Tree Automata and Applications

M1 course, 2023/2024
Organization

Timetable
- **Exercises**: Thursday 8:30 – 10:30 (Luc Lapointe)
- **Course**: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams
- DM or CC (*to be specified by Luc*)
- **Final Exam**: 2h, 11 January
- **First session**: DM/CC + Exam (50/50)
- **Second session**: DM/CC + Repeat Exam (50/50)

Course materials
- Website: lecturer’s homepage + Wiki MPRI, course 1-18 (exercise sheets, slides, former exams)
- **Hubert Comon et al.**
 Tree Automata Techniques and Applications.
 http://tata.gforge.inria.fr/
Motivations

1. Natural extension of formal-language notions (automata, logic, ...)
2. Treatment of tree-like data structures: parse tree, XML documents (XPath, CSS selectors)
3. Applications e.g. in compiler construction, formal verification
Trees

We consider finite ordered ranked trees.

- ordered: internal nodes have children 1...n
- ranked: number of children fixed by node’s label

Let \(N \) denote the set of positive integers. Nodes (positions) of a tree are associated with elements of \(N^* \):

\[
\varepsilon \\
\downarrow \\
1 \\
| \\
2 \\
\downarrow \\
21
\]

\[
\uparrow \\
\downarrow \\
22
\]

\[
3
\]

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set \(Pos \subseteq N^* \) such that \(w(i + 1) \in Pos \) implies \(w_i \in Pos \) for all \(w \in N^* \), \(i \in N \).
Ranked Trees

Ranked symbols

Let $\mathcal{F}_0, \mathcal{F}_1, \ldots$ be disjoint sets of symbols of *arity* $0, 1, \ldots$

We note $\mathcal{F} := \bigcup_i \mathcal{F}_i$.

- Notation (example): $\mathcal{F} = \{ f(2), g(1), a, b \}$

Let \mathcal{X} denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping $t : Pos \rightarrow (\mathcal{F} \cup \mathcal{X})$ satisfying:

- Pos is a tree;
- for all $p \in Pos$, if $t(p) \in \mathcal{F}_n$, $n \geq 1$ then $Pos \cap pN = \{ p_1, \ldots, p_n \}$;
- for all $p \in Pos$, if $t(p) \in \mathcal{X} \cup \mathcal{F}_0$ then $Pos \cap pN = \emptyset$.
Trees and Terms

Definition: Terms
The set of terms $T(\mathcal{F}, \mathcal{X})$ is the smallest set satisfying:

- $\mathcal{X} \cup \mathcal{F}_0 \subseteq T(\mathcal{F}, \mathcal{X})$;
- if $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_n$, then $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{X})$.

We note $T(\mathcal{F}) := T(\mathcal{F}, \emptyset)$. A term in $T(\mathcal{F})$ is called ground term.

A term of $T(\mathcal{F}, \mathcal{X})$ is linear if every variable occurs at most once.

Example: $\mathcal{F} = \{f(2), g(1), a, b\}$, $\mathcal{X} = \{x, y\}$

- $f(g(a), b) \in T(\mathcal{F})$;
- $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- $f(x, x) \in T(\mathcal{F}, \mathcal{X})$ is non-linear.

We confuse terms and trees in the obvious manner.
Height and size

Definition
Let $t \in T(\mathcal{F}, \mathcal{X})$. We note $\mathcal{H}(t)$ the *height* of t and $|t|$ the *size* of t.

- if $t \in \mathcal{X}$, then $\mathcal{H}(t) := 0$ and $|t| := 0$; (for notational convenience)
- if $t \in \mathcal{F}_0$, then $\mathcal{H}(t) := 1$ and $|t| := 1$;
- if $t = f(t_1, \ldots, t_n)$, then $\mathcal{H}(t) := 1 + \max\{\mathcal{H}(t_1), \ldots, \mathcal{H}(t_n)\}$ and $|t| := 1 + |t_1| + \cdots + |t_n|$.
Definition: Subtree

Let $t, u \in T(\mathcal{F}, \mathcal{X})$ and p a position. Then $t|_p : Pos_p \rightarrow T(\mathcal{F}, \mathcal{X})$ is the ranked tree defined by

- $Pos_p := \{ q \mid pq \in Pos \}$;
- $t|_p(q) := t(pq)$.

Moreover, $t[u]|_p$ is the tree obtained by replacing $t|_p$ by u in t.

$t \sqsupset t'$ (resp. $t \sqsupset^* t'$) denotes that t' is a (proper) subtree of t.
Substitutions and Context

Definition: Substitution
- (Ground) substitution σ: mapping from \mathcal{X} to $T(\mathcal{F}, \mathcal{X})$ resp. $T(\mathcal{F})$
- Notation: $\sigma := \{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$, with $\sigma(x) := x$ for all $x \in \mathcal{X} \setminus \{x_1, \ldots, x_n\}$
- Extension to terms: for all $f \in \mathcal{F}_m$ and $t'_1, \ldots, t'_m \in T(\mathcal{F}, \mathcal{X})$
 \[\sigma(f(t'_1, \ldots, t'_m)) = f(\sigma(t'_1), \ldots, \sigma(t'_m)) \]
- Notation: $t \sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in T(\mathcal{F}, \mathcal{X})$ with variables x_1, \ldots, x_n. We note $C[t_1, \ldots, t_n] := C\{x_1 \leftarrow t_1, \ldots, x_n \leftarrow t_n\}$.

$C^n(\mathcal{F})$ denotes the contexts with n variables and $C(\mathcal{F}) := C^1(\mathcal{F})$. Let $C \in C(\mathcal{F})$. We note $C^0 := x_1$ and $C^{n+1} = C^n[C]$ for $n \geq 0$.
Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

$$abc \triangleq a(b(c($)))$$

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.
Two variants: bottom-up vs top-down labelling

Basic results (preview)
- Non-deterministic bottom-up and top-down are equally powerful
- Deterministic bottom-up equally powerful
- Deterministic top-down less powerful
Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where:

- Q is a finite set of states;
- \mathcal{F} a finite ranked alphabet;
- $G \subseteq Q$ are the final states;
- Δ is a finite set of rules of the form

 $f(q_1, \ldots, q_n) \rightarrow q$

 for $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$.

Example: $Q := \{q_0, q_1, q_f\}$, $\mathcal{F} = \{f(2), g(1), a\}$, $G := \{q_f\}$, and rules

 $a \rightarrow q_0 \quad g(q_0) \rightarrow q_1 \quad g(q_1) \rightarrow q_1 \quad f(q_1, q_1) \rightarrow q_f$
Move relation and computation tree

Move relation

Let $t, t' \in T(\mathcal{F}, Q)$. We write $t \rightarrow_\mathcal{A} t'$ if the following are satisfied:

- $t = C[f(q_1, \ldots, q_n)]$ for some context C;
- $t' = C[q]$ for some rule $f(q_1, \ldots, q_n) \rightarrow q$ of \mathcal{A}.

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow^*_\mathcal{A}$ for the transitive and reflexive closure of $\rightarrow_\mathcal{A}$.

Computation

Let $t : \text{Pos} \rightarrow \mathcal{F}$ a ground tree. A run or computation of \mathcal{A} on t is a labelling $t' : \text{Pos} \rightarrow Q$ compatible with Δ, i.e.:

- for all $p \in \text{Pos}$, if $t(p) = f \in \mathcal{F}_n$, $t'(p) = q$, and $t'(pj) = q_j$ for all $pj \in \text{Pos} \cap pN$, then $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$
A tree t is accepted by A iff $t \xrightarrow{A}^* q$ for some $q \in G$.

$L(A)$ denotes the set of trees accepted by A.

L is regular/recognizable iff $L := L(A)$ for some NFTA A.

Two NFTAs A_1 and A_2 are equivalent iff $L(A_1) = L(A_2)$.
Definition:
An ε-NFTA is an NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$, where Δ can additionally contain rules of the form $q \rightarrow q'$, with $q, q' \in Q$.

Semantics: Allow to re-label a position from q to q'.

