Tree Automata and Applications

M1 course, 2020/2021
Organization

Timetable

- Exercises: Thursday 8:30 – 10:30 (Stéphane Le Roux)
- Course: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams

- DM or CC (to be specified by Stéphane)
- Final Exam: 2h, 14 January
- First session: DM/CC + Exam (50/50)
- Second session: DM/CC + Repeat Exam (50/50)

Course materials

- Website: Wiki MPRI, course 1-18
 (exercise sheets, slides, former exams)
- Hubert Comon et al.
 Tree Automata Techniques and Applications.
 http://tata.gforge.inria.fr/
Motivations

1. Natural extension of formal-language notions (automata, logic, ...)
2. Treatment of tree-like data structures: parse tree, XML documents (XPath, CSS selectors)
3. Applications e.g. in compiler construction, formal verification
Trees

We consider finite ordered ranked trees.

- ordered: internal nodes have children $1 \ldots n$
- ranked: number of children fixed by node's label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N^*:

```
      ε
     /|
    /  |
   /    |
  1  2  3
   / |
  21 22
```

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set $Pos \subseteq N^*$.
Ranked symbols

Let \(\mathcal{F}_0, \mathcal{F}_1, \ldots \) be disjoint sets of symbols of *arity* 0, 1, \ldots
We note \(\mathcal{F} := \bigcup_i \mathcal{F}_i \).

- Notation (example): \(\mathcal{F} = \{ f(2), g(1), a, b \} \)

Let \(\mathcal{X} \) denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping \(t : \text{Pos} \rightarrow (\mathcal{F} \cup \mathcal{X}) \) satisfying:

- \(\text{Pos} \) is a tree;
- for all \(p \in \text{Pos} \), if \(t(p) \in \mathcal{F}_n, n \geq 1 \) then \(\text{Pos} \cap pN = \{ p_1, \ldots, p_n \} \);
- for all \(p \in \text{Pos} \), if \(t(p) \in \mathcal{X} \cup \mathcal{F}_0 \) then \(\text{Pos} \cap pN = \emptyset \).
Trees and Terms

Definition: Terms

The set of terms $T(F, X)$ is the smallest set satisfying:

1. $X \cup F_0 \subseteq T(F, X)$;
2. if $t_1, \ldots, t_n \in T(F, X)$ and $f \in F_n$, then $f(t_1, \ldots, t_n) \in T(F, X)$.

We note $T(F) := T(F, \emptyset)$. A term in $T(F)$ is called \textit{ground term}.

A term of $T(F, X)$ is \textit{linear} if every variable occurs at most once.

Example: $F = \{f(2), g(1), a, b\}$, $X = \{x, y\}$

- $f(g(a), b) \in T(F)$;
- $f(x, f(b, y)) \in T(F, X)$ is linear;
- $f(x, x) \in T(F, X)$ is non-linear.

We confuse terms and trees in the obvious manner.
Height and size

Definition

Let $t \in T(\mathcal{F}, \mathcal{X})$. We note $\mathcal{H}(t)$ the height of t and $|t|$ the size of t.

- if $t \in \mathcal{X}$, then $\mathcal{H}(t) := 0$ and $|t| := 0$; (for notational convenience)
- if $t \in \mathcal{F}_0$, then $\mathcal{H}(t) := 1$ and $|t| := 1$;
- if $t = f(t_1, \ldots, t_n)$, then $\mathcal{H}(t) := 1 + \max\{\mathcal{H}(t_1), \ldots, \mathcal{H}(t_n)\}$ and $|t| := 1 + |t_1| + \cdots + |t_n|$.

Definition: Subtree

Let $t, u \in T(F, \mathcal{X})$ and p a position. Then $t|_p : Pos_p \rightarrow T(F, \mathcal{X})$ is the ranked tree defined by

- $Pos_p := \{ q \mid pq \in Pos \}$;
- $t|_p(q) := t(pq)$.

Moreover, $t[u]_p$ is the tree obtained by replacing $t|_p$ by u in t.

$t \sqsupset t'$ (resp. $t \sqsupset \uparrow t'$) denotes that t' is a (proper) subtree of t.
Substitutions and Context

Definition: Substitution

- (Ground) substitution σ: mapping from \mathcal{X} to $T(F, \mathcal{X})$ resp. $T(F)$
- Notation: $\sigma := \{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$, with $\sigma(x) := x$ for all $x \in \mathcal{X} \setminus \{x_1, \ldots, x_n\}$
- Extension to terms: for all $f \in F_m$ and $t'_1, \ldots, t'_m \in T(F, \mathcal{X})$
 $\sigma(f(t'_1, \ldots, t'_m)) = f(\sigma(t'_1), \ldots, \sigma(t'_m))$
- Notation: $t\sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in T(F, \mathcal{X})$ with variables x_1, \ldots, x_n.
We note $C[t_1, \ldots, t_n] := C\{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$.

$C^n(F)$ denotes the contexts with n variables and $C(F) := C^1(F)$.
Let $C \in C(F)$. We note $C^0 := x_1$ and $C^{n+1} = C^n[C]$ for $n \geq 0$.
Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

\[abc \cong a(b(c($))) \]

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.
Two variants: bottom-up vs top-down labelling

Basic results (preview)
- Non-deterministic bottom-up and top-down are equally powerful
- Deterministic bottom-up equally powerful
- Deterministic top-down less powerful
Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where:

- Q is a finite set of states;
- \mathcal{F} a finite ranked alphabet;
- $G \subseteq Q$ are the final states;
- Δ is a finite set of rules of the form $f(q_1, \ldots, q_n) \rightarrow q$ for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$.

Example: $Q := \{q_0, q_1, q_f\}$, $\mathcal{F} = \{f(2), g(1), a\}$, $G := \{q_f\}$, and rules
$$a \rightarrow q_0 \quad g(q_0) \rightarrow q_1 \quad g(q_1) \rightarrow q_1 \quad f(q_1, q_1) \rightarrow q_f$$
Move relation

Let $t, t' \in T(\mathcal{F}, Q)$. We write $t \rightarrow_{\mathcal{A}} t'$ if the following are satisfied:

- $t = C[f(q_1, \ldots, q_n)]$ for some context C;
- $t' = C[q]$ for some rule $f(q_1, \ldots, q_n) \rightarrow q$ of \mathcal{A}.

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow_{\mathcal{A}}^*$ for the transitive and reflexive closure of $\rightarrow_{\mathcal{A}}$.

Computation

Let $t : Pos \rightarrow \mathcal{F}$ a ground tree. A run or computation of \mathcal{A} on t is a labelling $t' : Pos \rightarrow Q$ compatible with Δ, i.e.:

- for all $p \in Pos$, if $t(p) = f \in \mathcal{F}_n$, $t'(p) = q$, and $t'(pj) = q_j$ for all $pj \in Pos \cap pN$, then $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$
Regular tree languages

A tree t is accepted by \mathcal{A} iff $t \rightarrow^*_{\mathcal{A}} q$ for some $q \in G$.

$\mathcal{L}(\mathcal{A})$ denotes the set of trees accepted by \mathcal{A}.

L is regular/recognizable iff $L := \mathcal{L}(\mathcal{A})$ for some NFTA \mathcal{A}.

Two NFTAs \mathcal{A}_1 and \mathcal{A}_2 are equivalent iff $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.
NFTA with \(\varepsilon \)-moves

Definition:
An \(\varepsilon \)-NFTA is an NFTA \(\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle \), where \(\Delta \) can additionally contain rules of the form \(q \rightarrow q' \), with \(q, q' \in Q \).

Semantics: Allow to re-label a position from \(q \) to \(q' \).

Equivalence of \(\varepsilon \)-NFTA
For every \(\varepsilon \)-NFTA \(\mathcal{A} \) there exists an equivalent NFTA \(\mathcal{A}' \).

Proof (sketch): Construct the rules of \(\mathcal{A}' \) by a saturation procedure.
Deterministic, complete, and reduced
NFTA

An NFTA is *deterministic* if no two rules have the same left-hand side.
An NFTA is *complete* if for every \(f \in F_n \) and \(q_1, \ldots, q_n \in Q \), there exists at least one rule \(f(q_1, \ldots, q_n) \rightarrow q \in \Delta \).

