Tree Automata and Applications

M1 course, 2023/2024



Organization

Timetable
o Exercises: Thursday 8:30 — 10:30 (Luc Lapointe)
o Course: Thursday 10:45 — 12:45 (Stefan Schwoon)

Exams
@ DM or CC (to be specified by Luc)
o Final Exam: 2h, 11 January
e First session: DM/CC + Exam (50/50)
@ Second session: DM/CC + Repeat Exam (50/50)

Course materials
@ Website: lecturer's homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)
@ Hubert Comon et al.
Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr/


http://tata.gforge.inria.fr/

Motivations

@ Natural extension of formal-language notions (automata, logic, ...)

@ Treatment of tree-like data structures: parse tree, XML documents
(XPath, CSS selectors)

© Applications e.g. in compiler construction, formal verification



Trees

We consider finite ordered ranked trees.

@ ordered : internal nodes have children 1...n

@ ranked : number of children fixed by node’s label

Let NV denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N*:

VAN
1 2 3
/\
12

2 2

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos C N*
such that w(i + 1) € Pos implies wi € Pos for all w € N*, j € N.



Ranked Trees

Ranked symbols

Let Fo, F1,... be disjoint sets of symbols of arity 0,1, ...
We note F = J; Fi.

o Notation (example): F = {f(2),g(1), a, b}

Let X' denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree
A ranked tree is a mapping t : Pos — (F U X) satisfying:

@ Pos is a tree;

e for all p € Pos, if t(p) € Fp, n > 1 then Pos N pN = {pl,...

e for all p € Pos, if t(p) € X U Fy then Pos N pN = ().

,pn};



Trees and Terms

Definition: Terms
The set of terms T(F, X) is the smallest set satisfying:
o XUJF C T(F,X);
o ifty,....ty € T(F,X) and f € F,, then f(tu,...,t,) € T(F,X).

We note T(F) := T(F,0). A term in T(F) is called ground term.
A term of T(F,X) is linear if every variable occurs at most once.

Example: F = {f(2),g(1),a, b}, X = {x,y}
o f(g(a),b) € T(F);
o f(x,f(b,y)) € T(F,X) is linear;
o f(x,x) € T(F,X) is non-linear.

We confuse terms and trees in the obvious manner.



Height and size

Definition
Let t € T(F,X). We note H(t) the height of t and |t| the size of t.
e if t € X, then H(t) := 0 and |t| := 0; (for notational convenience)
o if t € Fo, then H(t) :=1and |t]| := 1,
o if t =1f(t1,...,ty), then H(t) :=1+ max{H(t1),...,H(tn)} and
|t] :=14 |ta]| + - + |tal.



Subterms / subtrees

Definition: Subtree
Let t,u € T(F,X) and p a position. Then t|, : Pos, — T(F,X) is the
ranked tree defined by

e Pos, :={q|pqg e Pos},

o t[(q) := t(pq).

Moreover, t[u], is the tree obtained by replacing t|, by u in t.

t > t' (resp. t > t') denotes that t' is a (proper) subtree of t.



Substitutions and Context

Definition: Substitution
@ (Ground) substitution o: mapping from X to T(F, X) resp. T(F)
e Notation: 0 := {x1 < t1,..., X, < ty}, with o(x) := x for all
x € X\ {x1,...,%n}
o Extension to terms: for all f € F and ty, ..., t,, € T(F,X)
a(f(ty, ..., tn)) = f(o(ty),...,o(th))

e Notation: to for o(t)

Definition: Context
A context is a linear term C € T(F, X) with variables xi, ..., x,.
We note Clt1, ..., ty] := C{x1 < t1,..., X5 < tn}.

C"(F) denotes the contexts with n variables and C(F) := C}(F).
Let C € C(F). We note C°:= x; and C™1 = C"[C] for n > 0.



Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc = a(b(c(9)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)
@ Non-deterministic bottom-up and top-down are equally powerful
@ Deterministic bottom-up equally powerful

@ Deterministic top-down less powerful



Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = (Q, F, G, A),
where:

@ @ is a finite set of states;
o F a finite ranked alphabet;
o G C Q@ are the final states;
@ A is a finite set of rules of the form
f(qi,...,qn) — q
for f € F,and q,q91,...,9, € Q.

Example: Q :={qo, q1,qr}, F ={f(2),&(1),a}, G :={qr}, and rules
a—qo g(q)—aq1 g(q1) = a1 f(q1,91) — gr



Move relation and computation tree

Move relation

Let t, t' € T(F, Q). We write t — 4 t" if the following are satisfied:
e t = C[f(q1,...,qn)] for some context C;
e t' = C|[q] for some rule f(q1,...,qn) — q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write —>:‘4 for the transitive and reflexive closure of — 4.

Computation
Let t : Pos — F a ground tree. A run or computation of A on t is a labelling
t' : Pos — @ compatible with A, i.e.:
e for all p € Pos, if t(p) = f € Fp, t/(p) = q, and t/(pj) = g; for all
pj € Pos N pN, then f(q1,...,qn) > g€ A



Regular tree languages

A tree t is accepted by A iff t =% q for some q € G.
L(A) denotes the set of trees accepted by A.
L is regular/recognizable iff L := L(.A) for some NFTA A.

Two NFTAs A; and A; are equivalent iff L(A1) = L(A2).



NFTA with c-moves

Definition:
An e-NFTA is an NFTA A = (Q, F, G, A), where A can additionally contain
rules of the form g — ¢’, with q,q4’ € Q.

Semantics: Allow to re-label a position from g to ¢'.

Equivalence of e-NFTA
For every e-NFTA A there exists an equivalent NFTA A’.

Proof (sketch): Construct the rules of A’ by a saturation procedure.



Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f € F, and g1,...,qn € Q, there exists
at least one rule f(qg1,...,q,) — g € A.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of A is accessible if there exists a tree t s.t. t —7% q.
A is said to be reduced if all its states are accessible.



A pumping lemma for tree languages

Lemma
Let L be recognizable. Then there exists a constant k such that for all t € L
with H(t) > k there exist contexts C, D € C(F) and u € T(F) satisfying:
@ D is non-trivial (i.e. not just a variable);
e t = C[D[u]];
e for all n >0, we have C[D"[u]] € L.

