mathrm{~F} \phi$.
- If $\alpha=\mathrm{X} \alpha_{1}$, then $w, j+1 \models \alpha_{1}$, so by induction $w, i+1 \models \alpha_{1}$ (since $i+1 \leq j+1$), so $w, i=\mathrm{X} \alpha_{1}$.
- If $\alpha=\phi \cup \alpha_{1}$, then in particular there exists $k \geq j \geq i$ such that $w, k \models \alpha_{1}$, hence $w, i \vDash \alpha_{1}$ and trivially $w, i \neq \phi \cup \alpha_{1}$, too.
- For $\alpha=\alpha_{1} \mathrm{R} \alpha_{2}$, recall that this is equivalent to $\left(\mathrm{G} \alpha_{2}\right) \vee\left(\alpha_{2} \mathrm{U}\left(\alpha_{1} \wedge \alpha_{2}\right)\right)$. Either $w, j \models \mathrm{G} \alpha_{2}$, so $w, \ell \models \alpha_{2}$ for all $\ell \geq j$, thus by induction $w, \ell \models \alpha_{2}$ for all $i \leq \ell<j$, too; hence $w, i \models \mathrm{G} \alpha_{2}$. Or $w, j \models \alpha_{2} \mathrm{U}\left(\alpha_{1} \wedge \alpha_{2}\right)$, then the statement follows directly from the induction hypothesis.
- The cases $\alpha_{1} \vee \alpha_{2}$ and $\alpha_{1} \wedge \alpha_{2}$ are trivial.
(b) Let β be an alternating formula, $w \in \Sigma^{\omega}$, and $0 \leq i \leq j$. Show that $w, i \models \beta$ iff $w, j \models \beta$.

Solution : Let β be an eventuality formula, we again proceed by structural induction:

- Suppose $\beta=\mathrm{G} \alpha$. If $w, i \models \mathrm{G} \alpha$, then $w, j \models \mathrm{G} \alpha$ is immediate. If $w, j \models \mathrm{G} \alpha$, then we get $w, i \neq \mathrm{G} \alpha$ from (a) on α.
- Suppose $\beta=\phi \mathrm{U} \beta_{1}$. If $w, i \models \beta$, then there exists $k \geq i$ with $w, k \models \beta_{1}$, so by induction $w, j \models \beta_{1}$ (which implies $w, j \models \phi \cup \beta_{1}$). The case $w, j \models \beta$ is analogous.
- The cases $\neg \beta_{1}$ or $\beta_{1} \vee \beta_{2}$ are trivial, and for $\mathrm{X} \beta_{1}$ we get it by using the induction hypothesis on $\beta_{1}, i+1, j+1$.
(c) Let β be an alternating formula and ϕ any LTL formula. Show that $\beta, \mathbf{X} \beta, \phi \mathrm{U} \beta$, and $\phi \mathrm{R} \beta$ are all equivalent.
Solution : Let γ be any of the four formulae. If $w \models \gamma$, then in all four cases, there exists at least one k such that $w, k \models \beta$ so by (b) $w, i \models \beta$ for all $i \geq 0$. Then $w \vDash \mathrm{G} \beta$, which by definition implies $\phi \mathrm{R} \beta$. Also, from $w, 0 \vDash \beta$ we get $w \models \beta \wedge(\phi \cup \beta)$, and from $w, 1 \vDash \beta$ we get $w=\mathrm{X} \beta$.

3 CTL and CTL*

For any $n \geq 1$, we define a CTL* formula $\phi_{n}:=\mathrm{A}\left(\left(\mathrm{X}^{n} p\right) \vee(\mathrm{F} q)\right)$.
(a) Find a CTL formula ψ_{1} equivalent to ϕ_{1}.

Solution : $\psi_{1}=q \vee \operatorname{AX}(p \vee \operatorname{AF} q)$.
(b) Generally for $n>1$, find a CTL formula ψ_{n} equivalent to ϕ_{n}.

Solution : Every path must either contain a p-state after n steps or a q-state anywhere. In branches that contain a q-state before n steps, we no longer need to check for p. With that in mind, and with ψ_{1} from (a), we set $\psi_{n}=q \vee \mathrm{AX} \psi_{n-1}$.
(c) Prove or refute that the CTL* formula $\phi:=\mathrm{A}((\mathrm{X} p) \vee(p \cup q))$ can be expressed in CTL.

All paths must either satisfy $\mathrm{X} p$ or $p \cup q$. We make a case distinction:
(i) Either we start with a q-state, in which case $p \cup q$ holds.
(ii) Or we start with a p-state. Then for $p \cup q$, the following state must in particular satisfy p or q. If p holds, the path also satisfies $\mathrm{X} p$, if q holds, it satisfies $p \cup q$; in either case we are done.
(iii) If we start in a non- p and non- q-state, then no path can satisfy $p \cup q$, and all successors must be p-states.