As usual, a DFTA has *at most* one run per tree.
A DCFTA has *exactly* one run per tree.

A state \(q \) of \(A \) is *accessible* if there exists a tree \(t \) s.t. \(t \xrightarrow{\star} A q \).
\(A \) is said to be *reduced* if all its states are accessible.
A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all $t \in L$ with $\mathcal{H}(t) > k$ there exist contexts $C, D \in \mathcal{C}(\mathcal{F})$ and $u \in T(\mathcal{F})$ satisfying:

- D is non-trivial (i.e. not just a variable);
- $t = C[D[u]]$;
- for all $n \geq 0$, we have $C[D^n[u]] \in L$.

Proof: Let k be the number of states of an NFTA \mathcal{A} recognizing L. Then an accepting run for t has positions p, pp' ($p' \neq \varepsilon$) labelled with the same state q. Let $C := t[x]_p$, $D := t|_p[x]_{p'}$, and $u := t|_{pp'}$. We have $t = C[D[u]] \in L$, $D[u] \rightarrow^* \mathcal{A} q$, and $u \rightarrow^* \mathcal{A} q$, hence the accepting run of t implies $D[q] \rightarrow^* \mathcal{A} q$ and $C[q] \rightarrow^* \mathcal{A} q_f$, for some final q_f. Therefore, $C[u] \rightarrow^* \mathcal{A} q_f$ and for any $n \geq 0$, (by induction)

$$C[D^{n+1}[u]] \rightarrow^* \mathcal{A} C[D^n[D[q]]] \rightarrow^* \mathcal{A} C[D^n[q]] \rightarrow^* \mathcal{A} C[q] \rightarrow^* \mathcal{A} q_f$$
Illustration of pumping lemma

Let $L = \{ f(g^i(a), g^i(a)) \mid i \geq 0 \}$ for $\mathcal{F} = \{ f(2), g(1), a \}$.

Suppose (by contradiction) that L is recognizable by NFTA A with k states. Let $t = f(g^k(a), g^k(a))$.

Pumping D creates trees outside $L \implies L$ not recognizable.
Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $\mathcal{A} = \langle Q, \mathcal{F}, I, \Delta \rangle$, where Q, \mathcal{F} are as in NFTA, $I \subseteq Q$ is a set of initial states, and Δ contains rules of the form

$$q(f) \rightarrow (q_1, \ldots, q_n)$$

for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$.

Move relation: $t \rightarrow_{\mathcal{A}} t'$ iff

- $t = C[q(f(t_1, \ldots, t_n))]$ for some context C, $f \in \mathcal{F}_n$, and $t_1, \ldots, t_n \in T(\mathcal{F})$;
- $t' = C[f(q_1(t_1), \ldots, q_n(t_n))]$ for some rule $q(f) \rightarrow (q_1, \ldots, q_n)$.

t is accepted by \mathcal{A} if $q(t) \rightarrow^*_A t$ for some $q \in I$.
From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ iff its accepted by T-NFTA $A' = \langle Q, \mathcal{F}, G, \Delta' \rangle$, with

$$\Delta' := \{ f(q) \rightarrow (q_1, \ldots, q_n) \mid f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$$

Proof: Let $t \in T(\mathcal{F})$. We show $t \xrightarrow{\star_A} q$ iff $q(t) \xrightarrow{\star_{A'}} t$.

- **Base:** $t = a$ (for some $a \in \mathcal{F}_0$)
 $$t = a \xrightarrow{\star_A} q \iff a \xrightarrow{\Delta} q \iff q(a) \xrightarrow{\Delta'} \varepsilon \iff q(a) \xrightarrow{\star_{A'}} a$$

- **Induction:** $t = f(t_1, \ldots, t_n)$, hypothesis holds for t_1, \ldots, t_n
 $$f(t_1, \ldots, t_n) \xrightarrow{\star_A} q \iff \exists f(q_1, \ldots, q_n) \rightarrow \Delta q \ \forall i : t_i \rightarrow_{A'} q_i$$
 $$\iff \exists q(f) \rightarrow_{\Delta'} (q_1, \ldots, q_n) \ \forall i : q_i(t_i) \rightarrow_{A'} t_i$$
 $$\iff q(f(t_1, \ldots, t_n)) \rightarrow_{A'} f(q_1(t_1), \ldots, q_n(t_n)) \rightarrow_{A'} f(t_1, \ldots, t_n)$$
From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $A' = \langle 2^Q, \mathcal{F}, G', \Delta' \rangle$ also recognizes L:

- $G' = \{ S \subseteq Q \mid S \cap G \neq \emptyset \}$
- for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \rightarrow S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$

Proof: For $t \in T(\mathcal{F})$, show $t \rightarrow^{*}_{A'} \{ q \mid t \rightarrow^{*}_{A} q \}$, by structural induction.

DFTA with accessible states

In practice, the construction of A' can be restricted to accessible states: Start with transitions $a \rightarrow S$, then saturate.

Deterministic top-down are less powerful

E.g., $L = \{ f(a, b), f(b, a) \}$ can be recognized by DFTA but not by T-DFTA.
Tree languages and context-free languages

Front

Let t be a ground tree. Then $fr(t) \in \mathcal{F}_0^*$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example: $t = f(a, g(b, a), c)$, $fr(t) = abac$

Leaf languages

- Let L be a recognizable tree language. Then $fr(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA \mathcal{A} with $L = fr(\mathcal{L}(\mathcal{A}))$.
Closure properties

Theorem (Boolean closure)
Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)
Let $\langle Q, \mathcal{F}, G, \Delta \rangle$ be a DCFTA recognizing L.
Then $\langle Q, \mathcal{F}, Q \setminus G, \Delta \rangle$ recognizes $T(\mathcal{F}) \setminus L$.

Union (juxtapose)
Let $\langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i, for $i = 1, 2$.
Then $\langle Q_1 \cup Q_2, \mathcal{F}, G_1 \cup G_2, \Delta_1 \cup \Delta_2 \rangle$ recognizes $L_1 \cup L_2$.
Cross-product construction

Direct intersection

Let $A_i = \langle Q_i, F, G_i, \Delta_i \rangle$ be NFTA recognizing L_i, for $i = 1, 2$. Then $A = \langle Q_1 \times Q_2, F, G_1 \times G_2, \Delta \rangle$ recognizes $L_1 \cap L_2$, where

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta_1 \quad f(q'_1, \ldots, q'_n) \rightarrow q' \in \Delta_2$$

$$f(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle) \rightarrow \langle q, q' \rangle \in \Delta$$

Remarks:

- If A_1, A_2 are $D(C)$FTA, then so is A.
- If A_1, A_2 are complete, replace $G_1 \times G_2$ with $(G_1 \times Q_2) \cup (Q_1 \times G_2)$ to recognize $L_1 \cup L_2$.
Tree homomorphism

Definition

Let \(X_n := \{x_1, \ldots, x_n\} \) and \(\mathcal{F}, \mathcal{F}' \) ranked alphabets. A tree homomorphism is a mapping \(h : \mathcal{F} \to \mathcal{T}(\mathcal{F}', \mathcal{X}) \), with \(h(f) \in \mathcal{T}(\mathcal{F}, X_n) \) if \(f \in \mathcal{F}_n \).

Extension of \(h \) to trees (\(\mathcal{T}(\mathcal{F}) \to \mathcal{T}(\mathcal{F}') \)):

\[
h(f(t_1, \ldots, t_n)) = h(f)\{x_1 \leftarrow h(t_1), \ldots, x_n \leftarrow h(t_n)\}
\]

Intuition:

- \(h(f) \) “explodes” \(f \)-positions into trees
- reorders/copies/deletes subtrees.
Examples

Example

- $\mathcal{F} = \{ f(2), g(1), a \}, \quad \mathcal{F}' = \{ f'(1), g'(2), a, b \}$
- $h(f) = f'(g'(x_2, b)), \quad h(g) = g'(x_1, a), \quad h(a) = g'(a, b)$

Example (ternary to binary tree)

- $\mathcal{F} = \{ f(3), a, b \}, \quad \mathcal{F}' = \{ g(2), a, b \}$
- $h_{32}(f) = g(x_1, g(x_2, x_3)), \quad h_{32}(a) = a, \quad h_{32}(b) = b$
Properties of homomorphisms

A homomorphism h is

- **linear** if $h(f)$ linear for all f;
- **non-erasing** if $\mathcal{H}(h(f)) > 0$ for all f;
- **flat** if $\mathcal{H}(h(f)) = 1$ for all f;
- **complete** if $f \in \mathcal{F}_n$ implies that $h(f)$ contains all of \mathcal{X}_n;
- **permuting** if h is complete, linear, and flat;
- **alphabetic** if $h(f)$ has the form $g(x_1, \ldots, x_n)$ for all f.