Proof: Let k be the number of states of an NFTA A recognizing L.
Then an accepting run for t has positions p, pp’ (p’ # ¢) labelled with the
same state q. Let C := t[x]p, D = t|p[x]p, and u := t[py. We have
t = C[D[u]] € L, D[u] =% g, and u —7% q, hence the accepting run of ¢
implies D[q] —% g and C[q] =% qr, for some final g¢. Therefore,
Clu] =% gr and for any n > 0, (by induction)

C[D"H[u]] =4 CID"[Dlall] =4 CID"[ql]l =4 Cla]l =4 ar



lllustration of pumping lemma

Let L= { F(g/(a),g'(2)) | 1 = 0} for F = {£(2), g(1),al.
Suppose (by contradiction) that L is recognizable by NFTA A with k
states. Let t = f(g*(a), g*(a)).

q{f
g g
¢ ¢
D\ k+1
9] g
u
—L : .
a a

Pumping D creates trees outside L = L not recognizable.



Top-down tree automata

Definition
A top-down tree automaton (T-NFTA) is a tuple A = (Q, F, I, A), where
Q,F are as in NFTA, | C Q is a set of initial states, and A contains rules
of the form

q(f) = (q1,-- -, qn)

for f € F,and q,q91,...,qn € Q.
Move relation: t — 4 t’ iff

o t = Clq(f(t1,...,tn))] for some context C, f € F,, and
ti,...,th € T(F);

o t' = C[f(qi(t1),- ., qn(tn))] for some rule g(f) — (q1,---,qn)-
t is accepted by A if g(t) —7% t for some g € .



From top-down to bottom-up

Theorem (T-NFTA = NFTA)
L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = (Q,F, G, A) iff it is accepted by
T-NFTA A' = (Q, F, G, A'), with

A ={q(f) = (q1.---,qn) | f(q1,--..qn) > g€ A}
Proof: Let t € T(F). We show t =% q iff g(t) =%, t.
@ Base: t = a (for some a € Fy)

t=a—%q a—aqg q(a) —»ar e qla) =7y a

@ Induction: t = f(t1,...,t,), hypothesis holds for t1,...,t,
f(tr,....th) 25 g Aq1, .- qn: F(q1,. -5 Gn) =a gAYVt = g
Aq1,...,90: q(f) =ar (g1, ..., qn) AVi: qi(ti) =p b
q(f(te, ... tn)) =a F(qu(t), ..., qn(tn)) =0 F(t1,... tn)



From NFTA to DFTA

Theorem (NFTA=DFTA)
If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = (Q,F, G,A) an NFTA recognizing L.
The following DCFTA A’ = (29, F, G', A') also recognizes L:

°©G'={SCQISNG#0}

o forevery f € Fpand S1,...,5, C Q, let f(S1,...,5,) = S e,
where S={qge Q|3q1 € S51,...,9,. € Sn: f(q1,-..,qn) > g€ A}

Proof: For t € T(F), show t =%, { g |t =% g}, by structural induction.

DFTA with accessible states

In practice, the construction of A’ can be restricted to accessible states:
Start with transitions a — S, then saturate.

Deterministic top-down are less powerful
E.g., L={f(a,b),f(b,a)} can be recognized by DFTA but not by T-DFTA.



Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let (@, F, G,A) be a DCFTA recognizing L.
Then (Q,F, Q\ G, A) recognizes T(F)\ L.

Union (juxtapose)

Let (Q;, F, G;, A;) be NFTA recognizing L;, for i =1, 2.
Then (Q1 W Q2, F, G1 U Go, A1 U Ap) recognizes Ly U Lo.



Cross-product construction

Direct intersection
Let A; = (Q;, F, G;, AA;) be NFTA recognizing L;, for i = 1,2.
Then A= (Q1 X @2, F, Gy x Gy, A) recognizes Ly N Ly, where

f(gr,....qn) > g€ A1 f(q},....q,) = ¢ €y
f{q1,qy),---,{an, @h)) — (q,q') € A

Remarks:

o If A;, Ay are D(C)FTA, then so is A.

o If Ay, Ay are complete, replace Gi x Gy with (G1 X Q) U (Q1 X Go)
to recognize L1 U Lo.



Tree languages and context-free languages

Front

Let t be a ground tree. Then fr(t) € F§ denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f(a, g(b, a), c), fr(t) = abac

Leaf languages
o Let L be a recognizable tree language. Then fr(L) is context-free.
@ Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(.A)).
Proof (idea):
@ Given a T-NFTA recognizing L, construct a CFG from it.

e L is generated by a CFG using productions of the form A — BC | a
only. Replace A— BC by A — A and A, — BC, construct a
T-NFTA from the result.



Visibly pushdown automata

Visibly pushdown automaton

Let A= (Q,X%,I, T,qoz, F) be a pushdown automaton.
A is called visibly pushdown (VPA) if there exist Yo, X1, X2 such that

@Y =YgWXiWis
o TC U7 o(@xT) xT;x(QxT)

Closure properties
Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let L C T(F) be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.



From TA to VPA

Let A= (Q,F,l,A) be a T-NFTA accepting L.

For convenience, assume | = {qo} is a singleton (closure under union). We
construct a single-state VPA B = (X,I, T, qo) accepting by empty stack
and recognizing the terms of L (can be converted into a normal VPA).