Equivalence of ε-NFTA
For every ε-NFTA \mathcal{A} there exists an equivalent NFTA \mathcal{A}'.

Proof (sketch): Construct the rules of \mathcal{A}' by a saturation procedure.
Deterministic, complete, and reduced NFTA

An NFTA is *deterministic* if no two rules have the same left-hand side. An NFTA is *complete* if for every $f \in F_n$ and $q_1, \ldots, q_n \in Q$, there exists at least one rule $f(q_1, \ldots, q_n) \rightarrow q \in \Delta$.

As usual, a DFTA has *at most* one run per tree. A DCFTA as *exactly* one run per tree.

A state q of A is *accessible* if there exists a tree t s.t. $t \rightarrow^* A q$. A is said to be *reduced* if all its states are accessible.
A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all $t \in L$ with $\mathcal{H}(t) > k$ there exist contexts $C, D \in \mathcal{C}(\mathcal{F})$ and $u \in \mathcal{T}(\mathcal{F})$ satisfying:

- D is non-trivial (i.e. not just a variable);
- $t = C[D[u]]$;
- for all $n \geq 0$, we have $C[D^n[u]] \in L$.

Proof: Let k be the number of states of an NFTA \mathcal{A} recognizing L. Then an accepting run for t has positions p, pp' ($p' \neq \varepsilon$) labelled with the same state q. Let $C := t[x]_p$, $D := t|_p[x]_{p'}$, and $u := t|_{pp'}$. We have $t = C[D[u]] \in L$, $D[u] \rightarrow^*_{\mathcal{A}} q$, and $u \rightarrow^*_{\mathcal{A}} q$, hence the accepting run of t implies $D[q] \rightarrow^*_{\mathcal{A}} q$ and $C[q] \rightarrow^*_{\mathcal{A}} q_f$, for some final q_f. Therefore, $C[u] \rightarrow^*_{\mathcal{A}} q_f$ and for any $n \geq 0$, (by induction)

\[
C[D^{n+1}[u]] \rightarrow^*_{\mathcal{A}} C[D^n[D[q]]] \rightarrow^*_{\mathcal{A}} C[D^n[q]] \rightarrow^*_{\mathcal{A}} C[q] \rightarrow^*_{\mathcal{A}} q_f
\]
Illustration of pumping lemma

Let $L = \{ f(g^i(a), g^i(a)) \mid i \geq 0 \}$ for $\mathcal{F} = \{ f(2), g(1), a \}$.

Suppose (by contradiction) that L is recognizable by NFTA A with k states. Let $t = f(g^k(a), g^k(a))$.

Pumping D creates trees outside $L \implies L$ not recognizable.
Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple \(A = \langle Q, \mathcal{F}, I, \Delta \rangle \), where
\(Q, \mathcal{F} \) are as in NFTA, \(I \subseteq Q \) is a set of initial states, and \(\Delta \) contains rules of the form
\[
q(f) \rightarrow (q_1, \ldots, q_n)
\]
for \(f \in \mathcal{F}_n \) and \(q, q_1, \ldots, q_n \in Q \).

Move relation: \(t \rightarrow_A t' \) iff

- \(t = C[q(f(t_1, \ldots, t_n))] \) for some context \(C \), \(f \in \mathcal{F}_n \), and \(t_1, \ldots, t_n \in T(\mathcal{F}) \);
- \(t' = C[f(q_1(t_1), \ldots, q_n(t_n))] \) for some rule \(q(f) \rightarrow (q_1, \ldots, q_n) \).

\(t \) is accepted by \(A \) if \(q(t) \rightarrow_A^* t \) for some \(q \in I \).
From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA $A = \langle Q, F, G, \Delta \rangle$ iff it is accepted by T-NFTA $A' = \langle Q, F, G, \Delta' \rangle$, with

$$\Delta' := \{ q(f) \to (q_1, \ldots, q_n) \mid f(q_1, \ldots, q_n) \to q \in \Delta \}$$

Proof: Let $t \in T(F)$. We show $t \to^*_A q$ iff $q(t) \to^*_{A'} t$.

- **Base:** $t = a$ (for some $a \in F_0$)
 $$t = a \to^*_A q \iff a \to^*_A q \iff q(a) \to^*_A a$$

- **Induction:** $t = f(t_1, \ldots, t_n)$, hypothesis holds for t_1, \ldots, t_n
 $$f(t_1, \ldots, t_n) \to^*_A q \iff \exists q_1, \ldots q_n : f(q_1, \ldots, q_n) \to^*_A q_i \\land \forall i : t_i \to^*_A q_i$$
 $$\iff \exists q_1, \ldots, q_n : q(f) \to^*_{A'} (q_1, \ldots, q_n) \land \forall i : q_i(t_i) \to^*_{A'} t_i$$
 $$\iff q(f(t_1, \ldots, t_n)) \to^*_{A'} f(q_1(t_1), \ldots, q_n(t_n)) \to^*_{A'} f(t_1, \ldots, t_n)$$
From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let $A = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. The following DCFTA $A' = \langle 2^Q, \mathcal{F}, G', \Delta' \rangle$ also recognizes L:

1. $G' = \{ S \subseteq Q \mid S \cap G \neq \emptyset \}$
2. for every $f \in \mathcal{F}_n$ and $S_1, \ldots, S_n \subseteq Q$, let $f(S_1, \ldots, S_n) \rightarrow S \in \Delta'$, where $S = \{ q \in Q \mid \exists q_1 \in S_1, \ldots, q_n \in S_n : f(q_1, \ldots, q_n) \rightarrow q \in \Delta \}$

Proof: For $t \in T(\mathcal{F})$, show $t \rightarrow^*_{A'} \{ q \mid t \rightarrow^*_A q \}$, by structural induction.

DFTA with accessible states

In practice, the construction of A' can be restricted to accessible states: Start with transitions $a \rightarrow S$, then saturate.

Deterministic top-down are less powerful

E.g., $L = \{ f(a, b), f(b, a) \}$ can be recognized by DFTA but not by T-DFTA.
Closure properties

Theorem (Boolean closure)
Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)
Let \(\langle Q, \mathcal{F}, G, \Delta \rangle \) be a DCFTA recognizing \(L \).
Then \(\langle Q, \mathcal{F}, Q \setminus G, \Delta \rangle \) recognizes \(T(\mathcal{F}) \setminus L \).

Union (juxtapose)
Let \(\langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle \) be NFTA recognizing \(L_i \), for \(i = 1, 2 \).
Then \(\langle Q_1 \uplus Q_2, \mathcal{F}, G_1 \cup G_2, \Delta_1 \cup \Delta_2 \rangle \) recognizes \(L_1 \cup L_2 \).
Cross-product construction

Direct intersection

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ be NFTA recognizing L_i, for $i = 1, 2$. Then $A = \langle Q_1 \times Q_2, \mathcal{F}, G_1 \times G_2, \Delta \rangle$ recognizes $L_1 \cap L_2$, where

\[
\begin{align*}
 f(q_1, \ldots, q_n) &\rightarrow q \in \Delta_1 & f(q'_1, \ldots, q'_n) &\rightarrow q' \in \Delta_2 \\
 f(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle) &\rightarrow \langle q, q' \rangle \in \Delta
\end{align*}
\]

Remarks:

- If A_1, A_2 are D(C)FTA, then so is A.
- If A_1, A_2 are complete, replace $G_1 \times G_2$ with $(G_1 \times Q_2) \cup (Q_1 \times G_2)$ to recognize $L_1 \cup L_2$.
Tree languages and context-free languages

Front

Let t be a ground tree. Then $fr(t) \in F_0^*$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example: $t = f(a, g(b, a), c)$, $fr(t) = abac$

Leaf languages

- Let L be a recognizable tree language. Then $fr(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA A with $L = fr(L(A))$.