Example: h_{32} is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

- Example: $h(f) = f'(x_1, x_1), \ h(g) = g(x_1), \ h(a) = a$
- $L = \{ f(g^i(a)) \mid i \geq 0 \}$ (recognizable)
- $h(L) = \{ f'(g^i(a), g^i(a)) \mid i \geq 0 \}$ (not recognizable)
Linear homomorphisms

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq T(\mathcal{F})$ be recognizable and $h : \mathcal{F} \to \mathcal{F}'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $\mathcal{F} = \{f(2), g(1), a\}$, $\mathcal{F}' = \{f'(1), g'(2), a, b\}$
- $h(f) = f'(g'(x_2, b))$, $h(g) = g'(x_1, a)$, $h(a) = g'(a, b)$
- $L = \{ f(g^i(a), g^k(a)) \mid i, k \geq 0 \}$
- $\mathcal{A} = \langle \{q_0, q_1, q_f\}, \mathcal{F}, \{q_f\}, \Delta \rangle$ recognizes L with
 $\Delta := \{ r_1 : a \to q_0, \quad r_2 : g(q_0) \to q_1, \quad r_3 : g(q_1) \to q_1, \quad r_4 : f(q_1, q_1) \to q_f \}$

Run on \mathcal{A}

Rules used to produce states

Construct automaton for $h(L)$ preserving state labels from \mathcal{A}

Guess the rules.
Automaton construction for $h(L)$

Given an NFTA $A = \langle Q, F, G, \Delta \rangle$ for L, construct NFTA $A' = \langle Q', F', G, \Delta' \rangle$ for $h(L)$.

1. $Q' := Q \cup \{ \langle p, r \rangle \mid \exists f \in F, r \in \Delta : p \in Pos_{h(f)}, r = f(\ldots) \rightarrow q \}$;
2. Δ' contains, for each transition $r : f(q_1, \ldots, q_n) \rightarrow q$ in Δ and $p \in Pos_{h(f)}$:
 - $f'(\langle p_1, r \rangle, \ldots, \langle p_k, r \rangle) \rightarrow \langle p, r \rangle$ if $h(f)(p) = f' \in F'_k$
 - $q_i \rightarrow \langle p, r \rangle$ if $h(f)(p) = x_i$
 - $\langle \varepsilon, r \rangle \rightarrow q$
Correctness

To prove: A' accepts $h(L)$.

- $h(L) \subseteq \mathcal{L}(A')$:
 For $t \in T(F)$, prove that $t \xrightarrow{\cdot_{A}} q$ implies $h(t) \xrightarrow{\cdot_{A'}} q$, by structural induction.

- $h(L) \supseteq \mathcal{L}(A')$:
 For $t' \in T(F')$, prove that if $t' \xrightarrow{\cdot_{A'}} q \in Q$, then there exists $t \in T(F) \cap h^{-1}(t')$ with $t \xrightarrow{\cdot_{A}} q$, by induction on number of states in $t' \xrightarrow{\cdot_{A'}} q$.
Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let $L \subseteq T(\mathcal{F})'$ be recognizable and $h : \mathcal{F} \rightarrow \mathcal{F}'$ a tree homomorphism (not necessarily linear). Then $h^{-1}(L)$ is recognizable.

Given an NFTA $\mathcal{A}' = \langle Q, \mathcal{F}', G, \Delta' \rangle$ for L, construct NFTA $\mathcal{A} = \langle Q \cup \{\text{kill}\}, \mathcal{F}, G, \Delta \rangle$ for $h^{-1}(L)$.

For all $n \geq 0$ and $f \in \mathcal{F}_n$,

- add $f(\text{kill}, \ldots, \text{kill}) \rightarrow \text{kill}$ to Δ;
- if $h(f)\{x_1 \leftarrow p_1, \ldots, x_n \leftarrow p_n\} \rightarrow^*_{\mathcal{A}'} q$, add $f(q_1, \ldots, q_n) \rightarrow q$ to Δ, with:

\[
q_i = \begin{cases}
p_i & \text{if } x_i \text{ appears in } h(f) \\
\text{kill} & \text{otherwise}
\end{cases}
\]

Proof: Show $t \rightarrow^*_\mathcal{A} q$ iff $h(t) \rightarrow^*_{\mathcal{A}'} q$, for all $t \in T(\mathcal{F})$.
Path languages

Let \(t \in T(\mathcal{F}) \). The path language \(\pi(t) \) is defined as follows:

- if \(t = a \in \mathcal{F}_0 \), then \(\pi(t) = \{a\} \);
- if \(t = f(t_1, \ldots, t_n) \), for \(f \in \mathcal{F}_n \), then \(\pi(t) = \{fiw \mid w \in \pi(t_i)\} \).

We write \(\pi(L) = \bigcup\{\pi(t) \mid t \in L\} \) for \(L \subseteq T(\mathcal{F}) \).

Example: \(L = \{f(a, b), f(b, a)\} \), \(\pi(L) = \{f1a, f2b, f1b, f2a\} \).

Path closure

Let \(L \subseteq T(\mathcal{F}) \) be a tree language.

- The path closure of \(L \) is \(pc(L) = \{t \mid \pi(t) \subseteq \pi(L)\} \supseteq L \).
- \(L \) is called path-closed if \(L = pc(L) \).

Example: \(pc(L) = \{f(a, a), f(a, b), f(b, a), f(b, b)\} \), so \(L \) is not path-closed.
Path closure and T-NFTA

Lemma

Let $L \subseteq T(F)$ be a recognizable tree language. Then:

- $\pi(L)$ is a recognizable word language.
- $pc(L)$ is a recognizable tree language.

Proof: Let $A = \langle Q, F, G, \Delta \rangle$ be a reduced T-NFTA for L.

- Construct a finite (word) automaton out of A.
- Construct $A' = \langle Q, F, G, \Delta' \rangle$ for $pc(L)$ as follows:
 for all $n \geq 0$, $f \in F_n$:
 $$\forall i : f(q) \rightarrow_{\Delta} (q_{i,1}, \ldots, q_{n,1}) \implies f(q) \rightarrow_{\Delta'} (q_{1,1}, \ldots, q_{n,n})$$

Let $L_q = \mathcal{L}(\langle Q, F, \{q\}, \Delta \rangle)$ and $L'_q = \mathcal{L}(\langle Q, F, \{q\}, \Delta' \rangle)$.

Prove $t \in L'_q \iff \pi(t) \subseteq \pi(L_q)$ for all $q \in Q$, $t \in T(F)$ by induction.
Path closure and T-NFTA

Theorem

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. L is path-closed iff it is recognized by a T-DFTA.

Proof:

“\rightarrow”:
Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ be a T-NFTA for L. Construct a T-DFTA $\mathcal{A} = \langle 2^Q, \mathcal{F}, \{ G \}, \Delta' \rangle$ with

$$f(S) \rightarrow_{\Delta'} (S_1, \ldots, S_n)$$

where $S_i = \{ q_i \mid \exists q \in S, f(q) \rightarrow_{\Delta} (q_1, \ldots, q_n) \}$.

“\leftarrow”:
Let \mathcal{A} be a complete T-DFTA for L, define L_q as before. Prove that $\pi(t) \subseteq \pi(L_q)$ implies $t \in L_q$, for all $q \in Q, t \in T(\mathcal{F})$.