° ZOZfOU{)},le]:\]:o, 22:{,, (}
o r=QuU{r|relA r=q(f)—(q1,-.-,qn), n>1,0<i<n}
o T=U,en Tr

o for r =q(a) — ¢, we have T, = {(q,a,¢) };

o for r=q(f) = (q1,...,qn), n > 1, we have

Tr= {<q’ f, I’o>,<r0, ( ,Q1f1>,<fm ) 75>}
U{(ri, o, qis1nis1) [1<i<n}

ldea: ¢ —t>;‘3 eiff q(t) =% t



From TA to VPA: Example
Consider a T-NFTA (Q, F, I, A) accepting L = { f(g'(a)) | i > 0}:
° Q={qo,q1,qr}, F ={f(2),8(1),a}, I ={ar};
o Ai={a:q(a) » e, pB:q1(g) = q0, 7:q1(8) = q1, 0:q¢(f) —
(g1, q1)}-
We construct the single-state VPA (X, T, T, gf), where:

Yo={a, )} La={fg} o={., (K

= QU {po,£1,7,71, 00, 61,02}

To ={(qo0,a,¢)};

Ts = {(q1,&,B0), (Bo, (,q0B1), (b1, ) €)};

T, = {{q1,8:7), (v, (,qm), (1, ) &)}

Ts = {{qr, . d0), (0o, (,qud1), (61, . ,q1d2), (02, ) &)}
Run on f(g(a), g(g(a))):

qr 4 do 4 q101 % Bodr 4 qoB101 = B161 ), 51 = q102 5 Y002 S q17102

% o102 S qoB17102 > B1y102 N Y162 ), P e



Tree homomorphism

Definition
Let X, := {x1,...,x,} and F, F' ranked alphabets.
A tree homomorphism is a mapping h : F — T(F', X),
with h(f) € T(F,X,) if f € F.
Extension of h to trees (T(F) — T(F')):

@ h(f(ty,...,tn)) = h(F){x1 < h(t1),...,xn < h(ts)}
Intuition:

e h(f) “explodes” f-positions into trees

@ reorders/copies/deletes subtrees.



Examples
Example
o F={f(2),g(1),a}, 7' ={f'(1),8'(2),c,d}
o h(f) = f'(g'(x2, d)), h(g) = &'(x1, c). h(a) = &’(c, d)

f f
RN |
g g = g
| | VAN
a a g d
RN
g c
/N
c d

Example (ternary to binary tree)
o F={f(3),a,b} 7' ={g(2),a b}
o hx(f) = g(x1,8(x2,x3)), hs2(a) = a, hxa(b) = b



Properties of homomorphisms

A homomorphism h is
@ linear if h(f) linear for all f;
e non-erasing if H(h(f)) > 0 for all f;
flat if H(h(f)) =1 for all f;
complete if f € F, implies that h(f) contains all of X,;
permuting if h is complete, linear, and flat;
alphabetic if h(f) has the form g(xi,...,x,) for all f.

Example: hsp is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability
e Example: h(f) = f'(x1,x1), h(g) = g(x1), h(a) = a
o L=1{f(g'(a))|i >0} (recognizable)
e h(L) ={f'(g'(a),g'(a)) | i > 0} (not recognizable)



Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L C T(F) be recognizable and h: F — F’ a linear tree homomorphism.

Then h(L) is recognizable.

Illustrating example:

o F={f(2),g(1),a}, 7' ={f'(1),8'(2),c,d}

® h(f)=1f(g'(x2,d)), h(g) = g'(x1, ), h(a) = g'(c,d)
o L={f(g'(a).g"(a)) | i,k >0}

® A= {{qo,q1,9r}, F,{qr}, A) recognizes L with

A={a:a—qo, B:g(q)— q,

v :g(q1) = q1, 6 :f(q1,q1) = ar}

ar £ ) qr !
Run on A / \ a ‘, k) Construct automaton
Rules used %/g €3 g for h(L) preserving
to produce states ‘ ‘ /N state labels from A
- B “g d +
/ \ Guess the rules.
qo g/ c
7N B

« d



Automaton construction for h(L)

Given a reduced NFTA A = (Q, F, G, A) for L,
construct NFTA A" = (Q', F', G, A’) for h(L).
o @ =QU{(r,p |reAIFecF:r=1f(..)—...,p€Posys}
e A’ contains, for each transition r : f(s1,...,s,) — s in A and
p € POSh(f)I
o f'((r,pl),...,(r,pk)) — (r,p) if h(f)(p) =" € F}

o s; — (r,p) if h(f)(p) = x;
o (r,e) —>s

ar f 0 ar g1 (0,e)
\
e €9 — gy
| \ 6,11y
q Q1 1 (B,€)
42 2 e g
<3_1>/ \ (6,12)
do g/ c
/(a, 5)\ (8,2)
@

d
(a, 1) (@, 2)



Correctness

To prove: A" accepts h(L).
e h(L) C L(A"):
For t € T(F), prove that t =% q implies h(t) =% q,
by structural induction over t.

e h(L) D L(A):
For t' € T(F'), prove that if t' =%, g € Q,
then there exists t € T(F) N h~1(t') with t =% q,
by induction on number of states (of @) in the computation t' =%, q.



Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L C T(F') be recognizable and h : F — F’ a tree homomorphism (not
necessarily linear). Then h=1(L) is recognizable.

Given an NFTA A" = (Q, F', G, A") for L,
construct NFTA A = (Qu {!}, F, G, A) for h™1(L).

Foralln>0and f € F,, and p1,...,pn € Q,

e add f(!,...,!) = I to A;
o if h(f){x1 < p1,...,%Xn < pn} =% q, add f(q1,...,qn) = g to A,
with:

pi if x; appears in h(f)
qi = .
I otherwise

Proof: Show t —% q iff h(t) =%, q, for all t € T(F).



Intersection problem

Theorem
The following problem is EXPTIME-complete:
Given tree automata Ay, ..., Ay, is L(A1)N---NL(A,) # 07

Proof (sketch):

@ Membership: Compute the accessible tuples of states in A; x --- X A,.

@ Hardness: Simulate an polynomial-space ATM M with input of length

n and space p(n) (using EXPTIME=APSPACE).
If M accepts the input, there is an accepting run.
Encode runs of M as configuration trees.
Construct a collection of T-NFTA A;, for i =1,..., p(n), such that
the intersection of their languages is non-empty iff M has an
accepting run. A; checks the following:

@ if M starts with the correct configuration;

@ if all configurations in the run are of length p(n);

© if all final configurations are accepting;

@ if the part of the configurations around the i-th symbol are coherent.