Proof (idea):

- Given a T-NFTA recognizing L, construct a CFG from it.
- L is generated by a CFG using productions of the form $A \rightarrow BC \mid a$ only. Replace $A \rightarrow BC$ by $A \rightarrow A_2$ and $A_2 \rightarrow BC$, construct a T-NFTA from the result.
Visibly pushdown automata

Visibly pushdown automaton

Let $A = \langle Q, \Sigma, \Gamma, T, q_0, z_0, F \rangle$ be a pushdown automaton. A is called visibly pushdown (VPA) if there exist $\Sigma_0, \Sigma_1, \Sigma_2$ such that

- $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$
- $T \subseteq \bigcup_{i=0}^{2} (Q \times \Gamma) \times \Sigma_i \times (Q \times \Gamma^i)$

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let $L \subseteq T(F)$ be a recognizable tree language. Then L, seen as a word language of terms, is accepted by a VPA.
From TA to VPA

Let $A = \langle Q, \mathcal{F}, l, \Delta \rangle$ be a T-NFTA accepting L.
For convenience, assume $l = \{ q_0 \}$ is a singleton (closure under union). We
construct a single-state VPA $B = \langle \Sigma, \Gamma, T, q_0 \rangle$ accepting by empty stack
and recognizing the terms of L (can be converted into a normal VPA).

- $\Sigma_0 = \mathcal{F}_0 \cup \{) \}$, $\Sigma_1 = \mathcal{F} \setminus \mathcal{F}_0$, $\Sigma_2 = \{ , , (\}$
- $\Gamma = Q \cup \{ r_i \mid r \in \Delta, r = q(f) \rightarrow (q_1, \ldots, q_n), n \geq 1, 0 \leq i \leq n \}$
- $T = \bigcup_{r \in \Delta} T_r$
 - for $r = q(a) \rightarrow \varepsilon$, we have $T_r = \{ \langle q, a, \varepsilon \rangle \}$;
 - for $r = q(f) \rightarrow (q_1, \ldots, q_n), n \geq 1$, we have
 $T_r = \{ \langle q, f, r_0 \rangle, \langle r_0, (, q_1 r_1 \rangle, \langle r_n, \rangle, \varepsilon \rangle \}$
 $\cup \{ \langle r_i, , , q_{i+1} r_{i+1} \rangle \mid 1 \leq i < n \}$

Idea: $q \xrightarrow{t}^B \varepsilon$ iff $q(t) \xrightarrow{\ast} A t$
From TA to VPA: Example

Consider a T-NFTA $\langle Q, F, I, \Delta \rangle$ accepting $L = \{ f(g^i(a)) \mid i \geq 0 \}$:

- $Q = \{ q_0, q_1, q_f \}$, $F = \{ f(2), g(1), a \}$, $I = \{ q_f \}$;
- $\Delta := \{ \alpha : q_0(a) \rightarrow \varepsilon, \quad \beta : q_1(g) \rightarrow q_0, \quad \gamma : q_1(g) \rightarrow q_1, \quad \delta : q_f(f) \rightarrow (q_1, q_1) \}$.

We construct the single-state VPA $\langle \Sigma, \Gamma, T, q_f \rangle$, where:

- $\Sigma_0 = \{ a, (\} \}, \Sigma_1 = \{ f, g \}, \Sigma_2 = \{ , , (\} \};$
- $\Gamma = Q \cup \{ \beta_0, \beta_1, \gamma_0, \gamma_1, \delta_0, \delta_1, \delta_2 \};$
- $T_\alpha = \{ \langle q_0, a, \varepsilon \rangle \}$;
- $T_\beta = \{ \langle q_1, g, \beta_0 \rangle, \langle \beta_0, (, q_0 \beta_1 \rangle, \langle \beta_1,) \varepsilon \rangle \}$;
- $T_\gamma = \{ \langle q_1, g, \gamma_0 \rangle, \langle \gamma_0, (, q_1 \gamma_1 \rangle, \langle \gamma_1,) \varepsilon \rangle \}$;
- $T_\delta = \{ \langle q_f, f, \delta_0 \rangle, \langle \delta_0, (, q_1 \delta_1 \rangle, \langle \delta_1, , , q_1 \delta_2 \rangle, \langle \delta_2,) \varepsilon \rangle \}$.

Run on $f(g(a), g(g(a)))$:

$q_f \xrightarrow{f} \delta_0 \xrightarrow{()} q_1 \delta_1 \xrightarrow{g} \beta_0 \delta_1 \xrightarrow{()} q_0 \beta_1 \delta_1 \xrightarrow{a} \beta_1 \delta_1 \xrightarrow{()} \delta_1 \xrightarrow{g} q_1 \delta_2 \xrightarrow{g} \gamma_0 \delta_2 \xrightarrow{()} q_1 \gamma_1 \delta_2 \xrightarrow{g} \beta_0 \gamma_1 \delta_2 \xrightarrow{g} q_0 \beta_1 \gamma_1 \delta_2 \xrightarrow{a} \beta_1 \gamma_1 \delta_2 \xrightarrow{()} \gamma_1 \delta_2 \xrightarrow{()} \delta_2 \xrightarrow{()} \varepsilon$
Tree homomorphism

Definition

Let $X_n := \{x_1, \ldots, x_n\}$ and $\mathcal{F}, \mathcal{F}'$ ranked alphabets.

A tree homomorphism is a mapping $h : \mathcal{F} \to T(\mathcal{F}', X)$, with $h(f) \in T(\mathcal{F}, X_n)$ if $f \in \mathcal{F}_n$.

Extension of h to trees ($T(\mathcal{F}) \to T(\mathcal{F}')$):

- $h(f(t_1, \ldots, t_n)) = h(f)\{x_1 \leftarrow h(t_1), \ldots, x_n \leftarrow h(t_n)\}$

Intuition:

- $h(f)$ “explodes” f-positions into trees
- reorders/copies/deletes subtrees.
Examples

Example

- $\mathcal{F} = \{f(2), g(1), a\}$, $\mathcal{F}' = \{f'(1), g'(2), c, d\}$
- $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$

![Diagram of a function tree]

Example (ternary to binary tree)

- $\mathcal{F} = \{f(3), a, b\}$, $\mathcal{F}' = \{g(2), a, b\}$
- $h_{32}(f) = g(x_1, g(x_2, x_3))$, $h_{32}(a) = a$, $h_{32}(b) = b$
Properties of homomorphisms

A homomorphism h is

- **linear** if $h(f)$ linear for all f;
- **non-erasing** if $\mathcal{H}(h(f)) > 0$ for all f;
- **flat** if $\mathcal{H}(h(f)) = 1$ for all f;
- **complete** if $f \in \mathcal{F}_n$ implies that $h(f)$ contains all of \mathcal{X}_n;
- **permuting** if h is complete, linear, and flat;
- **alphabetic** if $h(f)$ has the form $g(x_1, \ldots, x_n)$ for all f.

Example: h_{32} is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

- Example: $h(f) = f'(x_1, x_1)$, $h(g) = g(x_1)$, $h(a) = a$
- $L = \{ f(g^i(a)) \mid i \geq 0 \}$ (recognizable)
- $h(L) = \{ f'(g^i(a), g^i(a)) \mid i \geq 0 \}$ (not recognizable)
Linear homomorphisms

Theorem: Linear homomorphisms preserve recognizability

Let $L \subseteq T(F)$ be recognizable and $h : F \to F'$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $F = \{ f(2), g(1), a \}$, $F' = \{ f'(1), g'(2), c, d \}$
- $h(f) = f'(g'(x_2, d))$, $h(g) = g'(x_1, c)$, $h(a) = g'(c, d)$
- $L = \{ f(g^i(a), g^k(a)) \mid i, k \geq 0 \}$
- $A = \langle \{ q_0, q_1, q_f \}, F, \{ q_f \}, \Delta \rangle$ recognizes L with
 $\Delta := \{ \alpha : a \to q_0, \beta : g(q_0) \to q_1, \gamma : g(q_1) \to q_1, \delta : f(q_1, q_1) \to q_f \}$

Run on A

Rules used to produce states

Construct automaton for $h(L)$ preserving state labels from A

+ Guess the rules.
Automaton construction for $h(L)$

Given a reduced NFTA $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ for L, construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', G, \Delta' \rangle$ for $h(L)$.