Corollary

It is decidable whether a recognizable tree language is path-closed.
Congruences on trees

Definition: Congruence

Let \(\equiv \) be an equivalence relation on \(T(\mathcal{F}) \).

- \(\equiv \) is called a *congruence* if for any \(n \geq 0 \) and \(f \in \mathcal{F}_n \), \(u_1 \equiv v_1, \ldots, u_n \equiv v_n \) we have \(f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n) \).

- \(\equiv \) saturates \(L \) if \(u \equiv v \) implies \(u \in L \iff v \in L \).

For \(L \subseteq T(\mathcal{F}) \), write \(u \equiv_L v \) if

\[
\forall C \in \mathcal{C}(\mathcal{F}) : C[u] \in L \iff C[v] \in L
\]

Myhill-Nerode Theorem for trees

The following are equivalent:

1. \(L \subseteq T(\mathcal{F}) \) is recognizable.
2. \(L \) is saturated by some congruence of finite index.
3. \(\equiv_L \) is of finite index.
Myhill-Nerode Theorem

Application:
Consider \(L = \{ f(g^i(a), g^i(a)) \mid i \geq 0 \} \).
For any pair \(i \neq k \), consider \(C = f(x, g^i(a)) \).
Then \(C[g^i(a)] \in L \) but \(C[g^k(a)] \notin L \Rightarrow g^i(a) \not\equiv_L g^k(a) \)
Therefore \(L \) is not recognizable.

Proof of the theorem (sketch):

- **1 → 2**: Let \(\mathcal{A} \) be DCFTA and let \(u \equiv v \) iff \(u \rightarrow^*_A q \leftarrow v \).
 Then \(\equiv \) is of finite index and saturates \(L \).
- **2 → 3**: Let \(\equiv \) be a saturating congruence, \(u \equiv v \) implies \(u \equiv_L v \)
 (recurrence over height of \(x \) in context \(C \)).
- **3 → 1**: Let \(\mathcal{A} = \langle T(\mathcal{F})/\equiv_L, \mathcal{F}, L/\equiv_L, \Delta \rangle \), with
 \[
 f([u_1], \ldots, [u_n]) \rightarrow [f(u_1, \ldots, u_n)]
 \]
 for all \(n \geq 0, f \in \mathcal{F}_n, u_1, \ldots, u_n \in T(\mathcal{F}) \),
 where \([u] \) is the equivalence class of \(u \in T(\mathcal{F}) \);

Remark: This can be shown to be the canonical minimal DCFTA.
Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A_1, \ldots, A_n, is $L(A_1) \cap \cdots \cap L(A_n) \neq \emptyset$?

Proof (sketch):

- **Hardness**: Simulate an linear-space ATM M with input of length n. If M accepts the input, there is an accepting run. Encode the run of M as a tree. Construct A_i, for $i = 1, \ldots, n$, to check:
 1. if M starts with the correct configuration;
 2. if all configurations in the run are of length n;
 3. if all final configurations are accepting;
 4. if the part of the configurations around the i-th symbol are coherent.

- **Membership**: Compute the productive tuples of states in $A_1 \times \cdots \times A_n$.

Detailed proof: Veanes, 1997
Visibly pushdown automata

Visibly pushdown automaton

Let \(A = \langle Q, \Sigma, \Gamma, T, q_0, z_0, F \rangle \) be a pushdown automaton. \(A \) is called *visibly pushdown* (VPA) if there exist \(\Sigma_0, \Sigma_1, \Sigma_2 \) such that

- \(\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \)
- \(T \subseteq \bigcup_{i=0}^{2} (Q \times \Gamma) \times \Sigma_i \times (Q \times \Gamma^i) \)

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let \(L \subseteq T(\mathcal{F}) \) be a recognizable tree language. Then \(L \), seen as a word language of terms, is accepted by a VPA.
Logic over trees

Alternative specification for sets of trees

E.g., to describe valid HTML documents:

- A `p` tag may only appear inside a `body` tag.
- A `d1` tag must contain pairs of `dt` and `dd` tags.

Roadmap

- We shall define a logic that defines such properties of trees.
- The sets of trees definable in that language will be recognizable.
Recall: First-/second-order logic

First-order logic (FO)

Let $\sigma = ((R_i)_{1 \leq i \leq n})$ be a relation signature and $\mathcal{X}_1 = \{x_1, x_2, \ldots\}$ a set of variables. The first-order formulas $FO(\sigma)$ are:

$$R_i(x_{j_1}, \ldots, x_{j_i}) \mid x = x' \mid \neg \phi \mid \phi \land \phi' \mid \exists x.\phi$$

Second-order logic: allow quantifying over relations

Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and $\mathcal{X}_1 = \{x_1, x_2, \ldots\}$, $\mathcal{X}_2 = \{X_1, X_2, \ldots\}$ sets of first-/second-order variables. The set of $MSO(\sigma)$ formulae are:

$$R_i(x_{j_1}, \ldots, x_{j_i}) \mid x = x' \mid x \in X \mid \neg \phi \mid \phi \land \phi' \mid \exists x.\phi \mid \exists X.\phi$$

Weak second-order: only quantify over finite sets

$WSkS$ (weak MSO over with k successors)

$WSkS = MSO(<_1, \ldots, <_k)$
Semantics of MSO

Definition

Let \mathcal{M} a domain, σ a signature, ν a valuation with

- $\nu(x) \in \mathcal{M}$ for $x \in \mathcal{X}_1$
- $\nu(X) \subseteq \mathcal{M}$ for $X \in \mathcal{X}_2$

\[
\begin{align*}
\mathcal{M}, \sigma, \nu \models R_i(x_{j_1}, \ldots, x_{j_i}) & \quad \text{if} \quad (\nu(x_{j_1}), \ldots, \nu(x_{j_i})) \in R_i \\
\mathcal{M}, \sigma, \nu \models x = x' & \quad \text{if} \quad \nu(x) = \nu(x') \\
\mathcal{M}, \sigma, \nu \models x \in X & \quad \text{if} \quad \nu(x) \in \nu(X) \\
\mathcal{M}, \sigma, \nu \models \neg \phi & \quad \text{if} \quad \mathcal{M}, \sigma, \nu \not\models \phi \\
\mathcal{M}, \sigma, \nu \models \phi \land \phi' & \quad \text{if} \quad \mathcal{M}, \sigma, \nu \models \phi \land \mathcal{M}, \sigma, \nu \models \phi' \\
\mathcal{M}, \sigma, \nu \models \exists x. \phi & \quad \text{if} \quad \exists m \in \mathcal{M}. \mathcal{M}, \sigma, \nu[x \mapsto m] \models \phi \\
\mathcal{M}, \sigma, \nu \models \exists X. \phi & \quad \text{if} \quad \exists M \subseteq \mathcal{M}. \mathcal{M}, \sigma, \nu[X \mapsto M] \models \phi
\end{align*}
\]

We omit \mathcal{M}, σ when clear from context.
Recall: Common abbreviations

- $\forall x, \forall X, \lor$, etc can be expressed in the usual way.
- $X \subseteq Y$:
 \[\forall x.(x \in X \rightarrow x \in Y) \]
- $Z = X \cup Y$:
 \[\forall x.(x \in Z \leftrightarrow x \in X \lor x \in Y) \]
- $\text{Partition}(X, X_1, \ldots, X_m)$:
 \[\left(\forall x.(x \in X \leftrightarrow \bigvee_{i=1}^{m} x \in X_i) \right) \land \left(\bigwedge_{i=1}^{m} \bigwedge_{j \neq i} \forall x.(x \notin X_i \lor x \notin X_j) \right) \]
- Similarly, $X = \emptyset$, $X = \{x\}$, $X = Y$, \ldots
WSkS and trees

Let $\mathcal{M} = N^*$, we fix $<_i$ to be the relation $p <_i q$ iff $\exists p'. q = pip'$.

We define $<_i = \bigcup_{i=1}^k<_i$ and \leq as usual, and ε for the minimal element.

We write x_i to denote the least q s.t. $\nu(x) <_i q$.

Coding of a tree

Let $t \in T(\mathcal{F})$ and k the maximal arity in \mathcal{F}.

As a shorthand, define $S_\mathcal{F} := (S_f)_{f \in \mathcal{F}}$.