Detailed proof:



Congruences on trees

Definition: Congruence
Let = be an equivalence relation on T(F).

o = is called a congruence if for any n > 0 and f € F,,
U = wvi,...,Uy = v, we have

f(ur,...,up) =Ff(vi,...,vp)

@ = saturates Lif u=v impliesue L < v e L.
For L C T(F), write u=; v if

VCeC(F): ClulelL<=Clvlel

Myhill-Nerode Theorem for trees
The following are equivalent:
Q@ L C T(F) is recognizable.
© L is saturated by some congruence of finite index.

© =, is of finite index.



Myhill-Nerode Theorem

Application:

Consider L = { f(g'(a),g'(a)) | i > 0}.

For any pair i # k, consider C = f(x, g'(a)).

Then Clgi(a)] L but Clg(a)] ¢ L — g'(a) £, g%(a)
Therefore = is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):
@12 Let Abe DCFTAand let u=viff u =% g% < v.
Then = is a congruence of finite index and saturates L.

@ 2 — 3: Let = be a saturating congruence, u = v implies v =; v
(prove u = v implies C[u] = C[v] for all C, by recurrence over height
of position of x in C).

e3> 1 Let A=(T(F)/ =, F,L/ =,A), with
f([t], -, [un]) = [F(u1,. .., un)]

foralln>0, f € Fp, u1,...,up € T(F),
where [u] is the equivalence class of u € T(F);

Remark: This can be shown to be the canonical minimal DCFTA:



Path languages

Path languages
Let t € T(F). The path language m(t) is defined as follows:
e if t = a € Fy, then 7(t) = {a};
o if t="1(t1,...,tn), for f € Fp, then n(t) = { fiw | w € 7(t;) }.
We write w(L) = {7(t) |t € L} for L C T(F).
Example: L= {f(a, b),f(b,a)}, m(L) = {fla,f2b,f1b,f2a}.

Path closure

Let L C T(F) be a tree language.
@ The path closure of L is pc(L) ={t|n(t) Cx(L)} D L.
o L is called path-closed if L = pc(L).

Example: pc(L) = {f(a, a), f(a, b), (b, a),f(b,b)}, so L is not path-closed.



Path closure and T-NFTA

Lemma
Let L C T(F) be a recognizable tree language. Then:
e m(L) is a recognizable word language.

@ pc(L) is a recognizable tree language.

Proof: Let A= (Q,F,G,A) be a reduced T-NFTA for L.
e Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

e Construct A" =(Q,F, G, A’) for pc(L) as follows:
for all a € Fy:
g(a) =ae — q(a) —a e

foralln>1, f € Fp:
Viiq(f) =a(qi1,---,Gin) — q(f) =ar (g1, qnn)

Let L = L((Q, F,{q},A)) and Ly = L((Q, F,{q},A")).
Prove t € Ly < m(t) C m(Lq) forall g € Q, t € T(F) by induction.



Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L C T(F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof (sketch):

e "
Let A = (Q,F,G,A) be a reduced T-NFTA for L.
Construct a T-DFTA A’ = (29, F, G, A’) as follows:
for all a € Fy, S(a) —ar e if 3g € S, q(a) —na &;
forall n>1,f € Fp,, S(f) =ar (S1,...,5n)

where S; ={gq; |39 € S,q(f) —=a (g1,.--,qn) }.

o
Let A be a complete T-DFTA for L, define Lg as before.
Prove that 7(t) C 7(Lg) implies t € Lg, for all g € Q,t € T(F).



Logic over trees

Alternative specification for sets of trees
E.g., to describe valid HTML documents:
@ A p tag may only appear inside a body tag.
@ A d1 tag must contain pairs of dt and dd tags.

Roadmap
@ We shall define a logic that defines such properties of trees.

@ The sets of trees definable in that language will be recognizable.



Recall: First-/second-order logic
First-order logic (FO)

Let 0 = ((Ri)1<i<n) be a relation signature and X7 = {x1,x,...} a set of
variables. The first-order formulas FO(o) are:

Ri(Xjys---»xi) | x=X"|=¢ | dpANd | Ix.0
Second-order logic: allow quantifying over relations

Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let o as before and X; = {x1,x2,...}, &> = {Xq,Xz,...} sets of first-
/second-order variables. The set of MSO(o) formulae are:

Ri(Xjys--»Xi) | x=X|xeX| ¢ | oA |Ix¢|IX.0
Weak second-order: only quantify over finite sets

WSKS (weak MSO over with k successors)
WSkKS = MSO(<y,...,<k)



Definition

Semantics of MSO

Let 9t a domain, ¢ a signature, v a valuation with

e v(x) € M for

o y(X)CMfor X € Ay

M, o,v ): Ri(XJ'U
Mo, v Ex=x
M,o,vExeX
M, o,v E ¢

M,o,vE GNP
M, o,v = Ix.¢
M, o,vEIX.P

X € X

(V(Xj1)7 e '7V(in)) € R
v(x) = v(x')

v(x) € v(X)

M, o,v ~ o

MovES AN MaoviEP
dme M. Mo, v[x — m| =
IM C M. M, 0, v[X s M] = &

We omit 9, o when clear from context.



(]

Recall: Common abbreviations

Vx, VX, V, etc can be expressed in the usual way.
XCY:
Vx.(xeX > xeY)

Z=XUY:
Vx.(x€Z+xeXVxeY)

Partition(X, X1,...,Xm):

<VX.(X€X<—>i:\n}1X€X;)> A (

Similarly, X =0, X ={x}, X =VY,...

/\/\Vx.(xgé XiVx¢ XJ)>

i=1j#i



WSS and trees

Let M = N*, we fix <; to be the relation <; = { (p, pip’) | p, p’ € N* }.
We define < = Uf-;l <; and < as usual, and ¢ for the minimal element.

We write xi to denote the least g s.t. v(x) <; q.

Coding of a tree
Let t € T(F) and k the maximal arity in F.
As a shorthand, define Sr := (S5¢)fer.
We note C(t) := (S, Sr), where:
© S =Urer St
o forall f € F, S ={p € Pos: | t(p) =1 }.