- $Q' := Q \cup \{ \langle r, p \rangle \mid r \in \Delta, \exists f \in \mathcal{F} : r = f(\ldots) \to \ldots, p \in Pos_{h(f)} \}$;
- Δ' contains, for each transition $r : f(s_1, \ldots, s_n) \to s$ in Δ and $p \in Pos_{h(f)}$:
 - $f'(\langle r, p1 \rangle, \ldots, \langle r, pk \rangle) \to \langle r, p \rangle$ if $h(f)(p) = f' \in F'_k$
 - $s_i \to \langle r, p \rangle$ if $h(f)(p) = x_i$
 - $\langle r, \varepsilon \rangle \to s$
To prove: \(\mathcal{A}' \) accepts \(h(L) \).

- \(h(L) \subseteq \mathcal{L}(\mathcal{A}') \):
 For \(t \in T(\mathcal{F}) \), prove that \(t \xrightarrow{\star}_A q \) implies \(h(t) \xrightarrow{\star}_{\mathcal{A}'} q \), by structural induction over \(t \).

- \(h(L) \supseteq \mathcal{L}(\mathcal{A}') \):
 For \(t' \in T(\mathcal{F}') \), prove that if \(t' \xrightarrow{\star}_{\mathcal{A}'} q \in Q \), then there exists \(t \in T(\mathcal{F}) \cap h^{-1}(t') \) with \(t \xrightarrow{\star}_A q \), by induction on number of states (of \(Q \)) in the computation \(t' \xrightarrow{\star}_{\mathcal{A}'} q \).
Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let $L \subseteq T(F')$ be recognizable and $h : F \to F'$ a tree homomorphism (not necessarily linear). Then $h^{-1}(L)$ is recognizable.

Given an NFTA $A' = \langle Q, F', G, \Delta' \rangle$ for L, construct NFTA $A = \langle Q \uplus \{!\}, F, G, \Delta \rangle$ for $h^{-1}(L)$.

For all $n \geq 0$ and $f \in F_n$, and $p_1, \ldots, p_n \in Q$,

- add $f(!, \ldots, !) \to !$ to Δ;
- if $h(f)\{x_1 \leftarrow p_1, \ldots, x_n \leftarrow p_n\} \to_{A'}^* q$, add $f(q_1, \ldots, q_n) \to q$ to Δ, with:

$$q_i = \begin{cases} p_i & \text{if } x_i \text{ appears in } h(f) \\ ! & \text{otherwise} \end{cases}$$

Proof: Show $t \to_{A}^* q$ iff $h(t) \to_{A'}^* q$, for all $t \in T(F)$.
Theorem

The following problem is EXPTIME-complete:
Given tree automata A_1, \ldots, A_n, is $L(A_1) \cap \cdots \cap L(A_n) \neq \emptyset$?

Proof (sketch):

- **Hardness**: Simulate an linear-space ATM M with input of length n. If M accepts the input, there is an accepting run. Encode the run of M as a tree. Construct A_i, for $i = 1, \ldots, n$, to check:
 1. if M starts with the correct configuration;
 2. if all configurations in the run are of length n;
 3. if all final configurations are accepting;
 4. if the part of the configurations around the i-th symbol are coherent.

- **Membership**: Compute the productive tuples of states in $A_1 \times \cdots \times A_n$.

Detailed proof: Veanes, 1997
Definition: Congruence

Let \equiv be an equivalence relation on $T(F)$.

- \equiv is called a congruence if for any $n \geq 0$ and $f \in F_n$, $u_1 \equiv v_1, \ldots, u_n \equiv v_n$ we have $f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$.

- \equiv saturates L if $u \equiv v$ implies $u \in L \iff v \in L$.

For $L \subseteq T(F)$, write $u \equiv_L v$ if

$$\forall C \in C(F) : C[u] \in L \iff C[v] \in L$$

Myhill-Nerode Theorem for trees

The following are equivalent:

1. $L \subseteq T(F)$ is recognizable.
2. L is saturated by some congruence of finite index.
3. \equiv_L is of finite index.
Myhill-Nerode Theorem

Application:

Consider \(L = \{ f(g^i(a), g^i(a)) \mid i \geq 0 \} \).

For any pair \(i \neq k \), consider \(C = f(x, g^i(a)) \).

Then \(C[g^i(a)] \in L \) but \(C[g^k(a)] \notin L \implies g^i(a) \not\equiv_L g^k(a) \)

Therefore \(\equiv_L \) is not of finite index, and \(L \) is not recognizable.

Proof of the theorem (sketch):

- \(1 \rightarrow 2 \): Let \(\mathcal{A} \) be DCFTA and let \(u \equiv v \) iff \(u \rightarrow^*_{\mathcal{A}} q \rightleftharpoons_{\mathcal{A}} v \).
 Then \(\equiv \) is of finite index and saturates \(L \).

- \(2 \rightarrow 3 \): Let \(\equiv \) be a saturating congruence, \(u \equiv v \) implies \(u \equiv_L v \)
 (prove \(u \equiv v \) implies \(C[u] \equiv C[v] \) for all \(C \), by recurrence over height
 of position of \(x \) in \(C \)).

- \(3 \rightarrow 1 \): Let \(\mathcal{A} = \langle T(\mathcal{F})/\equiv_L, \mathcal{F}, L/\equiv_L, \Delta \rangle \), with
 \[f([u_1], \ldots, [u_n]) \rightarrow [f(u_1, \ldots, u_n)] \]
 for all \(n \geq 0, f \in \mathcal{F}_n, u_1, \ldots, u_n \in T(\mathcal{F}) \),
 where \([u] \) is the equivalence class of \(u \in T(\mathcal{F}) \);

Remark: This can be shown to be the canonical minimal DCFTA.
Path languages

Let $t \in T(\mathcal{F})$. The path language $\pi(t)$ is defined as follows:
- if $t = a \in \mathcal{F}_0$, then $\pi(t) = \{a\}$;
- if $t = f(t_1, \ldots, t_n)$, for $f \in \mathcal{F}_n$, then $\pi(t) = \{fiw \mid w \in \pi(t_i)\}$.

We write $\pi(L) = \bigcup \{\pi(t) \mid t \in L\}$ for $L \subseteq T(\mathcal{F})$.

Example: $L = \{f(a, b), f(b, a)\}$, $\pi(L) = \{f1a, f2b, f1b, f2a\}$.

Path closure

Let $L \subseteq T(\mathcal{F})$ be a tree language.
- The path closure of L is $pc(L) = \{t \mid \pi(t) \subseteq \pi(L)\} \supseteq L$.
- L is called path-closed if $L = pc(L)$.

Example: $pc(L) = \{f(a, a), f(a, b), f(b, a), f(b, b)\}$, so L is not path-closed.
Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\pi(L)$ is a recognizable word language.
- $pc(L)$ is a recognizable tree language.

Proof: Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ be a reduced T-NFTA for L.

- Construct a finite (word) automaton out of \mathcal{A}.
 (Easy, but does require \mathcal{A} to be reduced!)
- Construct $\mathcal{A}' = \langle Q, \mathcal{F}, G, \Delta' \rangle$ for $pc(L)$ as follows:
 for all $a \in \mathcal{F}_0$:
 $$q(a) \xrightarrow{\Delta} \varepsilon \implies q(a) \xrightarrow{\Delta'} \varepsilon$$
 for all $n \geq 1$, $f \in \mathcal{F}_n$:
 $$\forall i : q(f) \xrightarrow{\Delta} (q_{i,1}, \ldots, q_{n,1}) \implies q(f) \xrightarrow{\Delta'} (q_{1,1}, \ldots, q_{n,n})$$

Let $L_q = \mathcal{L}(\langle Q, \mathcal{F}, \{q\}, \Delta \rangle)$ and $L'_q = \mathcal{L}(\langle Q, \mathcal{F}, \{q\}, \Delta' \rangle)$.

Prove $t \in L'_q \iff \pi(t) \subseteq \pi(L_q)$ for all $q \in Q, t \in T(\mathcal{F})$ by induction.
Path closure and T-NFTA

Corollary
It is decidable whether a recognizable tree language is path-closed.