We note $C(t) := (S, S_\mathcal{F})$, where:

- $S = \bigcup_{f \in \mathcal{F}} S_f$;
- for all $f \in \mathcal{F}$, $S_f = \{ p \in \text{Pos}_t \mid t(p) = f \}$.

$(S, S_\mathcal{F})$ encodes a tree if $\text{Tree}(S, S_\mathcal{F})$ holds:

$$\text{Tree}(S, S_\mathcal{F}) := S \neq \emptyset \land \text{Partition}(S, S_\mathcal{F})$$

$$\land \forall x. \forall y. (x \in S \land y < x) \rightarrow y \in S$$

$$\land \bigwedge_{n=1}^k \bigwedge_{f \in \mathcal{F}_n} \bigwedge_{i=1}^n (x \in S_f \rightarrow x_i \in S)$$

$$\land \bigwedge_{n=1}^k \bigwedge_{f \in \mathcal{F}_n} \bigwedge_{i=n+1}^k (x \in S_f \rightarrow x_i \notin S)$$
Semantics of WS\(kS\) on trees

Coded valuation

Let \(\mathcal{F}' := \mathcal{F} \times 2^{X_1 \cup X_2} \). The arity of \((f, \tau)\) is \(n\) if \(f \in \mathcal{F}_n\).

Let \(t \in T(\mathcal{F}) \) and \(\nu \) a valuation. The tuple \(\langle t, \nu \rangle \) is coded by a tree \(t' \in T(\mathcal{F}') \), as follows, for all \(p \in \text{Pos} \) and \(t'(p) = \langle f, \tau \rangle \):

- if \(x \in X_1 \) then \(\tau(x) = 1 \) iff \(p = \nu(x) \);
- if \(X \in X_2 \) then \(\tau(X) = 1 \) iff \(p \in \nu(X) \).

A tree \(t' \in T(\mathcal{F}') \) is valid \((t' \in T_v(\mathcal{F}')) \) if it codes some \(\langle t, \nu \rangle \).

Semantics of WS\(kS\)

Let \(\phi \) be a formula of WS\(kS\) and \(V \subseteq (X_1 \cup X_2) \uplus (\{S\} \cup S_F) \) its free variables.

\[
\mathcal{L}(\phi) := \{ \langle t, \nu \rangle \in T_v(\mathcal{F}') \mid \nu[(S, S_F) \mapsto C(t)] \models \phi \}
\]
Examples

Let \(t = f(g(a), a) \).

Left: \(\langle t, \nu \rangle \) with \(\nu(x) = \varepsilon, \nu(y) = 11 \), and \(\nu(Z) = \{\varepsilon, 11, 2\} \).

Right: \(\langle t, \nu' \rangle \) with \(\nu'(x) = 1 \)

\[
\begin{array}{c}
\langle f, 101 \rangle \\
\downarrow \\
\langle g, 000 \rangle & \langle a, 001 \rangle \\
\downarrow & \downarrow \\
\langle a, 011 \rangle & \\
\end{array}
\quad
\begin{array}{c}
\langle f, 0 \rangle \\
\downarrow \\
\langle g, 1 \rangle & \langle a, 0 \rangle \\
\downarrow & \downarrow \\
\langle a, 0 \rangle &
\end{array}
\]

We have \(C(t) = (S, S_f, S_g, S_a) \) with \(S = \{\varepsilon, 1, 11, 2\} \),
\(S_f = \{\varepsilon\} \), \(S_g = \{1\} \), \(S_a = \{11, 2\} \).

\(\nu'[(S, S_F) \mapsto C(t)] \models x \in S_g \), thus \(\langle t, \nu' \rangle \in \mathcal{L}(x \in S_g) \)

\(t \in \mathcal{L}(\exists x. x \in S_g) \)
Theorem

A tree language $L \subseteq T(\mathcal{F})$ is recognizable iff $L = \mathcal{L}(\phi)$ for some formula $\phi(S, S_{\mathcal{F}})$ of WSkS.

Proof: (sketch)

- **DCFTA $\mathcal{A} \rightarrow WS$kS:** Construct formula ϕ that
 (i) verifies that the structure is a tree;
 (ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
 (iii) verifies that the computation is locally correct;
 (iv) verifies that the root is labelled by an accepting state.

- **WS$kS \phi \rightarrow NFTA \mathcal{A}:** Proceed by recurrence on ϕ, show that all subformulae of ϕ are recognizable.
Example: DCFTA → WSkS

Let $Q := \{q_0, q_1, q_f\}$, $F = \{f(2), g(1), a\}$, $G := \{q_f\}$, and rules

$a \rightarrow q_0 \quad g(q_0) \rightarrow q_1 \quad g(q_1) \rightarrow q_1 \quad f(q_1, q_1) \rightarrow q_f$

Corresponding formula:

$$\phi = Tree(S, S_F) \land \exists Q_0, Q_1, Q_f. \text{Partition}(S, Q_0, Q_1, Q_f)$$

$$\land \forall x. (x \in S_a \rightarrow x \in Q_0)$$

$$\land \forall x. ((x \in S_g \land x1 \in Q_0) \rightarrow x \in Q_1)$$

$$\land \forall x. ((x \in S_g \land x1 \in Q_1) \rightarrow x \in Q_1)$$

$$\land \forall x. ((x \in S_f \land x1 \in Q_1 \land x2 \in Q_1) \rightarrow x \in Q_f)$$

$$\land \varepsilon \in Q_f$$
Consider $\mathcal{F} = \{f(2), g(1), a\}$.

- $\phi = x \in S_g$

 $A_\phi = \langle\{q, q'\}, \mathcal{F} \times 2^\{\{x\}\}, \{q'\}, \Delta\rangle$ with transitions

 $\langle a, 0 \rangle \rightarrow q$
 $\langle g, 1 \rangle(q) \rightarrow q'$
 $\langle g, 0 \rangle(q) \rightarrow q$
 $\langle g, 0 \rangle(q') \rightarrow q'$
 $\langle f, 0 \rangle(q, q) \rightarrow q$
 $\langle f, 0 \rangle(q, q') \rightarrow q'$
 $\langle f, 0 \rangle(q', q) \rightarrow q'$

accepts $\mathcal{L}(x \in S_g)$ (scans for a single g-position with $\tau(x) = 1$).

- $\phi' = \exists x. \phi$

 Obtain $A_{\phi'}$ from A_ϕ by stripping $\tau(x)$:

 $A_{\phi'} = \langle\{q, q'\}, \mathcal{F}, \{q'\}, \Delta\rangle$

 $a \rightarrow q$
 $g(q) \rightarrow q'$
 $g(q) \rightarrow q$
 $g(q') \rightarrow q'$
 $f(q, q) \rightarrow q$
 $f(q, q') \rightarrow q'$
 $f(q', q) \rightarrow q'$
Unranked trees

We now consider finite ordered unranked trees.

- **ordered**: internal nodes have children 1 \ldots n
- **unranked**: nodes may have an arbitrary number of children

Motivation: e.g., XML documents

- “A html tag contains an optional head and an obligatory body.”
- “A div tag contains an unlimited number of p, ol, ul, \ldots tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set $\mathit{Pos} \subseteq \mathbb{N}^*$.
Hedge automata

Definition: (Bottom-up) hedge automaton

A hedge automaton (NHA) is a tuple \(\mathcal{A} = \langle Q, \Sigma, G, \Delta \rangle \), where:

- \(Q \) is a finite set of states;
- \(\Sigma \) a finite alphabet;
- \(G \subseteq Q \) are the final states;
- \(\Delta \) is a finite set of rules of the form
 \[a(R) \rightarrow q \]
 for \(a \in \Sigma \), \(q \in Q \), and \(R \) a regular (word) language over \(Q \).

Example: \(Q := \{ q_x, q_h, q_b, q_p \} \), \(\Sigma = \{ x, h, b, p \} \), \(G := \{ q_x \} \), and rules
 \[x(q_h^* q_b) \rightarrow q_x \quad h(\varepsilon) \rightarrow q_h \quad b(q_p^*) \rightarrow q_b \quad p(\varepsilon) \rightarrow q_p \]

This accepts trees of the form \(x(h, b(p, \ldots, p)) \) and \(x(b(p, \ldots, p)) \).
Semantics of hedge automata

Remark:
- The R in $a(R) \rightarrow q$ are called horizontal languages.
- They are (finitely) represented by regular expressions or finite automata.