(S, Sr) encodes a tree if Tree(S, Sx) holds:
Tree(S,Sr) = S # 0 A Partition(S, Sr)
ANVxVy.(x€eESANy<x)—yeS
A /\EZ1 N /\Z:I(X €S —xi€S)
A /\n:l /\fef,, /\i:n+1(X € Sf — Xi ¢ 5)



Semantics of WSkS on trees

Coded valuation

Let F/ := F x 2MY% The arity of (f,7) is n if f € F,.
Let t € T(F) and v a valuation. The tuple (t,v) is coded by a tree t' €
T(F'), as follows, for all p € Pos and t'(p) = (f,7):

o if x € A then 7(x) = 1 iff p = v(x);
e if X € A, then 7(X) =1 iff p € v(X).
A tree t' € T(F')is valid (t' € T, (F')) if it codes some (t, v).

Semantics of WSkS

Let ¢ be a formula of WSKS and V C (A1 U X)) W ({S} U Sr) its free
variables.

L(¢) = {(t,v) € T(F) | VI(S,S7) = C(t)] = ¢}



Examples

o Let t =f(g(a),a).
Left: (t,v) with v(x) =¢, v(y) =11, and v(Z) = {¢, 11, 2}.
Right: (t,v/) with v/(x) =1

(f,101) (f,0)
VAN VAN
(g,000) (a,001) (g,1) (a,0)
| |
(a,011) (a,0)

e We have C(t) = (S, 5¢, Sg, Sa) with S = {¢,1,11,2},
Sr={e}, Sg = {1}, S, = {11,2}.

o V[(S5,5F) — C(t)] = x € S, thus (t,V') € L(x € S)

o te L(IxxeSy)



WSS and recognizability

Theorem

A tree language L C T(F) is recognizable
iff L = L(¢) for some formula ¢(S, Sr) of WSKS.

Proof: (sketch)

o DCFTA A — WSKS: Construct formula ¢ that
(i) verifies that the structure is a tree;
(i) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.
o WSKS ¢ — NFTA A: Proceed by recurrence on ¢,
show that all subformulae of ¢ are recognizable.



Example: DCFTA — WSkS

o Let Q = {CIqula Qf}y F = {f(2),g(1),3}, G = {qf}' and rules
a—qo g(q)—aq1 gla) =g f(q1,91) — agr

(automate a compléter !)

@ Corresponding formula:
¢ = Tree(S,Sr)
A 3Qo, Q1, Qf.Partition(S, Qp, Q1, Qr)

A Vx.(x €S, — x € Qo)
AVx.((x € Sg Axl e Q) = x € Qr)
AVx.((x € SgAxle Q) = xe Q)
/\VX((XESf/\XlG QL AX2€ @) — x € Q)
A
A€ €E Qf



Example: WSS — NFTA

Consider F = {f(2), g(1), a}.

Ay = ({q,q'}, F x 2} {¢'}, A) with transitions
(a,0) > q
(g, 1)(a) = ¢d  (g,0)(q) > q (8,0)(q') = ¢
(£.0)(q,q) > q (f,0)0(q.d') = ¢ (£.0)(q'.q) = ¢
accepts L(x € Sg) (scans for a single g-position with 7(x) = 1).
o ¢ =3dx.¢
Obtain Ay from Ay by stripping 7(x):
Ay =({q.q'}, F.{qd'},4)
a—q
glqg)—~q glag)—>a gld)—d
f(a,9) > q f(a.q)—>q f(d,9)—=d



Unranked trees

We now consider finite ordered unranked trees.

@ ordered : internal nodes have children 1...n

@ unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

@ “A html tag contains an optional head and an obligatory body."
@ “A div tag contains an unlimited number of p, o1, ul, ...tags."

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos C N*.



Hedge automata

Definition: (Bottom-up) hedge automaton
A hedge automaton (NHA) is a tuple A = (Q, X, G, A), where:
@ @ is a finite set of states;
@ X a finite alphabet;
@ G C Q@ are the final states;
@ A is a finite set of rules of the form
a(R) = q
forae X, g€ Q, and R a regular (word) language over Q.

Example: Q :={qx,qn, 9b, 9p}, * = {x, h, b, p}, G :={qx}, and rules
x(ahas) = ax  h(e) = an b(ay) = a ple) = gp
This accepts trees of the form x(h, b(p, ..., p)) and x(b(p,...,p)).



Semantics of hedge automata

Remark:

@ The R in a(R) — q are called horizontal languages.

@ They are (finitely) represented by regular expressions or finite
automata.

Computation of NHA

Let t € T(X) be a tree. A run or computation of Aon tisatreet' € T(Q),
i.e. for all p € Pos:

o ift(p)=ack t'(p)=qg€Q, and PosnNpN = {pl,...,pn},
there exists a(R) — g € A such that t/(pl)---t/(pn) € R.

Acceptance condition: t'(¢) € G

L C T(X) is called hedge-recognizable if L = L(.A) for some NHA A.



Complete / normalized / deterministic HA

An NHA is . ..

o complete if for all t € T(X), t =% q for some g;

o fullif for all a € ¥, g € Q, there is some a(R) — q;

o reduced if a(R1) — q,a(R2) — g € A implies Ry = Ry;

o deterministic (DHA) if a(R1) — q1,a(R2) — g2 € A implies
RiNRy=0or g = q.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

@ complete: add garbage state, as usual
o full: add rules a()) — g where necessary

@ reduced: replace a(R;) — g and a(Rz2) — q with a(Ri U R2) — g
where necessary



Determinization

Determinization of NHA

Let A= (Q, %, G,A) be a complete, full, reduced NHA. The complete, full,
reduced DHA A’ = (29 ¥, G’, A’} is equivalent to A where:

o G'={5CQ|SNGAD}
o let R, 4 denote the (unique) language s.t. a(R,q) — q € A;
® Riqi=Ragld = (SU{d'})|d' €Q,5CQ]

o forallae X, SC Q, we have a(R,s) =+ S € A,

- (15)1 (Y

qes q¢S



Encoding unranked trees

Bijective encoding of unranked into ranked trees
o Let X an alphabet; Fy :={Q(2)} U{a(0) | ac X }.
@ Define the coding Co(t) € T(Fx) of t € T(X) as
Co(a(ty, ..., tn)) = ©(Q(...(0(a, Co(t1)), Co(t2)),--.), Coltn))
N

n

Example:
X (]
RN /N
h b = @© ©
VRN /\ /\
p P p X h @ P
/\
© p
/ \

b p



Recognizing encoded trees

Theorem
A language L C T(X) is hedge-recognizable iff Co(L) is recognizable.

o NHA — NFTA:
Let A=(Q,%, G,A) an NHA; A—{al(Rl)—>q1,... n(Rn) = an};

R; represented by det.compl. FA A; = (S;, Q, 50 , Fi,6).

