
Second Exam – Introduction to Verification

January 19, 2024

Answers can be given in either French or English. Justify all your answers. All documents are
allowed, in non-electronic form.

1 Binary decision diagrams

Let us consider variables with the order u < v < w < x < y. Let F1, F2 be propositional
formulae with

F1 := u→ (¬w ∧ (x↔ y)) F2 := v ∧ (x→ y)

(a) Draw BDDs for F1 and F2, using the given order. No justification for the construction is
necessary. You may omit the 0-node and edges leading to it.

Solution:

1

y

F2F1

v

x x

y

w

u

B

A

DE

C

F

1

1

1

0

0

0

G

1
0

10

Let F,G be any two formulae and x a variable. Using the Shannon partitioning F =
ite(x, F [x/1], F [x/0]) we derived the following equation for the conjunction of two formulae:

F ∧G ≡

F if F ≡ G
0 if F = 0 or G = 0

G if F = 1

F if G = 1

ite(x, F [x/1] ∧G[x/1], F [x/0] ∧G[x/0]) otherwise

(b) What is the corresponding equation for implication F → G? (Hint: For G = 0, the result
is ¬F , which can be obtained in linear time from F . There are four base cases where the
result can be obtained in constant time.)

Solution:

1

1. The expected equation is as follows:

F → G ≡

1 if F = 0

G if F = 1

¬F if G = 0

1 if G = 1

1 if F = G

ite(x, F [x/1]→ G[x/1], F [x/0]→ G[x/0]) otherwise

(c) Using the equation from (b), construct a BDD for F1 → F2.

Solution: Here is how the recursive algorithm would work: Each box indicates one re-
cursive call, the names are the nodes from (a). Next to each box the result is denoted (’ !’
stands for negation). The five terminal cases correspond to those of the equation in (b).

B

1,B C,B

v
0 1

0 1

0 1

0 1

u

w

v

1

v

u
A,B

C,D

!C

C,0

1

0,DE,D

1

G,G

1

F,1

x

w

0 1

x

0

y

!C

y

10

01

0

10

1

x

B

1

The resulting BDD is shown on the right-hand side. Notice that the right-hand side of
the box (C,B) collapses to 1. The negation of node C has to be made “manually”.

2 Reachability in Petri nets.

Let N = 〈P, T, F,W,m0〉 be a Petri net. We say that N is acyclic if the directed graph 〈P ∪T, F 〉
does not contain any cycles. Let A denote the class of Petri nets that are (i) 1-safe and (ii)
acyclic.

(a) Show that in no firing sequence of a net N ∈ A can contain the same transition twice.

Solution: During the exam, I realized that there was a slight mistake in this question: If a
transition has empty preset and empty postset, then it could fire repeatedly while leaving
the marking unchanged. So let us assume for now that every transition is connected to at
least one arc.

Then 1-safeness implies that no transition has an empty preset, otherwise the transition
could produce infinitely many tokens. Therefore, if a transition t could fire twice in some
execution, then some place p ∈ •t must receive two tokens during the execution.

Since the net is acyclic, such an execution must have the form σtτ , where σ, τ ∈ T ∗ are
firing sequences, such that after σ there is a first token on p (which t can comsume), and

2

such that after τ there is another token on p. Let τ ′ denote the subsequence of τ that
contains the predecessors of t, and let τ ′′ denote the subsequence composed of all others.
Now, τ ′ must contain a transition that puts a token onto p.

Again, since the net is acyclic, t is not predecessor of any element of τ ′ (nor, by transitivity,
is any element of τ ′′). Therefore, στ ′ is also a valid firing sequence that places two tokens
on p; but then N would not be 1-safe.

(b) Show that the reachability problem for the class A is in NP.

Solution: To show that the reachability problem for A is in NP, we must show that a
non-deterministic machine can answer ‘yes’ for a positive instance in polynomial time.

If a net has a transition with empty preset and postset, that transition is irrelevant for
reachability and can be ignored. Other than this, because of (a), any execution of N
consists of at most |T | transition firings.

A nondeterministic Turing machine can simulate some firing sequence with space |P | (to
remember the marking), answer ‘yes’ if the desired marking is reached, or ‘no’ if it is not
reached after |T | steps.

(c) Show that the reachability problem for the class A is NP-hard, by reduction from the
SAT problem. (Without loss of generality, one can assume that a SAT formula is given in
conjunctive normal form.)

Solution: Recall that SAT is a restriction of the QBF problem to existential quantifi-
cation. In class, we discussed how to reduce QBF to the reachability problem for 1-safe
nets; this reduction produced an almost acyclic net when only existential quantification
was involved. Thus, it was sufficient to slightly modify that construction.

Let X be a set of Boolean variables and F =
∧k

i=1

∨mi

j=1 `i,j be a formula in CNF, where
the literals `i,j are positive or negative instances from X; denote by L the set of those
literals. We construct the following net NF :

• The places of NF are PX] PL] PC ∪ P ′C] {p}, where

– PX := { px | x ∈ X } (one place per variable);

– PL := { pi,j | `i,j ∈ L} (one place per literal);

– PC := { ci | 1 ≤ i ≤ k } and P ′C := { c′i | 1 ≤ i ≤ k } (two places per clause).

• The initially marked places are PX ∪ PC .