Computation of NHA

Let $t \in T(\Sigma)$ be a tree. A run or computation of A on t is a tree $t' \in T(Q)$, i.e. for all $p \in Pos$:
- if $t(p) = a \in \Sigma$, $t'(p) = q \in Q$, and $Pos \cap pN = \{p_1, \ldots, p_n\}$, there exists $a(R) \rightarrow q \in \Delta$ such that $t'(p_1) \cdots t'(p_n) \in R$.

Acceptance condition: $t'(\varepsilon) \in G$

$L \subseteq T(\Sigma)$ is called hedge-recognizable if $L = \mathcal{L}(A)$ for some NHA A.
Complete / normalized / deterministic HA

An NHA is . . .

- **complete** if for all $t \in T(\Sigma)$, $t \to^* A q$ for some q;
- **full** if for all $a \in \Sigma$, $q \in Q$, there is some $a(R) \to q$;
- **reduced** if $a(R_1) \to q, a(R_2) \to q \in \Delta$ implies $R_1 = R_2$;
- **deterministic** (DHA) if $a(R_1) \to q_1, a(R_2) \to q_2 \in \Delta$ implies $R_1 \cap R_2 = \emptyset$ or $q_1 = q_2$.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

- complete: add garbage state, as usual
- full: add rules $a(\emptyset) \to q$ where necessary
- reduced: replace $a(R_1) \to q$ and $a(R_2) \to q$ with $a(R_1 \cup R_2) \to q$ where necessary
Determinization of NHA

Let $A = \langle Q, \Sigma, G, \Delta \rangle$ be a complete, full, reduced NHA. The complete, full, reduced DHA $A' = \langle 2^Q, \Sigma, G', \Delta' \rangle$ is equivalent to A where:

- $G' = \{ S \subseteq Q \mid S \cap G \neq \emptyset \}$;
- let $R_{a,q}$ denote the (unique) language s.t. $a(R_{a,q}) \rightarrow q \in \Delta$;
- $R'_{a,q} := R_{a,q}[q' \rightarrow (S \cup \{q'\}) \mid q' \in Q, S \subseteq Q]$;
- for all $a \in \Sigma$, $S \subseteq Q$, we have $a(R_{a,S}) \rightarrow S \in \Delta'$;

$$R_{a,S} := \left(\bigcap_{q \in S} R'_{a,q} \right) \setminus \left(\bigcup_{q \notin S} R'_{a,q} \right)$$
Encoding unranked trees

Bijective encoding of unranked into ranked trees

- Let Σ an alphabet; $\mathcal{F}_\Sigma := \{ @ (2) \} \cup \{ a (0) \mid a \in \Sigma \}.$
- Define the coding $C_@ (t) \in T (\mathcal{F}_\Sigma)$ of $t \in T (\Sigma)$ as

 $$C_@ (a (t_1, \ldots, t_n)) = @ (@ (\ldots (@ (a, C_@ (t_1)), C_@ (t_2)), \ldots), C_@ (t_n))$$

Example:

```
Example:

$\begin{array}{c}
\text{x} \\
\text{h} \\
\text{p} \quad \text{p} \quad \text{p} \\
\text{b}
\end{array}$
```

```
$\begin{array}{c}
\text{b} \\
\text{p}
\end{array}$
```

\Rightarrow

```
$\begin{array}{c}
\text{x} \quad \text{h} \\
\text{p} \quad \text{b} \\
\text{p} \quad \text{p}
\end{array}$
```

```
$\begin{array}{c}
\text{b} \\
\text{p}
\end{array}$
```

```
$\begin{array}{c}
\text{p} \\
\text{p}
\end{array}$
```

```
$\begin{array}{c}
\text{p} \\
\text{b}
\end{array}$
```

```
$\begin{array}{c}
\text{p}
\end{array}$
```

Recognizing encoded trees

Theorem

A language \(L \subseteq T(\Sigma) \) is hedge-recognizable iff \(C_\@ (L) \) is recognizable.

- **NHA \rightarrow NFTA:**
 Let \(A = \langle Q, \Sigma, G, \Delta \rangle \) an NHA; \(\Delta = \{ a_1(R_1) \rightarrow q_1, \ldots, a_n(R_n) \rightarrow q_n \} \);
 \(R_i \) represented by det.compl. FA \(A_i = \langle S_i, Q, s_0^{(i)}, F_i, \delta_i \rangle \).

Construct NFTA \(A' = \langle Q', \mathcal{F}_\Sigma, G, \Delta' \rangle \), where:

- \(Q' = Q \cup \bigcup_{i=1}^n S_i \)
- \(\Delta' = \bigcup_{i=1}^n (\Delta_1^i \cup \Delta_2^i \cup \Delta_3^i) \)

\[
\begin{align*}
\Delta_1^i & = \{ a_i \rightarrow s_0^{(i)} \} \\
\Delta_2^i & = \{ \@ (s, q) \rightarrow \delta_i (s, q) \mid s \in S_i, q \in Q \} \\
\Delta_3^i & = \{ s_f \rightarrow q_i \mid s_f \in F_i \}
\end{align*}
\]
Example: NHA \rightarrow NFTA

- $Q := \{q_x, q_h, q_b, q_p\}$, $\Sigma = \{x, h, b, p\}$, $G := \{q\}$, and rules

 $x(q_h^? q_b) \rightarrow q_x$
 $h(\varepsilon) \rightarrow q_h$
 $b(q_p^*) \rightarrow q_b$
 $p(\varepsilon) \rightarrow q_p$

- Automaton for first rule:

- Single-state automata with s_h, s_b, s_p for the other rules
Recognizing encoded trees

Theorem

A language \(L \subseteq T(\Sigma) \) is hedge-recognizable iff \(C_\oplus(L) \) is recognizable.

\[\text{NFTA } \rightarrow \text{ NHA:} \]

Let \(A = \langle Q, F, G, \Delta \rangle \) an NFTA (without \(\varepsilon \)-moves).

Define \(\Delta_R := \{ \langle q_0, q_1, q_2 \rangle \mid \oplus(q_0, q_1) \rightarrow \Delta q_2 \} \)

and \(\text{Out} := G \cup \{ q \mid \exists q', q'' : \oplus(q', q) \rightarrow \Delta q'' \} \).

For \(q \in Q, q' \in \text{Out} \), let \(A_{q, q'} := \langle Q, Q, q, \{ q' \}, \Delta_R \rangle \) a word automaton.

Construct NHA \(A' := \langle Q, \Sigma, G, \Delta' \rangle \), where

\[\Delta' = \{ a(L(A_{q, q'})) \rightarrow q' \mid a \rightarrow \Delta q, q' \in \text{Out} \} \]

Corollary

Hedge-recognizable languages are closed under boolean operations.
Unranked trees and logic

UTL = weak MSO($child$, next) interpreted over $\mathcal{M} = N^*$, where

- $child(x, y)$ iff $y = xi$ for some $i \in N$
- $next(x, y)$ iff $\exists z, i : x = zi \land y = z(i + 1)$

Further predicates can be defined from this:

- $right(x, y)$ = “y is a right sibling of x”
- $desc(x, y)$ = “y is a descendant of x” = “$x \leq y$”

Notions like $L(\phi)$ are defined in analogy with WSkS.

Theorem: UTL = NHA

A language $L \subseteq T(\Sigma)$ is hedge-recognizable
iff $L = L(\phi)$ for some formula $\phi(S, S_\Sigma)$ of UTL.
UTL \Rightarrow NHA: Proof sketch

UTL \Rightarrow NHA:
Let ϕ be an UTL formula. Define ϕ' of WS2S s.t. $\mathcal{L}(\phi') = \mathcal{C}_\ominus(\mathcal{L}(\phi))$.