Construct NFTA A" = (Q', Fx, G, A’), where:
° Q' = QUL+J§’:15;
o A=, (AT UALUAL)
A
A
Al

{a,—)so }
{Q(s,q) = di(s,q) | s€ Si,ge Q}
{sr = aqi|sreFi}



Example: NHA — NFTA

°© Q:={ax,9n b, qp}, T ={x, h,b,p}, G :={qx}, and rules
x(arap) = ax  h() = an blay) — ap p(e) = qp

b
@ Automaton for first rule: Q@H

@ Single-state automata with sy, sp, s, for the other rules

AN
50/\5;1 /\sp

h an sb@ P g

/N,

Sb@ P ap

/N,

*p P qp



Recognizing encoded trees

Theorem
A language L C T(X) is hedge-recognizable iff Co(L) is recognizable.

o NFTA — NHA:
Let A= (Q,Fx,G,A) an NFTA (without e-moves).

Define Agr := {(q0,q1,92) | ©(q0,91) —a G2}

and Out :=GU{q|34¢,q9":©(q,q9) —>a q"}.

For g € Q,q' € Out, let Aq ¢ = (Q,Q,q,{q'}, Ar) a word
automaton.

Construct NHA A" := (Q, X, G, A’), where
A ={a(L(Aqq)) = d | 3a—a q,q € Out}

Corollary

Hedge-recognizable languages are closed under boolean operations.



Unranked trees and logic

UTL = weak MSO(child,next) interpreted over Mt = N*, where
e child(x,y) iff y = xi for some i € N
@ next(x,y) iff 3z, i :x=zinNy =z(i+1)
Further predicates can be defined from this:
e right(x,y) = "y is a right sibling of x"
@ desc(x,y) = "y is a descendant of x" = “x < y”

Notions like L£(¢) are defined in analogy with WSKS.

Theorem: UTL = NHA
A language L C T(X) is hedge-recognizable
iff L = L(¢) for some formula ¢(S, Sy) of UTL.



UTL = NHA: Proof sketch

UTL — NHA:
Let ¢ be an UTL formula. Define ¢’ of WS2S s.t. L(¢') = Co(L(9)).

Define leftmost(x, y) as
VX: (x€XAVz,Z :(zeXANZ =217 €X)
AVz:(zeX —=z=xV(3Z:Z e XNz=121)))
= (yeXAVz:zeX —>z<y)
("y is the maximal position in x1*")

Then child and next can be translated as follows:
child(x,y) = 3z: leftmost(z,x) A leftmost(z2,y)
next(x,y) = 3Jz: leftmost(z12,x) A leftmost(z2,y)



UTL = NHA: Proof sketch

e NHA — UTL:
Let A be a complete, full, normalized, deterministic NHA.

Construct formula ¢(S, Sy) of UTL that

(i) verifies that the structure is a tree;

(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;

(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA — WSKS construction is (iii):
(iii): whenever the computation puts g on an a-labelled position p,
guess a run of the automaton for R, 4 over p and its children



Tuples of trees
Let t1,t> € T(F) ranked trees. Add a fresh symbol — to Fy and let
F={{f,g)(k) | f € Fm g€ Fnk=max{m,n}}.
(t1, tp) denotes the ranked tree t € T(F’) as follows:
@ Pos; = Pos;, U Pos;,
o for all p € Pos;,
(f,g) ift e Posy N Pos,, ti(p) ="f,ta(p) =g
t(p) =< (f,—) ift € Pos, \ Pos,, ti(p) = f
(—,g) ifte€ Pos, \ Posy,t(p) =g

Example:

Y
Y
L — 00y — 0y
—~
|
~
P
L
|
-
—~
|
)
-



Tree rela;uons
We consider (binary) relations R C T

@ Let PRy be the class of recognizable relations
(= recognizable languages over F').

@ Let X, be the class of finite unions of cross products
Re X iff R=J", ( D s 1l )) for some n > 0 and Lgi),Lgi)
recognizable for all i

o Let T5 be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer
A ground tree transducer (GTT) is pair G = (A1,.A2) of bottom-up NFTA

over F. (The states of A; and Az may overlap.)
The relation accepted by G is

{(t,uy | In>0, CeC"(F),
t1,...,th € T(]:), ui,...,Uun € T(]:), q1,..-,qn:
t=Cltr,...,ta] Nu= Clua,...,up)
/\Vl'it,'—>f41 q,-A;‘<—u,-}



Relations between ‘R,, X,, %)

Propositions
Q@ N> < X and T € X5
Q@ RN Z Trand X, € %r
QO X CHe
Q T, CHhp
Q@ XUT C Ry

Proofs:
Q {(t,t) |t e T(F)}isin Tr NNRy but not X,
@ 0 isin X5 NR, but not %o
© see next slides
@ see next slides

@ see next slides



Proof of X, C R,

Q Let A; = <Q,',.F, G,',A,') (for I = 1,2) be NFTA
and let R = [:(.Al) X E(Az) € Xo.

Construct NFTA A = (Q, F', Gi x Gy, A) with L(A) = R:
0 Q=(QU{-})x(QuU{-})
o forevery f € Fy, g € Fpum>n, ~(f =g=-)
A contains
° <f7g>(<q17q{>7 R <qﬂ7 q;1>7 <qﬂ+17 _>7 R <qm7_>) - <q7 q/> if
f(q1,---,9m) = g € A1 and g(q1,...,q,) > ¢ € As
o (g,f)((q1,G1)s -5 (qn, Gn)s (= Qni1)s - - > (= qm)) = (q,q) if
f(qi,--,qm) = g € Ao and g(qu,...,q0) = g’ € A

(reminder: we assume that — is a fresh symbol in Fp)

Intuition: Modified cross-product construction.