• The transitions are T>] T⊥] TL] {t}] T ′L, where

– T> := { tx> | x ∈ X }, •tx> = {px}, tx>
• = { pi,j | `i,j = x }

(choose to generate tokens for all positive x-literals);

– T⊥ := { tx⊥ | x ∈ X }, •tx⊥ = {px}, tx⊥
• = { pi,j | `i,j = ¬x }

(choose to generate tokens for all negative x-literals);

– TL := { ti,j | `i,j ∈ L}, •ti,j = {ci, pi,j}, ti,j• = {c′i}
(mark clause ci as satisfied if any literal is marked);

– •t := { c′i | 1 ≤ i ≤ n }, t• := {p}
(put a token on p if all clauses are satisfied);

– T ′L := { t′i,j | `i,j ∈ L}, •ti,j = {pi,j}, ti,j• = ∅
(allow the token for any literal to disappear).

It is easy to see that the size of NF is polynomial (linear) w.r.t. the size of F and that the
marking {p} can be reached if and only if F is satisfiable. Moreover, the net NF is acyclic
and 1-safe.

3

3 Partial-order reduction

(a) Consider the Kripke structure shown below with actions a, b, c, d, e, where 0 is the initial
state, and AP = {p} such that p holds in states 1 and 4 only.

0

3

1
c

2
c

4

5

6

d

d

8

7

dc

9

10

11

e

e

e
ec

c

aa

bb b

a

b

b

Determine all pairs of independent actions I and indicate which actions are visible and
which are not.

Solution: (a, b) are not independent (see states 0,2,5), all other pairs of different actions
are. Actions a and d are visible, the others invisible.

(b) Compute a reduction function red that satisfies the conditions C0–C3 explained in the
course. Wherever possible, red(s) should be a strict subset of en(s), for each state s of K.
Draw the reduced structure red(K).

Solution:

1. State by state: (without discussing the obvious case C0)

• In state 0 we can reduce to c, which is invisible and independent of any other action.
All other proper subsets would not work: {a, b} because of C2, the others because of
C1.

• In state 2 we need to include all actions; again {a, b} is prevented by C2, so is {d};
all others by C1.

• In state 5 we need {a, b} due to C1.

• In states 4, 7, and 6, we take the only possible action.

• In 8, 9, 10, 11, we can go either clockwise or counter-clockwise to obtain a loop
containing all four states. (C1 and C2 are irrelevant here, and C3 prevents us from
closing the loop too early.)

A possible result:

0 2
c

4

5

6

d

d

8

7

d

9

10

11

e

ec

a

b b

a

b

4 Free the animals

The elephant and the marmot have been captured by the wizard Kripke. The wizard asks them
to choose two of the structures shown below. The elephant will be placed on the initial state of
one and the marmot on the initial state of the other. In each turn, the wizard will then instruct

4

either the elephant or the marmot to move to a neighbouring state of the wizard’s choosing.
The other animal must then respond by moving to a state of the same colour. (E.g., if at some
point the elephant sits on o and the marmot on w, the wizard could instruct the elephant to
move to q and the marmot could respond by moving to z.) If the wizard gets the two into a
situation where they cannot respond with a correct move, the poor animals remain in captivity,
but if they can play the game for at least ten moves, they will be let free.

S4:S3:

S2:S1:

kfe

q r

u

z

ih

g

dcb

a

m

n o p

s t

v w x y

(a) The animals need your help – which pair of structures should they choose, and how should
they play? They have attended the ENS and know about bisimulation, so they need you
to provide a bisimulation relation between the two structures.

For each other pair of structures, explain how the wizard would trap them, by giving a
CTL formula distinguishing them. The CTL formula would consist of only the modalities
EX and AX, and the atomic propositions white, grey, black, possibly negated.

Solution: The only pair of bisimilar structures, which will guarantee our heros’ freedom,
are S2 and S4, as demonstrated by the following relation:

{(g, s), (g, x), (h, v), (h, y), (i, w), (i, t), (k, u), (k, z)}

The CTL formula EX EX black is satisfied by S2 and S4 but not by S1 or S3, proving
that none of these four pairs are bisimilar. (If our friends made such a choice, the wizard
could tell one of them to go to a black state in the second move, which the other could
not respond to.)

Finally, S1 and S3 are distinguished by the formula EX AX grey . Thus, if our friends
chose S1 and S3, the wizard could first tell the elephant to go to b, and whatever the
marmot responds, he would tell it to move to q.

(b) Do the elephant and the marmot have another choice if they know in advance that the
wizard will always instruct the same animal to move?

For each pair of structures that are not bisimilar, check whether there exists a simulation
one way or the other. If a simulation relation exists, provide it, otherwise exhibit an LTL
formula satisfied by one structure but not the other.

Solution: There is no simulation from either S1 or S3 to either S2 or S4: All runs in the
latter satisfy the LTL formula (X X grey)→ (G ¬white) but the former do not. There is

5

also no simulation in the reverse direction; all runs in S1 and S3 satisfy X G ¬black but
S2 and S4 do not.

Finally, while S1 and S3 are not bisimilar, there are simulations both ways. From S1 to
S3, one can take

{(a,m)} ∪
(
{b, c, d} × {o, p}

)
∪
(
{e, f} × {q, r}

)
,

and from S3 to S1, one can take

{(m, a), (n, c), (o, d), (p, d)} ∪
(
{q, r} × {e, f}

)
.

6