Each of these three cases translates into a CTL formula, we take their disjunction:

$$
q \vee(p \wedge \mathrm{AX}(p \vee q)) \vee \mathrm{AX} p
$$

(d) Prove or refute that the CTL^{*} formula $\phi^{\prime}:=\mathrm{A}((p \cup q) \vee(r \cup s))$ can be expressed in CTL.

Solution : The formula inside the A-quantifier is a pure LTL formula, call it ψ. For the following, it helps to imagine the following Büchi automaton (BA) for ψ :

(Note: Some edges use set notation where it is more compact, e. g., $\{p, r\}$ means $p \wedge \neg q \wedge$ $r \wedge \neg s$. We shall use the same abbreviations in the formulae below.)
Since this BA is deterministic and complete and its only accepting state is a sink, we can exceptionally obtain its complement by swapping accepting and non-accepting states. We then wish to state that there exists no path that terminally stays in states $0,1,2$, or 3 . A CTL formula equivalent to ϕ^{\prime} is then $\neg\left(\chi_{0} \vee \chi_{1} \vee \chi_{2} \vee \chi_{0,3} \vee \chi_{1,3} \vee \chi_{2,3}\right)$, where:

- $\chi_{0}:=\mathrm{EG}\{p, r\}$;
- $\chi_{1}:=\{p, r\} \operatorname{EU}(\{p\} \wedge \operatorname{EXEG}(p \wedge \neg q))$;
- $\chi_{2}:=\{p, r\} \operatorname{EU}(\{r\} \wedge \operatorname{EXEG}(r \wedge \neg s))$;
- $\chi_{0,3}:=\{p, r\}$ EU \emptyset;
- $\chi_{1,3}:=\{p, r\} \operatorname{EU}(\{p\} \wedge \operatorname{EX}(\neg q \operatorname{EU}(\neg p \wedge \neg q))$;
- $\chi_{2,3}:=\{p, r\} \operatorname{EU}(\{r\} \wedge \operatorname{EX}(\neg s \operatorname{EU}(\neg r \wedge \neg s))$.

Note that by using the "weak until" modality EW, we can summarize $\chi_{0} \vee \chi_{1} \vee \chi_{1,3}$ by τ_{1} and likewise $\chi_{0} \vee \chi_{2} \vee \chi_{2,3}$ by τ_{2} as follows:

- $\tau_{1}:=\{p, r\} \operatorname{EW}(\{p\} \wedge \operatorname{EX}(\neg q \operatorname{EW}(\neg p \wedge \neg q)))$;
- $\tau_{2}:=\{p, r\} \operatorname{EW}(\{r\} \wedge \operatorname{EX}(\neg s \operatorname{EW}(\neg r \wedge \neg s)))$.

An alternative CTL formula equivalent to ϕ^{\prime} would therefore be

$$
\neg(\{p, r\} \operatorname{EW}(\emptyset \vee(\{p\} \wedge \operatorname{EX}(\neg q \operatorname{EW}(\neg p \wedge \neg q))) \vee(\{r\} \wedge \operatorname{EX}(\neg s \operatorname{EW}(\neg r \wedge \neg s))) .
$$

And if one also allows the release operator ER , one can shorten the above to:

$$
\neg(\{p, r\} \operatorname{EW}(\emptyset \vee(\{p\} \wedge \operatorname{EX}(\neg p \mathrm{ER} \neg q)) \vee(\{r\} \wedge \operatorname{EX}(\neg r \mathrm{ER} \neg s))) .
$$

4ω-automata

An ω-automaton is a tuple $\left\langle\Sigma, S, s_{0}, \Delta, \mathcal{F}\right\rangle$, where Σ is a finite alphabet, S is a finite set of states, s_{0} the initial state, and $\Delta \subseteq S \times \Sigma \times S$ the transitions, with the usual notions. \mathcal{F} is an acceptance condition, to be clarified below. For a run $\rho \in S^{\omega}$, we note $\operatorname{Inf}(\rho)=\{s \mid \forall i \exists j \geq i: \rho(i)=s\}$ the set of states occurring infinitely often in ρ.

The following types of ω-automata were shown to be equivalent in the course and exercises:

- Büchi automata (BA) with $\mathcal{F} \subseteq S$, where a run ρ is accepted if $\operatorname{Inf}(\rho) \cap \mathcal{F} \neq \emptyset$;
- generalized BA (GBA) with $\mathcal{F} \subseteq 2^{S}$, where ρ is accepted if $\forall F \in \mathcal{F}: \operatorname{Inf}(\rho) \cap F \neq \emptyset$;

We consider the following additional types of ω-automaton:

- Parity automata (PA), where $\mathcal{F}=\left\langle F_{0}, F_{1}, \ldots, F_{k}\right\rangle$ (for some $k \geq 1$), where F_{0}, \ldots, F_{k} are a partition of S; a run ρ is accepted if the maximal n such that $\operatorname{Inf}(\rho)$ intersects F_{n} is even.
- Muller automata (MA) with $\mathcal{F} \subseteq 2^{S}$, where ρ is accepted if $\operatorname{Inf}(\rho) \in \mathcal{F}$.
(a) Show that PA are equivalent to BA, i.e. for every PA one can construct a BA accepting the same language, and vice versa.
Solution : Given a $\mathrm{BA}\left\langle\Sigma, S, s_{0}, \Delta, F\right\rangle$, an equivalent PA is $\left\langle\Sigma, S, s_{0}, \Delta,\langle\emptyset, S \backslash F, F\rangle\right\rangle$.
Let $\mathcal{P}:=\left\langle\Sigma, S, s_{0}, \Delta, \mathcal{F}\right\rangle$ be a PA, with $\mathcal{F}=\left\langle F_{0}, \ldots, F_{2 k+1}\right\rangle$ for some $k \geq 0$. (If the highest index in \mathcal{F} was even, we could always add an additional empty set to reach an odd number.) Suppose that in a run ρ, n is the highest index such that $\operatorname{Inf}(\rho)$ intersects F_{n}. Then all sets with higher indices will stop occurring after some time. So we will build an equivalent BA \mathcal{B} that has all the states from \mathcal{P} and $k+1$ additional copies of \mathcal{P}. At any point, the automaton can transition to the j-th copy (for any $0 \leq j \leq k$), however movement in the j-th copy is restricted to states up to index $2 j$ (with states from $F_{2 j}$ being accepting. Formally, $\mathcal{B}=\left\langle\Sigma, Q, s_{0}, \Delta^{\prime}, F\right\rangle$, where:
- $Q=S \cup(S \times\{0, \ldots, k\})$;
- $F=\bigcup_{j=0}^{k}\left(F_{2 j} \times\{j\}\right)$;
- $\Delta^{\prime}:=\Delta \cup \Delta_{t} \cup \bigcup_{j=0}^{k} \Delta_{j}$, where

$$
\begin{aligned}
& -\Delta_{t}=\left\{\left\langle s, a,\left\langle s^{\prime}, j\right\rangle\right\rangle \mid\left\langle s, a, s^{\prime}\right\rangle \in \Delta, 0 \leq j \leq k\right\} \\
& -\Delta_{j}=\left\{\left\langle\langle s, j\rangle, a,\left\langle s^{\prime}, j\right\rangle\right\rangle \mid\left\langle s, a, s^{\prime}\right\rangle \in \Delta, s, s^{\prime} \in F_{0} \cup \cdots \cup F_{2 j}\right\}
\end{aligned}
$$

(Note: In each copy of \mathcal{P} there will be some useless states (whose index is too high), in which the computation will get stuck; it was simply easier to write it up like this.)
(b) Same question for MA. Hint: In an MA, it may be useful to say that $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ for some n, and that every $F_{i}=\left\{q_{i, 1}, \ldots, q_{i, k_{i}}\right\}$, for every $1 \leq i \leq n$ and some $k_{i} \geq 1$.
Solution : Given a BA $\left\langle\Sigma, S, s_{0}, \Delta, F\right\rangle$, an equivalent MA is $\left\langle\Sigma, S, s_{0}, \Delta, \mathcal{F}^{\prime}\right\rangle$, where \mathcal{F}^{\prime} contains every subset of S that intersects F.

If \mathcal{M} is an MA (with the form above), it is easiest to construct a GBA \mathcal{B}_{i} for each $1 \leq i \leq n$, which accepts the runs ρ such that $\operatorname{Inf}(\rho)=F_{i}$ in \mathcal{M}. Then one exploits that GBA=BA and that BA are closed under union.
\mathcal{B}_{i} consists of two copies of \mathcal{M}, where we can go to the second copy when no more states from $S \backslash F_{i}$ will occur. The acceptance condition then assures that all states of F_{i} will occur in the second copy. Formally, $\mathcal{B}_{i}=\left\langle\Sigma, S \times\{0,1\},\left\langle s_{0}, 0\right\rangle, \Delta^{\prime}, \mathcal{F}^{\prime}\right\rangle$, where:

- $\Delta^{\prime}=\left\{\left\langle\langle s, b\rangle, a,\left\langle s^{\prime}, b^{\prime}\right\rangle\right\rangle \mid\left\langle s, a, s^{\prime}\right\rangle \in \Delta \wedge\left(b=0 \vee b^{\prime}=1\right) \wedge\left(b=1 \Rightarrow s \in F_{i}\right)\right\} ;$
- $\mathcal{F}^{\prime}=\left\langle\left\{\left\langle q_{i, 1}, 1\right\rangle\right\}, \ldots,\left\{\left\langle q_{i, k_{i}}, 1\right\rangle\right\}\right\rangle$

Note: Again, for simplicity, there are some superfluous states in the second copy from which no movement is possible.