Theorem
Let \(L \subseteq T(\mathcal{F}) \) be a recognizable tree language.
\(L \) is path-closed iff it is recognized by a T-DFTA.

Proof:

- "\(\rightarrow \)"
 Let \(\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle \) be a reduced T-NFTA for \(L \).
 Construct a T-DFTA \(\mathcal{A}' = \langle 2^Q, \mathcal{F}, G, \Delta' \rangle \) as follows:
 for all \(a \in \mathcal{F}_0 \), \(S(a) \rightarrow_{\Delta'} \varepsilon \) if \(\exists q \in S, q(a) \rightarrow_{\Delta} \varepsilon \);
 for all \(n \geq 1, f \in \mathcal{F}_n \), \(S(f) \rightarrow_{\Delta'} (S_1, \ldots, S_n) \)
 where \(S_i = \{ q_i \mid \exists q \in S, q(f) \rightarrow_{\Delta} (q_1, \ldots, q_n) \} \).

- "\(\leftarrow \)"
 Let \(\mathcal{A} \) be a complete T-DFTA for \(L \), define \(L_q \) as before.
 Prove that \(\pi(t) \subseteq \pi(L_q) \) implies \(t \in L_q \), for all \(q \in Q, t \in T(\mathcal{F}) \).
Logic over trees

Alternative specification for sets of trees

E.g., to describe valid HTML documents:

- A p tag may only appear inside a body tag.
- A dl tag must contain pairs of dt and dd tags.

Roadmap

- We shall define a logic that defines such properties of trees.
- The sets of trees definable in that language will be recognizable.
Recall: First-/second-order logic

First-order logic (FO)

Let $\sigma = (\langle R_i \rangle_{1 \leq i \leq n})$ be a relation signature and $\mathcal{X}_1 = \{x_1, x_2, \ldots\}$ a set of variables. The first-order formulas $\text{FO}(\sigma)$ are:

$$R_i(x_{j_1}, \ldots, x_{j_i}) \mid x = x' \mid \neg\phi \mid \phi \land \phi' \mid \exists x.\phi$$

Second-order logic: allow quantifying over relations
Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and $\mathcal{X}_1 = \{x_1, x_2, \ldots\}$, $\mathcal{X}_2 = \{X_1, X_2, \ldots\}$ sets of first-/second-order variables. The set of $\text{MSO}(\sigma)$ formulae are:

$$R_i(x_{j_1}, \ldots, x_{j_i}) \mid x = x' \mid x \in X \mid \neg\phi \mid \phi \land \phi' \mid \exists x.\phi \mid \exists X.\phi$$

Weak second-order: only quantify over finite sets

$\text{WS}kS$ (weak MSO over with k successors)

$\text{WS}kS = \text{MSO}(\langle 1, \ldots, <k \rangle)$
Semantics of MSO

Definition

Let \mathcal{M} a domain, σ a signature, ν a valuation with

- $\nu(x) \in \mathcal{M}$ for $x \in \mathcal{X}_1$
- $\nu(X) \subseteq \mathcal{M}$ for $X \in \mathcal{X}_2$

\[
\begin{align*}
\mathcal{M}, \sigma, \nu &\models R_i(x_{j_1}, \ldots, x_{j_i}) \quad \text{if} \quad (\nu(x_{j_1}), \ldots, \nu(x_{j_i})) \in R_i \\
\mathcal{M}, \sigma, \nu &\models x = x' \quad \text{if} \quad \nu(x) = \nu(x') \\
\mathcal{M}, \sigma, \nu &\models x \in X \quad \text{if} \quad \nu(x) \in \nu(X) \\
\mathcal{M}, \sigma, \nu &\models \neg \phi \quad \text{if} \quad \mathcal{M}, \sigma, \nu \not\models \phi \\
\mathcal{M}, \sigma, \nu &\models \phi \land \phi' \quad \text{if} \quad \mathcal{M}, \sigma, \nu \models \phi \land \mathcal{M}, \sigma, \nu \models \phi' \\
\mathcal{M}, \sigma, \nu &\models \exists x. \phi \quad \text{if} \quad \exists m \in \mathcal{M}. \quad \mathcal{M}, \sigma, \nu[x \mapsto m] \models \phi \\
\mathcal{M}, \sigma, \nu &\models \exists X. \phi \quad \text{if} \quad \exists M \subseteq \mathcal{M}. \quad \mathcal{M}, \sigma, \nu[X \mapsto M] \models \phi
\end{align*}
\]

We omit \mathcal{M}, σ when clear from context.
Recall: Common abbreviations

- $\forall x, \forall X, \lor$, etc can be expressed in the usual way.
- $X \subseteq Y$:
 \[
 \forall x.(x \in X \rightarrow x \in Y)
 \]
- $Z = X \cup Y$:
 \[
 \forall x.(x \in Z \leftrightarrow x \in X \lor x \in Y)
 \]
- Partition(X, X_1, \ldots, X_m):
 \[
 \left(\forall x.\left(x \in X \leftrightarrow \bigvee_{i=1}^{m} x \in X_i\right)\right) \land \left(\bigwedge_{i=1}^{m} \bigwedge_{j \neq i} \forall x.(x \notin X_i \lor x \notin X_j)\right)
 \]
- Similarly, $X = \emptyset$, $X = \{x\}$, $X = Y$, \ldots
WS\(k\)S and trees

Let \(\mathcal{M} = N^*\), we fix \(<_i\) to be the relation \(<_i = \{ \langle p, p'\rangle \mid p, p' \in N^* \}\). We define \(< = \bigcup_{i=1}^{k} <_i\) and \(\leq\) as usual, and \(\varepsilon\) for the minimal element. We write \(xi\) to denote the least \(q\) s.t. \(\nu(x) <_i q\).

Coding of a tree

Let \(t \in T(\mathcal{F})\) and \(k\) the maximal arity in \(\mathcal{F}\). As a shorthand, define \(S_{\mathcal{F}} := (S_f)_{f \in \mathcal{F}}\). We note \(C(t) := (S, S_{\mathcal{F}})\), where:

- \(S = \bigcup_{f \in \mathcal{F}} S_f\);
- for all \(f \in \mathcal{F}\), \(S_f = \{ p \in Pos_t \mid t(p) = f \}\).

\((S, S_{\mathcal{F}})\) encodes a tree if \(Tree(S, S_{\mathcal{F}})\) holds:

\[
Tree(S, S_{\mathcal{F}}) := S \neq \emptyset \land \text{Partition}(S, S_{\mathcal{F}}) \\
\land \forall x.\forall y.(x \in S \land y < x) \rightarrow y \in S \\
\land \bigwedge_{n=1}^{k} \bigwedge_{f \in \mathcal{F}_n} \bigwedge_{i=1}^{n}(x \in S_f \rightarrow xi \in S) \\
\land \bigwedge_{n=1}^{k} \bigwedge_{f \in \mathcal{F}_n} \bigwedge_{i=n+1}^{k}(x \in S_f \rightarrow xi \notin S)
\]
Semantics of WS\(kS\) on trees

Coded valuation

Let \(F' := F \times 2^{X_1 \cup X_2}\). The arity of \((f, \tau)\) is \(n\) if \(f \in F_n\).

Let \(t \in T(F)\) and \(\nu\) a valuation. The tuple \(\langle t, \nu \rangle\) is \textit{coded} by a tree \(t' \in T(F')\), as follows, for all \(p \in Pos\) and \(t'(p) = \langle f, \tau \rangle\):

- if \(x \in X_1\) then \(\tau(x) = 1\) iff \(p = \nu(x)\);
- if \(X \in X_2\) then \(\tau(X) = 1\) iff \(p \in \nu(X)\).

A tree \(t' \in T(F')\) is \textit{valid} \((t' \in T_v(F'))\) if it codes some \(\langle t, \nu \rangle\).

Semantics of WS\(kS\)

Let \(\phi\) be a formula of WS\(kS\) and \(V \subseteq (X_1 \cup X_2) \uplus (\{S\} \cup S_F)\) its free variables.

\[
\mathcal{L}(\phi) := \{ \langle t, \nu \rangle \in T_v(F') \mid \nu[(S, S_F) \mapsto C(t)] \models \phi \}
\]
Examples

Let \(t = f(g(a), a) \).