Define \texttt{leftmost}(x, y) as

$$\forall X : \ (x \in X \land \forall z, z' : (z \in X \land z' = z_1 \rightarrow z' \in X) \land \forall z : (z \in X \rightarrow z = x \lor (\exists z' : z' \in X \land z = z'1))) \rightarrow (y \in X \land \forall z \in X : z \in X \rightarrow z \leq y)$$

("y is the maximal position in x_1^*")

Then \texttt{child} and \texttt{next} can be translated as follows:
\texttt{child}(x, y) := $\exists z : \text{leftmost}(z, x) \land \text{leftmost}(z_2, y)$
\texttt{next}(x, y) := $\exists z : \text{leftmost}(z_{12}, x) \land \text{leftmost}(z_2, y)$
NHA \rightarrow UTL:
Let \mathcal{A} be a complete, full, normalized, deterministic NHA.

Construct formula $\phi(S, S_\Sigma)$ of UTL that
(i) verifies that the structure is a tree;
(ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA \rightarrow WSkS construction is (iii):
(iii): whenever the computation puts q on an a-labelled position p, guess a run of the automaton for $R_{a,q}$ over p and its children
Tuples of trees

Let $t_1, t_2 \in T(\mathcal{F})$ ranked trees. Add a fresh symbol $-$ to \mathcal{F}_0 and let

$\mathcal{F}':=\{\langle f, g\rangle(k) \mid f \in \mathcal{F}_m, g \in \mathcal{F}_n, k = \max\{m, n\}\}$.

$\langle t_1, t_2 \rangle$ denotes the ranked tree $t \in T(\mathcal{F}')$ as follows:

- $\text{Pos}_t = \text{Pos}_{t_1} \cup \text{Pos}_{t_2}$
- for all $p \in \text{Pos}_t$,

$$t(p) = \begin{cases}
\langle f, g \rangle & \text{if } t \in \text{Pos}_{t_1} \cap \text{Pos}_{t_2}, t_1(p) = f, t_2(p) = g \\
\langle f, - \rangle & \text{if } t \in \text{Pos}_{t_1} \setminus \text{Pos}_{t_2}, t_1(p) = f \\
\langle - , g \rangle & \text{if } t \in \text{Pos}_{t_2} \setminus \text{Pos}_{t_1}, t_2(p) = g
\end{cases}$$

Example:
We consider (binary) relations \(R \subseteq T(\mathcal{F})^2 \).

- Let \(\mathcal{R}_2 \) be the class of recognizable relations (\(= \) recognizable languages over \(\mathcal{F}' \)).
- Let \(\mathcal{X}_2 \) be the class of finite unions of cross products
 \[\mathcal{X}_2 = \bigcup_{i=1}^{n} \left(L_1^{(i)} \times L_2^{(i)} \right), \text{ for } n \geq 0 \text{ and } L_1^{(i)}, L_2^{(i)} \text{ recognizable} \]
- Let \(\mathcal{T}_2 \) be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A *ground tree transducer* (GTT) is pair \(\mathcal{G} = \langle A_1, A_2 \rangle \) of bottom-up NFTA over \(\mathcal{F} \). (The states of \(A_1 \) and \(A_2 \) may overlap.)

The relation accepted by \(\mathcal{G} \) is

\[
\{ \langle t, u \rangle \mid \exists n \geq 0, \ C \in C^n(\mathcal{F}), \ t_1, \ldots, t_n \in T(\mathcal{F}), \ u_1, \ldots, u_n \in T(\mathcal{F}), \ q_1, \ldots, q_n : \\
\text{ } t = C[t_1, \ldots, t_n] \land u = C[u_1, \ldots, u_n] \\
\text{ } \land \forall i : t_i \rightarrow_{A_1}^* q_i \ A_2^* \leftarrow u_i \} \nonumber
\]
Relations between R_2, X_2, T_2

Propositions

1. $R_2 \not\subseteq X_2$ and $T_2 \not\subseteq X_2$
2. $R_2 \not\subseteq T_2$ and $X_2 \not\subseteq T_2$
3. $X_2 \subseteq R_2$
4. $T_2 \subseteq R_2$
5. $X_2 \cup T_2 \subsetneq R_2$

Proofs:

1. $\{ \langle t, t \rangle \mid t \in T(F) \}$ is in $T_2 \cap R_2$ but not X_2
2. \emptyset is in $X_2 \cap R_2$ but not T_2
3. see next slides
4. see next slides
5. see next slides
Proof of $\mathcal{X}_2 \subseteq \mathcal{X}_2$

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ (for $i = 1, 2$) be NFTA and let $R = \mathcal{L}(A_1) \times \mathcal{L}(A_2) \in \mathcal{X}_2$.

Construct NFTA $\mathcal{A} = \langle Q, \mathcal{F}', G_1 \times G_2, \Delta \rangle$ with $\mathcal{L}(\mathcal{A}) = R$:

- $Q = (Q_1 \cup \{-\}) \times (Q_2 \cup \{-\})$
- for every $f \in \mathcal{F}_m$, $g \in \mathcal{F}_n$, $m \geq n$, $\neg (f = g = -)
 \Delta$ contains
 - $\langle f, g \rangle(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle, \langle q_{n+1}, - \rangle, \ldots, \langle q_m, - \rangle) \rightarrow \langle q, q' \rangle$ if $f(q_1, \ldots, q_m) \rightarrow q \in \Delta_1$ and $g(q'_1, \ldots, q'_n) \rightarrow q' \in \Delta_2$
 - $\langle g, f \rangle(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle, \langle -, q'_{n+1} \rangle, \ldots, \langle -, q_m \rangle) \rightarrow \langle q, q' \rangle$ if $f(q'_1, \ldots, q'_m) \rightarrow q \in \Delta_2$ and $g(q_1, \ldots, q_n) \rightarrow q' \in \Delta_1$

(reminder: we assume that $-$ is a fresh symbol in \mathcal{F}_0)

Intuition: Modified cross-product construction.
Proof of $T_2 \subseteq R_2$

Let $G = \langle A_1, A_2 \rangle$, $A_i = \langle Q_i, F, G_i, \Delta_i \rangle$ (for $i = 1, 2$).
We construct NFTA $A' = \langle Q', F', \{q_f\}, \Delta' \rangle$ with $L(A') = L(G)$.

Construct NFTA $A = \langle Q, F', G, \Delta \rangle$ from A_1, A_2 as in previous proof. Then:

- $Q' = Q \cup \{q_f\}$
- $\Delta' = \Delta \cup \Delta_1 \cup \Delta_2$
- $\Delta_1 = \{\langle q, q \rangle \rightarrow q_f \mid q \in Q_1 \cap Q_2\}$
- $\Delta_2 = \{\langle f, f \rangle(q_f, \ldots, q_f) \rightarrow q_f \mid f \in F_n, f \neq -\}$

Intuition:
Δ reads pairs of trees from A_1, A_2;
Δ_1 allows to plug pairs of subtrees into some context C;
Δ_2 reads the remaining context C.

4
Proof of $X_2 \cup T_2 \subset R_2$

Let $\mathcal{F} = \{f(1), g(1), a\}$.
Let $R = \{ \langle t_1, t_2 \rangle \mid \exists C \in C(\mathcal{F}), t \in T(\mathcal{F}) : t_1 = C[t] \land t_2 = C[f(t)] \}$.

- $R \notin X_2$:
 $\langle a, f(a) \rangle \in R$ and $\langle f(a), f(f(a)) \rangle \in R$, but $\langle a, f(f(a)) \rangle \notin R$

- $R \notin T_2$:
 Suppose that R is accepted by GTT $\langle A_1, A_2 \rangle$ with n states in common. For all $i \geq 0$, let q_i such that $g^i(a) \xrightarrow{A_1} q_i$ and $f(g^i(a)) \xrightarrow{A_2} q_i$. Contradiction follows from pigeon-hole principle.

- $R \in R_2$:
 Let $A = \langle \{q_a, q_f, q_g, q\}, \mathcal{F}, \{q\}, \Delta \rangle$ with:

 $\langle -, a \rangle \rightarrow q_a$ $\langle x, y \rangle(q_x) \rightarrow q_y$ $q_f \rightarrow q$ $\langle x, x \rangle(q) \rightarrow q$

 for $x, y \in \{f, g, a\}$
Closure properties

Boolean closure
X₂ and R₂ are closed under boolean operations.