Proof of ¥, C ‘A,

Q Let G = (A1, A2), A; =(Q;, F, G, AA}) (for i =1,2).

We construct NFTA A’ =(Q', F', {qr}, A") with L(A") = L(G).

Construct NFTA A = (Q,F', G, A) from A;, Ay as in previous proof.
Then:
o Q' =Qu{gr}
o AN'=AUALUA,
Ar={(q,9) > qr|geQNQ}
A2:{<f,f>(qf,...,(7f)—>(7f|fG}—,,, f#—}

Intuition:

A reads pairs of trees from Ay, Ay;

A; allows to plug pairs of subtrees into some context C;
Ay reads the remaining context C.



Proof of X, UT, C R,

Q@ Let F ={f(1),g(1),a}.
Let R={(t1,t2) | IC € C(F),t € T(F):t1 = C[t] A to = C[f(t)] }.
o R ¢ xz
By pigeonhole principle using (f'(a), f*1(a)), i > 0.

o R ¢ ‘I2Z
Suppose that R is accepted by GTT (A;,.A) with n states in common.

For all i > 0, let g; such that g’(a) =%, g; and f(g'(a)) =%, gi-
Contradiction follows from pigeon-hole principle.

o RefRy:
Let A= ({q.,9r,qg, 9}, F',{q}, A) with:

(=a) =g (xy)(ax)—a, a—q (x,x)(q) —q



Closure properties

Boolean closure
X, and R are closed under boolean operations.

Transitive closure
If R € Ty, then R* € T>.

Proof: Let (A;,.A2) with states Q1, @2 a GTT accepting R.
We construct (1, B>) accepting R* by adding transitions to .4; and A,
using the following saturation rule:

o Fori#jandallgec QiNQ, ¢ € Q;, if there exists a tree t s.t.
* * /
t—p g and t—p 4q
then add g — ¢’ to B;.



Transitive closure: Intuition

Suppose that (t,v), (v,u) € R. The interesting case is illustrated below:

A
Ak 0

Suppose that (t, v) differ in a position p

and (v, u) in positions pp, ..., ppn.

Then in A, we want the subtrees of u at pps, ..., ppn to be substitutable
for the corresponding subtrees in v.



Transitive closure: Intuition

Consider the runs of t, v, u in (Aj, A2):

N -7 _

A A /%z\ .

\

ff “ e

A i

Adding g; — ¢; to the right-hand side automaton achieves the objective.



Transitive closure: R* C L((By, 5))

Proof by induction: Let (t,u) € R', for i > 0.

o i =0: trivial

o i—i+1 Letvst (t,v) € R and (v,u) € R.
Then (by induction) (t,v) is accepted by (B, B2).
Let P be the positions in which (t, v) differ
and P’ be the positions in which (v, u) differ.
All incomparable pairs in P x P’ are handled by the definition of GTT.
For p € P and ppl,...,pp, € P’ consider the previous drawings.
The case ppl,...,pp, € P and p € P’ is symmetric.



Transitive closure: R* D L((By, 5))

Let (Bi,B}) denote the GTT after adding i transitions
and show that its language is included in R*.

e i =0: trivial
@ i —i+1: Let g — ¢’ be the transition added in the (i + 1)-th step
(to By, say) and let g — ¢’ be used j times in accepting some (t, u).

If j =0, then (t,u) € R* by induction hypothesis. Otherwise:
@ there exist n >0, C € C"(F) etc such that t = C[ty, ..., t,],

u= Cluy,...,u,] and Vk : t; —>*B,-+1 gk B,-f{ < U.
1 2
@ Suppose ty = C'[t'] —%iﬂ C'lq] = C'[d'] —>l*3£+1 qx for some k, C' t'.

© There must be some v € T(F) with v =%, gand v =7, ¢".
2 1

© From (2) et (3) we have C'[v] =71 gk
1 . .
@ Replacing t, by C'[v] in (1) we get (t[t'/v],u) € L((BITY, B5T))
with fewer than j times g — ¢, thus by ind.hyp. (t[t'/v], u) € R*.
Q From (2) and (3), t/ —>;,-+1 q g < v, with fewer than j times g — q.
1 2
@ From (6) by ind.hyp. (t,t[t'/v]) € R*.



Application: XML

XML = Extensible Markup Language
@ Conceived for platform-independent exchange of structured data

@ An XML document consists of tags with attributes
and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>
<title>My web page</title></head>
<body><p>Bonne ann&eacute;e !</p></body></html>

o A well-formed XML document forms a tree
(balanced tags, one single root tag)

o Testing for well-formedness / generating tree from document:
visibly pushdown automaton, LL/LR parser



Valid XML documents

@ Languages of XML documents defined by schemas
(DTD, XML Schema, Relax NG)

@ Schemas define permissible tags (+attributes) and their nesting
@ Examples of XML languages: HTML, SVG, KML, ...

@ Valid XML document: well-formed document satisfying a schema
@ Example: XML-Schema for KML



DTD for XML

DTD = Document Type Definition

DTD define a (restricted) subclass of XML languages.
Essentially, defines a regular language of child tags for each tag type.

Example (from Wikipedia):

<!ELEMENT html (head,body)>

<!ELEMENT hr EMPTY>

<VELEMENT div (#PCDATA | p | ul | | table | pre | hr |
h1|h2|h3|h4|h5|/h6 | blockquote | ...)*>

<!ELEMENT 41 (dtldd)+>

Validity checking of DTD
The language of XML documents defined by DTD is accepted by NHA.



Restrictions on DTD

Expressivity of DTD
There are hedge-recognizable languages that cannot be defined by DTD.

Example: {f(g(a)), ' (g(b))}

DTD contain another restriction:

It is an error if the content model allows an element to match
more than one occurrence of an element type in the content
model.

E.g., (ablac) is not allowed (but a(b|c) is).



Deterministic regular expressions

Definition: Marked RE
Let e be a RE over . The marked RE € is a RE over ¥ x IN obtained by
adding a unique subscript to each letter in e.