Left: \(\langle t, \nu \rangle \) with \(\nu(x) = \varepsilon, \nu(y) = 11 \), and \(\nu(Z) = \{\varepsilon, 11, 2\} \).

Right: \(\langle t, \nu' \rangle \) with \(\nu'(x) = 1 \)

\[
\begin{array}{c}
\langle f, 101 \rangle \\
\quad \downarrow \\
\langle g, 000 \rangle & \langle a, 001 \rangle
\end{array}
\begin{array}{c}
\langle f, 0 \rangle \\
\quad \downarrow \\
\langle g, 1 \rangle & \langle a, 0 \rangle
\end{array}
\begin{array}{c}
\langle a, 011 \rangle \\
\quad \\
\langle a, 0 \rangle
\end{array}
\]

We have \(C(t) = (S, S_f, S_g, S_a) \) with \(S = \{\varepsilon, 1, 11, 2\} \), \(S_f = \{\varepsilon\} \), \(S_g = \{1\} \), \(S_a = \{11, 2\} \).

\(\nu'[\langle S, S_F \rangle \mapsto C(t)] \models x \in S_g \), thus \(\langle t, \nu' \rangle \in \mathcal{L}(x \in S_g) \)

\(t \in \mathcal{L}(\exists x. x \in S_g) \)
Theorem

A tree language $L \subseteq T(\mathcal{F})$ is recognizable iff $L = \mathcal{L}(\phi)$ for some formula $\phi(S, S_\mathcal{F})$ of WSkS.

Proof: (sketch)

- **DCFTA $\mathcal{A} \rightarrow WSkS$:** Construct formula ϕ that
 (i) verifies that the structure is a tree;
 (ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
 (iii) verifies that the computation is locally correct;
 (iv) verifies that the root is labelled by an accepting state.

- **WS$kS \phi \rightarrow NFTA \mathcal{A}:** Proceed by recurrence on ϕ, show that all subformulae of ϕ are recognizable.
Example: DCFTA → WSkS

Let $Q := \{q_0, q_1, q_f\}$, $\mathcal{F} = \{f(2), g(1), a\}$, $G := \{q_f\}$, and rules

$a \rightarrow q_0 \quad g(q_0) \rightarrow q_1 \quad g(q_1) \rightarrow q_1 \quad f(q_1, q_1) \rightarrow q_f$

(automate à compléter !)

Corresponding formula:

$$\phi = \text{Tree}(S, S_{\mathcal{F}}) \quad \land \quad \exists Q_0, Q_1, Q_f. \text{Partition}(S, Q_0, Q_1, Q_f)$$

$$\land \quad \forall x. (x \in S_a \rightarrow x \in Q_0)$$

$$\land \quad \forall x. ((x \in S_g \land x1 \in Q_0) \rightarrow x \in Q_1)$$

$$\land \quad \forall x. ((x \in S_g \land x1 \in Q_1) \rightarrow x \in Q_1)$$

$$\land \quad \forall x. ((x \in S_f \land x1 \in Q_1 \land x2 \in Q_1) \rightarrow x \in Q_f)$$

$$\land \quad \ldots$$

$$\land \quad \varepsilon \in Q_f$$
Consider $\mathcal{F} = \{ f(2), g(1), a \}$.

- $\phi = x \in S_g$
 $\mathcal{A}_\phi = \langle \{q, q'\}, \mathcal{F} \times 2^{\{x\}}, \{q'\}, \Delta \rangle$ with transitions
 $\langle a, 0 \rangle \rightarrow q$
 $\langle g, 1 \rangle(q) \rightarrow q'$ $\langle g, 0 \rangle(q) \rightarrow q$
 $\langle g, 0 \rangle(q') \rightarrow q'$
 $\langle f, 0 \rangle(q, q) \rightarrow q$
 $\langle f, 0 \rangle(q, q') \rightarrow q'$
 $\langle f, 0 \rangle(q', q) \rightarrow q'$

accepts $L(x \in S_g)$ (scans for a single g-position with $\tau(x) = 1$).

- $\phi' = \exists x. \phi$
 Obtain $\mathcal{A}_{\phi'}$ from \mathcal{A}_ϕ by stripping $\tau(x)$:
 $\mathcal{A}_{\phi'} = \langle \{q, q'\}, \mathcal{F}, \{q'\}, \Delta \rangle$
 $a \rightarrow q$
 $g(q) \rightarrow q'$ $g(q) \rightarrow q$
 $g(q') \rightarrow q'$
 $f(q, q) \rightarrow q$ $f(q, q') \rightarrow q'$
 $f(q', q) \rightarrow q'$
Unranked trees

We now consider finite ordered unranked trees.

- **ordered**: internal nodes have children 1...n
- **unranked**: nodes may have an arbitrary number of children

Motivation: e.g., XML documents

- “A html tag contains an optional head and an obligatory body.”
- “A div tag contains an unlimited number of p, ol, ul, ... tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set $Pos \subseteq N^*$.
A hedge automaton (NHA) is a tuple \(\mathcal{A} = \langle Q, \Sigma, G, \Delta \rangle \), where:

- \(Q \) is a finite set of states;
- \(\Sigma \) a finite alphabet;
- \(G \subseteq Q \) are the final states;
- \(\Delta \) is a finite set of rules of the form \(a(R) \rightarrow q \) for \(a \in \Sigma \), \(q \in Q \), and \(R \) a regular (word) language over \(Q \).

Example: \(Q := \{q_x, q_h, q_b, q_p\} \), \(\Sigma = \{x, h, b, p\} \), \(G := \{q_x\} \), and rules

\[
\begin{align*}
x(q_h^*q_b) & \rightarrow q_x \\
h(\varepsilon) & \rightarrow q_h \\
b(q_p^*) & \rightarrow q_b \\
p(\varepsilon) & \rightarrow q_p
\end{align*}
\]

This accepts trees of the form \(x(h, b(p, \ldots, p)) \) and \(x(b(p, \ldots, p)) \).
Semantics of hedge automata

Remark:

- The R in $a(R) \rightarrow q$ are called *horizontal languages*.
- They are (finitely) represented by regular expressions or finite automata.

Computation of NHA

Let $t \in T(\Sigma)$ be a tree. A *run* or *computation* of \mathcal{A} on t is a tree $t' \in T(Q)$, i.e. for all $p \in \text{Pos}$:

- if $t(p) = a \in \Sigma$, $t'(p) = q \in Q$, and $\text{Pos} \cap pN = \{p_1, \ldots, p_n\}$, there exists $a(R) \rightarrow q \in \Delta$ such that $t'(p_1) \cdots t'(p_n) \in R$.

Acceptance condition: $t'(\varepsilon) \in G$

$L \subseteq T(\Sigma)$ is called *hedge-recognizable* if $L = \mathcal{L}(\mathcal{A})$ for some NHA \mathcal{A}.
Complete / normalized / deterministic HA

An NHA is . . .