Transitive closure
If R ∈ T₂, then R* ∈ T₂.

Proof: Let ⟨A₁, A₂⟩ with states Q₁, Q₂ a GTT accepting R. We construct ⟨B₁, B₂⟩ accepting R* by adding transitions to A₁ and A₂ using the following saturation rule:

For i ≠ j and all q ∈ Q₁ ∩ Q₂, q' ∈ Q_j, if there exists a tree t s.t.
\[t \rightarrow^{*}_{B_i} q \quad \text{and} \quad t \rightarrow^{*}_{B_j} q' \]
then add q → q' to B_j.
Suppose that $\langle t, v \rangle, \langle v, u \rangle \in R$. The interesting case is illustrated below:

Suppose that $\langle t, v \rangle$ differ in a position p and $\langle v, u \rangle$ in positions pp_1, \ldots, pp_n. Then in \mathcal{A}_2 we want the subtrees of u at pp_1, \ldots, pp_n to be substitutable for the corresponding subtrees in v.
Transitive closure: Intuition

Consider the runs of \(t, \nu, u \) in \(\langle A_1, A_2 \rangle \):

Adding \(q_i \rightarrow q'_i \) to the right-hand side automaton achieves the objective.
Proof by induction: Let $\langle t, u \rangle \in R^i$, for $i \geq 0$.

- $i = 0$: trivial
- $i \rightarrow i + 1$: Let v s.t. $\langle t, v \rangle \in R^i$ and $\langle v, u \rangle \in R$.
 Then (by induction) $\langle t, v \rangle$ is accepted by $\langle B_1, B_2 \rangle$.
 Let P be the positions in which $\langle t, v \rangle$ differ and P' be the positions in which $\langle v, u \rangle$ differ.
 All incomparable pairs in $P \times P'$ are handled by the definition of GTT.
 For $p \in P$ and $pp_1, \ldots, pp_n \in P'$ consider the previous drawings.
 The case $pp_1, \ldots, pp_n \in P$ and $p \in P'$ is symmetric.
Transitive closure: \(R^* \supseteq \mathcal{L}(\langle B_1, B_2 \rangle) \)

Let \(\langle B_1^i, B_2^i \rangle \) denote the GTT after adding \(i \) transitions and show that its language is included in \(R^* \).

- \(i = 0 \): trivial
- \(i \rightarrow i + 1 \): Let \(q \rightarrow q' \) be the transition added in the \((i + 1)\)-th step (to \(B_1 \), say) and let \(q \rightarrow q' \) be used \(j \) times in accepting some \(\langle t, u \rangle \).

If \(j = 0 \), then \(\langle t, u \rangle \in R^* \) by induction hypothesis. Otherwise:
 1. there exist \(n \geq 0 \), \(C \in C^n(\mathcal{F}) \) etc such that \(t = C[t_1, \ldots, t_n] \), \(u = C[u_1, \ldots, u_n] \) and \(\forall k: t_k \xrightarrow{B_1^{i+1}} q_k \quad B_2^{i+1} \xleftarrow{u_k} \).
 2. Suppose \(t_k = C'[t'] \xrightarrow{B_1^{i+1}} C'[q] \xrightarrow{C'[q']} \xrightarrow{B_2^{i+1}} q_k \) for some \(k, C', t' \).
 3. There must be some \(v \in T(\mathcal{F}) \) with \(v \xrightarrow{B_2^i} q \) and \(v \xrightarrow{B_1^i} q' \).
 4. From (2) et (3) we have \(C'[v] \xrightarrow{B_1^{i+1}} q_k \).
 5. Replacing \(t_k \) by \(C'[v] \) in (1) we get \(\langle t'[t'/v], u \rangle \in \mathcal{L}(\langle B_1^{i+1}, B_2^{i+1} \rangle) \) with fewer than \(j \) times \(q \rightarrow q' \), thus by ind.hyp. \(\langle t'[t'/v], u \rangle \in R^* \).
 6. From (2) and (3), \(t' \xrightarrow{B_1^{i+1}} q \quad B_2^i \xleftarrow{v} \), with fewer than \(j \) times \(q \rightarrow q' \).
 7. From (6) by ind.hyp. \(\langle t, t'[t'/v] \rangle \in R^* \).
XML = Extensible Markup Language

- Conceived for platform-independent exchange of structured data
- An XML document consists of tags with attributes and text (parsed character data, pcdata)

Example:

```xml
<html><head><meta charset="UTF-8"/>
<title>My web page</title></head>
<body><p>Bonne ann&eacute;e !</p></body></html>
```

- A well-formed XML document forms a tree (balanced tags, one single root tag)
- Testing for validity / generating tree from document: visibly pushdown automaton, LL/LR parser
Valid XML documents

- Languages of XML documents defined by *schemas* (DTD, XML Schema, Relax NG)
- Schemas define permissible tag (+attributes) and their nesting
- Examples of XML languages: HTML, SVG, KML, ...

- *Valid* XML document: well-formed document satisfying a schema
- Example: XML-Schema for KML
DTD = Document Type Definition

DTD define a (restricted) subclass of XML languages. Essentially, defines a regular language of child tags for each tag type.

Example (from Wikipedia):

```xml
<!ELEMENT html (head, body)>
<!ELEMENT hr EMPTY>
<!ELEMENT div (#PCDATA | p | ul | table | pre | hr | h1|h2|h3|h4|h5|h6 | blockquote | ...)*>
<!ELEMENT dl (dt|dd)+>
```

Validity checking of DTD

The language of XML documents defined by DTD is accepted by NHA.
Restrictions on DTD

Expressivity of DTD
There are hedge-recognizable languages that cannot be defined by DTD.

Example: \{f(g(a)), f'(g(b))\}

DTD contain another restriction:

It is an error if the content model allows an element to match more than one occurrence of an element type in the content model.

E.g., (ab|ac) is not allowed (but a(b|c) is).
Deterministic regular expressions

Definition: Marked RE
Let \(e \) be a RE over \(\Sigma \). The \emph{marked RE} \(\bar{e} \) is a RE over \(\Sigma \times \mathbb{N} \) obtained by adding a unique subscript to each letter in \(e \).

Example: \(e = (ab|ac) \), then \(\bar{e} = (a_1b_2|a_3c_4) \)

Definition: Deterministic RE
Let \(e \) a RE over \(\Sigma \). We call \(e \) \emph{deterministic} if \(\bar{e} \) satisfies the following: for all \(u, \nu, w \in (\Sigma \times \mathbb{N})^* \) and \(a \in \Sigma \), if \(ua_i\nu, ua_jw \in L(\bar{e}) \) then \(i = j \).

Example: \(e = (ab|ac) \), \(\bar{e} = (a_1b_2|a_3b_4) \), not deterministic because \(a_1b_2, a_3b_4 \in L(\bar{e}) \)
Parsing deterministic RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial (linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.
XML Schema can define more expressive XML languages. Example:

```xml
<xsd:complexType name="track">
  <xsd:sequence minOccurs="1" maxOccurs="unbounded">
    <xsd:choice>
      <xsd:element name="invSession" type="invSession"
                   minOccurs="1" maxOccurs="1"/>
      <xsd:element name="conSession" type="conSession"
                   minOccurs="1" maxOccurs="1"/>
    </xsd:choice>
    <xsd:element name="break" type="xsd:string"
                 minOccurs="0" maxOccurs="1"/>
  </xsd:sequence>
</xsd:complexType>
```
XML Schema = NHA

XML Schema (restricted to occurrence and nesting conditions) correspond to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

- constraints on data types in attributes and pcdata
- consistency constraints (e.g., unique keys)
XSL Transformation

- XSLT allows to transform XML documents into other documents (incl. non XML)
- XQuery used to specify nodes on which to apply a transformation

Example (from Wikipedia):

```xml
<xsl:template match="/title">
  <em>
    <xsl:apply-templates/>
  </em>
</xsl:template>
<xsl:for-each select="book">
  <xsl:sort select="price" order="ascending" />
</xsl:for-each>
```