Example: e = (ablac), then & = (a1b2]azcs)

Definition: Deterministic RE

Let e a RE over X. We call e deterministic if € satisfies the following:
for all u,v,w € (X xIN)* and a € ¥, if vajv, uajw € L(€) then i = j.
Example: e = (ablac), € = (a1bz2]|azcs), not deterministic because
a1by, azcy € L(é)



Parsing deterministic RE

Parsing det. RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial
(linear) time.

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.



XML Schema

XML Schema can define more expressive XML languages.
Example:

<xsd:complexType name="track">
<xsd:sequence minOccurs="1" maxOccurs="unbounded">
<xsd:choice>
<xsd:element name="invSession" type="invSession"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="conSession" type="conSession"
minOccurs="1" maxOccurs="1"/>
</xsd:choice>
<xsd:element name="break" type="xsd:string"
minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>



XML Schema and Hedge Automata

XML Schema = NHA

XML Schema (restricted to occurrence and nesting conditions) correspond
to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

@ constraints on data types in attributes and pcdata

@ consistency constraints (e.g., unique keys)



XSL Transformation

@ XSLT allows to transform XML documents into other documents (incl.
non XML)

@ XQuery used to specify nodes on which to apply a transformation
Example (from Wikipedia):

<xsl:template match="//title">

<em>

<xsl:apply-templates/>

</em>
</xsl:template>
<xsl:for-each select="book">

<xsl:sort select="price" order="ascending" />
</xsl:for-each>



Tree transducers

Definition: Bottom-up tree transducer

A (finite bottom-up) tree transducer (NUTT) is a tuple U =
(Q,F,F',G,A), where:

e @ is a finite set of states and G C @ are final states;
e F,F’ are finite ranked alphabets;
@ A is a finite set of rules of the form
f(qi(x1), - -, an(xn)) = q(uv)
for f € Fpand q,q1,...,q0 € Q,u € T(F',X,), or
q(x1) = ¢'(v)
for g,q € Q,u e T(F',X1) (e-rule).
Example: F = {f(1),a}, 7' = FU{h(2),g(1)};
U = {q,q9r}, F, F ., {qr}, A), with rules
a—q(a)  flglx)) = a(f(x)) | a(g(x1)) [ ar(h(x1,x1))



NUTT move relation

Move relation
Let t,t' € T(F,F, Q). We write t —, t’ if the following are satisfied:
o t = C[f(qi1(uv1),...,qn(un))] for some context C and
Ui, ..., up € T(F);
o t' = Clg(u{x1 + u1,...,xn < up}] for some rule
f(q(x1), .., gn(x1)) — q(u) of U.

Idea: Like an NFTA, but can additionally reorder/copy/delete subtrees and
“explode” symbols into subtrees like a homomorphism.

A NUTT U defines the relation R(U) = {(t,t') | t =}, q(t'), g€ G }.



Relations of NUTT

We write U(t) for { t' | (t,t') € R(U) }.
Examples:
e Example 1: Uy (fffa) = {h(ffa, ffa), h(fga, fga), h(gfa, gfa), h(gga, gga)}

o Example 2: F ={f(2),g(1),a}, F' = F;
Z/{Q = <{q7 qla q//}vj:; -F,, {q//},A>, Wlth rules

a—q(a) glalx)) —alglx))  flalxa),q(x)) = q(f(x1, x2))
a—d(a) g(d'(x)— q(glx))
f(a(x), q'(x2)) = ¢"(g(>1))
R(Us) = {(f(t,g™(a)), g(t)) |t € T(F),m>0}



Properties of NUTT

ANUTT U is

e-free if it contains no e-rule;
linear if in rules of A, u is linear;
non-erasing if in every rule, #(u) > 0 (not just a variable);

complete if for every rule with f € F,, on the left-hand side, u on the
right-hand side contains all of X,;

deterministic (DUTT) if it is e-free and no two rules have the same
left-hand side.

Examples:

@ U is non-deterministic, non-linear, complete.

@ U> is non-deterministic, linear, non-complete.



NUTT and other relation classes

(Linear) NUTT and R, are incomparable
e R(U)7 1 is in My, accepted by the following (with ¢ final):
(a,a) > q  (g.8)(a) »q (f,f)(q,9)—q
(a,=)—=d  (g,-)d)—=d  (fg)a,d)—q"

But R(U) ! is in Ry is not definable by NUTT: Suppose that such a
NUTT existed with k rules.

@ ‘R, is incapable of copying or reordering subtrees.



Top-down transducers

Definition: Top-down tree transducer
A top-down tree transducer (NDTT) is a tuple D = (Q, F, F', I, A), where:

@ @ is a finite set of states and | C @ are initial states;
e F,F' are finite ranked alphabets;
@ A is a finite set of rules of the form
q(f) = ulqr(xi), - - -, qi(xi )]
for f € Fn, q,q1,---,qx € Q, u € CX(F'), xiy, ..., X;, € Xp, or
q(x1) = ulqi(xa), - - -, qr(xa)]
for g,q' € @ and u € CX(F') (e-rule).



NDTT move relation

Move relation
Let t,t' € T(F,F, Q). We write t —p t’ if the following are satisfied:
o t = Clq(f(u1,...,un))] for some context C and u1,...,un, € T(F);
o t' = Clulgi(uy), - -, qk(uj,)]] for some rule
q(f) — ulgi(xy), - .., qk(xi,)] of D.

The relation defined by D is R(D) = {(t,t') | q(t) — t',qg € | }.

Example: F = {f(1),a}, F' = FU{f(1),g(1), h(2), a};
D1 ={{q,9'}, F,F,{q}, A), with rules

a(f(x)) = h(d'(x),d'(x))  q(f(x)) = f(d'(x) 8(d(x)) d'(a) —a
Then D (ffa) = {h(fa, fa), h(fa, ga), h(ga, fa), h(ga, ga)}.



Closure properties

Properties of NUTT and DUTT
@ There exist relations expressible by NUTT but not NDTT.
@ There exist relations expressible by NDTT but not NUTT.
@ NUTT are closed under union, but not intersection.
@ NUTT are not closed under composition, but linear NUTT are.
o Linear complete NUTT and NDTT are equivalent.