- **complete** if for all $t \in T(\Sigma)$, $t \xrightarrow{A} q$ for some q;
- **full** if for all $a \in \Sigma$, $q \in Q$, there is some $a(R) \rightarrow q$;
- **reduced** if $a(R_1) \rightarrow q$, $a(R_2) \rightarrow q \in \Delta$ implies $R_1 = R_2$;
- **deterministic** (DHA) if $a(R_1) \rightarrow q_1$, $a(R_2) \rightarrow q_2 \in \Delta$ implies $R_1 \cap R_2 = \emptyset$ or $q_1 = q_2$.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

- complete: add garbage state, as usual
- full: add rules $a(\emptyset) \rightarrow q$ where necessary
- reduced: replace $a(R_1) \rightarrow q$ and $a(R_2) \rightarrow q$ with $a(R_1 \cup R_2) \rightarrow q$ where necessary
Determinization of NHA

Let $\mathcal{A} = \langle Q, \Sigma, G, \Delta \rangle$ be a complete, full, reduced NHA. The complete, full, reduced DHA $\mathcal{A}' = \langle 2^Q, \Sigma, G', \Delta' \rangle$ is equivalent to \mathcal{A} where:

- $G' = \{ S \subseteq Q \mid S \cap G \neq \emptyset \}$;
- let $R_{a,q}$ denote the (unique) language s.t. $a(R_{a,q}) \rightarrow q \in \Delta$;
- $R'_{a,q} := R_{a,q} \left[q' \rightarrow (S \cup \{ q' \}) \right] | \ q' \in Q, S \subseteq Q$;
- for all $a \in \Sigma, S \subseteq Q$, we have $a(R_{a,S}) \rightarrow S \in \Delta'$;

\[
R_{a,S} := \left(\bigcap_{q \in S} R'_{a,q} \right) \setminus \left(\bigcup_{q \not\in S} R'_{a,q} \right)
\]
Encoding unranked trees

Bijective encoding of unranked into ranked trees

- Let Σ an alphabet; $\mathcal{F}_\Sigma := \{ @(2) \} \cup \{ a(0) \mid a \in \Sigma \}$.
- Define the coding $C_@ (t) \in T(\mathcal{F}_\Sigma)$ of $t \in T(\Sigma)$ as

 $$C_@ (a(t_1, \ldots, t_n)) = @(\ldots (a, C_@ (t_1)), C_@ (t_2)), \ldots), C_@ (t_n))$$

Example:

```
    x
   /|
  h b
 /|
/ |  
| |  
p p p
```

\Rightarrow

```
  @
 /|
@ @
 /|
 x h
 /|
@ p
```

```
  @
 /|
@ @
 /|
 b p
```

Recognizing encoded trees

Theorem

A language \(L \subseteq T(\Sigma) \) is hedge-recognizable iff \(C@_{\circ}(L) \) is recognizable.

NHA \(\rightarrow \) NFTA:
Let \(\mathcal{A} = \langle Q, \Sigma, G, \Delta \rangle \) an NHA; \(\Delta = \{a_1(R_1) \rightarrow q_1, \ldots, a_n(R_n) \rightarrow q_n\} \); \(R_i \) represented by det.compl. FA \(\mathcal{A}_i = \langle S_i, Q, s_0^{(i)}, F_i, \delta_i \rangle \).

Construct NFTA \(\mathcal{A}' = \langle Q', F_\Sigma, G, \Delta' \rangle \), where:

- \(Q' = Q \cup \bigcup_{i=1}^n S_i \)
- \(\Delta' = \bigcup_{i=1}^n (\Delta_1^i \cup \Delta_2^i \cup \Delta_3^i) \)
 - \(\Delta_1^i = \{ a_i \rightarrow s_0^{(i)} \} \)
 - \(\Delta_2^i = \{ \Theta(s, q) \rightarrow \delta_i(s, q) \mid s \in S_i, q \in Q \} \)
 - \(\Delta_3^i = \{ s_f \rightarrow q_i \mid s_f \in F_i \} \)
Example: NHA → NFTA

- $Q := \{q_x, q_h, q_b, q_p\}, \Sigma = \{x, h, b, p\}, G := \{q_x\}$, and rules
 \[
x(q_h q_b) \rightarrow q_x, \quad h(\varepsilon) \rightarrow q_h, \quad b(q_p^*) \rightarrow q_b, \quad p(\varepsilon) \rightarrow q_p
 \]

- Automaton for first rule:

- Single-state automata with s_h, s_b, s_p for the other rules
Recognizing encoded trees

Theorem

A language $L \subseteq T(\Sigma)$ is hedge-recognizable iff $C@L$ is recognizable.

NFTA → NHA:

Let $A = \langle Q, \mathcal{F}_\Sigma, G, \Delta \rangle$ an NFTA (without ε-moves).

Define $\Delta_R := \{ \langle q_0, q_1, q_2 \rangle \mid \mathcal{G}(q_0, q_1) \rightarrow \Delta q_2 \}$

and $Out := G \cup \{ q \mid \exists q', q'' : \mathcal{G}(q', q) \rightarrow \Delta q'' \}$.

For $q \in Q, q' \in Out$, let $A_{q, q'} := \langle Q, Q, q, \{ q' \}, \Delta_R \rangle$ a word automaton.

Construct NHA $A' := \langle Q, \Sigma, G, \Delta' \rangle$, where

$$\Delta' = \{ a(L(A_{q, q'})) \rightarrow q' \mid a \rightarrow \Delta q, q' \in Out \}$$

Corollary

Hedge-recognizable languages are closed under boolean operations.
Unranked trees and logic

UTL = weak MSO\((\textit{child}, \textit{next})\) interpreted over \(\mathcal{M} = \mathbb{N}^*\), where

- \(\textit{child}(x, y)\) iff \(y = xi\) for some \(i \in \mathbb{N}\)
- \(\textit{next}(x, y)\) iff \(\exists z, i : x = zi \land y = z(i + 1)\)

Further predicates can be defined from this:

- \(\textit{right}(x, y) = \text{“}y\text{ is a right sibling of }x\text{”}\)
- \(\textit{desc}(x, y) = \text{“}y\text{ is a descendant of }x\text{”} = \text{“}x \leq y\text{”}\)

Notions like \(\mathcal{L}(\phi)\) are defined in analogy with WS\(k\)S.

Theorem: \(\text{UTL} = \text{NHA}\)

A language \(L \subseteq T(\Sigma)\) is hedge-recognizable iff \(L = \mathcal{L}(\phi)\) for some formula \(\phi(S, S_\Sigma)\) of UTL.
UTL \Rightarrow NHA: Proof sketch

- \textbf{UTL \rightarrow NHA:}

 Let ϕ be an UTL formula. Define ϕ' of WS2S s.t. $L(\phi') = C_\oplus(L(\phi))$.

 Define \textit{leftmost}(x, y) as

 $$\forall X : (x \in X \land \forall z, z' : (z \in X \land z' = z_1 \rightarrow z' \in X)$$
 $$\land \forall z : (z \in X \rightarrow z = x \lor (\exists z' : z' \in X \land z = z'1)))$$
 $$\rightarrow (y \in X \land \forall z : z \in X \rightarrow z \leq y)$$

 (“y is the maximal position in x_{1^*}”)

 Then \textit{child} and \textit{next} can be translated as follows:

 \begin{align*}
 \text{child}(x, y) & := \exists z : \text{leftmost}(z, x) \land \text{leftmost}(z_2, y) \\
 \text{next}(x, y) & := \exists z : \text{leftmost}(z_{12}, x) \land \text{leftmost}(z_2, y)
 \end{align*}
NHA → UTL:

Let \mathcal{A} be a complete, full, normalized, deterministic NHA.

Construct formula $\phi(S, S_\Sigma)$ of UTL that

(i) verifies that the structure is a tree;
(ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA \rightarrow WSkS construction is (iii):

(iii): whenever the computation puts q on an a-labelled position p, guess a run of the automaton for $R_{a,q}$ over p and its children.
Tuples of trees

Let \(t_1, t_2 \in T(\mathcal{F}) \) ranked trees. Add a fresh symbol \(-\) to \(\mathcal{F}_0 \) and let

\[
\mathcal{F}^\prime := \{ \langle f, g \rangle(k) \mid f \in \mathcal{F}_m, g \in \mathcal{F}_n, k = \max\{m, n\} \}.
\]

\(\langle t_1, t_2 \rangle \) denotes the ranked tree \(t \in T(\mathcal{F}^\prime) \) as follows:

- \(Pos_t = Pos_{t_1} \cup Pos_{t_2} \)
- for all \(p \in Pos_t \),

\[
t(p) = \begin{cases}
\langle f, g \rangle & \text{if } t \in Pos_{t_1} \cap Pos_{t_2}, t_1(p) = f, t_2(p) = g \\
\langle f, - \rangle & \text{if } t \in Pos_{t_1} \setminus Pos_{t_2}, t_1(p) = f \\
\langle -, g \rangle & \text{if } t \in Pos_{t_2} \setminus Pos_{t_1}, t_2(p) = g
\end{cases}
\]

Example:

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 f \\
 \begin{array}{c}
 f \\
 \begin{array}{c}
 a \\
 \begin{array}{c}
 a \\
 a \\
 a \\
 a
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
 f \\
 \begin{array}{c}
 f \\
 \begin{array}{c}
 g \\
 \begin{array}{c}
 g \\
 a \\
 a
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\Rightarrow
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\langle f, f \rangle \\
\langle f, a \rangle \\
\langle a, g \rangle \\
\langle a, - \rangle \\
\langle a, - \rangle \\
\langle -, g \rangle \\
\langle -, a \rangle
\end{array}
\end{array}
\end{array}
\end{array}
\]
Tree relations

We consider (binary) relations $R \subseteq T(\mathcal{F})^2$.

- Let \mathcal{R}_2 be the class of recognizable relations ($= \text{recognizable languages over } \mathcal{F}'$).
- Let \mathcal{X}_2 be the class of \textit{finite unions of cross products} $R \in \mathcal{X}_2$ iff $R = \bigcup_{i=1}^{n} \left(L_1^{(i)} \times L_2^{(i)} \right)$, for some $n \geq 0$ and $L_1^{(i)}, L_2^{(i)}$ recognizable for all i
- Let \mathcal{X}_2 be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A \textit{ground tree transducer} (GTT) is pair $\mathcal{G} = \langle A_1, A_2 \rangle$ of bottom-up NFTA over \mathcal{F}. (The states of A_1 and A_2 may overlap.)

The relation accepted by \mathcal{G} is

$$\{ \langle t, u \rangle \mid \exists n \geq 0, \ C \in C^n(\mathcal{F}), \ t_1, \ldots, t_n \in T(\mathcal{F}), \ u_1, \ldots, u_n \in T(\mathcal{F}), \ q_1, \ldots, q_n :
\begin{align*}
t & = C[t_1, \ldots, t_n] \land \ u = C[u_1, \ldots, u_n] \\
\land \forall i : t_i \rightarrow_{A_1}^{*} q_i \ A_2^{*} \leftarrow u_i \} \}$$
Relations between R_2, X_2, T_2

Propositions

1. $R_2 \not\subseteq X_2$ and $T_2 \not\subseteq X_2$
2. $R_2 \not\subseteq T_2$ and $X_2 \not\subseteq T_2$
3. $X_2 \subseteq R_2$
4. $T_2 \subseteq R_2$
5. $X_2 \cup T_2 \subsetneq R_2$

Proofs:

1. $\{ \langle t, t \rangle | t \in T(F) \}$ is in $T_2 \cap R_2$ but not X_2
2. \emptyset is in $X_2 \cap R_2$ but not T_2
3. see next slides
4. see next slides
5. see next slides
Proof of $\mathcal{X}_2 \subseteq \mathcal{R}_2$

Let $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ (for $i = 1, 2$) be NFTA and let $R = \mathcal{L}(A_1) \times \mathcal{L}(A_2) \in \mathcal{X}_2$.

Construct NFTA $A = \langle Q, \mathcal{F}', G_1 \times G_2, \Delta \rangle$ with $\mathcal{L}(A) = R$:

- $Q = (Q_1 \cup \{-\}) \times (Q_2 \cup \{-\})$
- for every $f \in \mathcal{F}_m$, $g \in \mathcal{F}_n$, $m \geq n$, $\neg(f = g = -)$
 Δ contains
 - $\langle f, g \rangle(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle, \langle q_{n+1}, - \rangle, \ldots, \langle q_m, - \rangle) \rightarrow \langle q, q' \rangle$ if $f(q_1, \ldots, q_m) \rightarrow q \in \Delta_1$ and $g(q'_1, \ldots, q'_n) \rightarrow q' \in \Delta_2$
 - $\langle g, f \rangle(\langle q_1, q'_1 \rangle, \ldots, \langle q_n, q'_n \rangle, \langle - , q'_{n+1} \rangle, \ldots, \langle - , q_m \rangle) \rightarrow \langle q, q' \rangle$ if $f(q'_1, \ldots, q'_m) \rightarrow q \in \Delta_2$ and $g(q_1, \ldots, q_n) \rightarrow q' \in \Delta_1$

(reminder: we assume that $-$ is a fresh symbol in \mathcal{F}_0)

Intuition: Modified cross-product construction.

Proof of $\mathcal{T}_2 \subseteq \mathcal{R}_2$

Let $\mathcal{G} = \langle \mathcal{A}_1, \mathcal{A}_2 \rangle$, $A_i = \langle Q_i, \mathcal{F}, G_i, \Delta_i \rangle$ (for $i = 1, 2$).
We construct NFTA $\mathcal{A}' = \langle Q', \mathcal{F}', \{q_f\}, \Delta' \rangle$ with $L(\mathcal{A}') = L(\mathcal{G})$.

Construct NFTA $\mathcal{A} = \langle Q, \mathcal{F}', G, \Delta \rangle$ from $\mathcal{A}_1, \mathcal{A}_2$ as in previous proof. Then:

- $Q' = Q \cup \{q_f\}$
- $\Delta' = \Delta \cup \Delta_1 \cup \Delta_2$
 - $\Delta_1 = \{ \langle q, q \rangle \to q_f \mid q \in Q_1 \cap Q_2 \}$
 - $\Delta_2 = \{ \langle f, f \rangle(q_f, \ldots, q_f) \to q_f \mid f \in \mathcal{F}_n, f \neq - \}$

Intuition:
Δ reads pairs of trees from $\mathcal{A}_1, \mathcal{A}_2$;
Δ_1 allows to plug pairs of subtrees into some context C;
Δ_2 reads the remaining context C.
Proof of $\mathcal{X}_2 \cup \mathcal{T}_2 \subsetneq \mathcal{R}_2$

Let $\mathcal{F} = \{f(1), g(1), a\}$. Let $R = \{\langle t_1, t_2 \rangle \mid \exists C \in C(\mathcal{F}), t \in T(\mathcal{F}) : t_1 = C[t] \land t_2 = C[f(t)]\}$.

- $R \notin \mathcal{X}_2$: By pigeonhole principle using $\langle f^i(a), f^{i+1}(a) \rangle$, $i \geq 0$.

- $R \notin \mathcal{T}_2$: Suppose that R is accepted by GTT $\langle A_1, A_2 \rangle$ with n states in common. For all $i \geq 0$, let q_i such that $g^i(a) \xrightarrow{A_1} q_i$ and $f(g^i(a)) \xrightarrow{A_2} q_i$. Contradiction follows from pigeon-hole principle.

- $R \in \mathcal{R}_2$: Let $\mathcal{A} = \langle \{q_a, q_f, q_g, q\}, \mathcal{F}', \{q\}, \Delta \rangle$ with:

 $\langle -, a \rangle \rightarrow q_a \quad \langle x, y \rangle(q_x) \rightarrow q_y \quad q_f \rightarrow q \quad \langle x, x \rangle(q) \rightarrow q$

 for $x, y \in \{f, g, a\}$
Closure properties

Boolean closure

X_2 and R_2 are closed under boolean operations.

Transitive closure

If $R \in \mathcal{I}_2$, then $R^* \in \mathcal{I}_2$.

Proof: Let $\langle A_1, A_2 \rangle$ with states Q_1, Q_2 a GTT accepting R. We construct $\langle B_1, B_2 \rangle$ accepting R^* by adding transitions to A_1 and A_2 using the following saturation rule:

- For $i \neq j$ and all $q \in Q_1 \cap Q_2$, $q' \in Q_j$, if there exists a tree t s.t.

 $t \rightarrow_{B_i}^* q$ and $t \rightarrow_{B_j}^* q'$

 then add $q \rightarrow q'$ to B_j.

Transitive closure: Intuition

Suppose that $\langle t, v \rangle, \langle v, u \rangle \in R$. The interesting case is illustrated below:

Suppose that $\langle t, v \rangle$ differ in a position p and $\langle v, u \rangle$ in positions pp_1, \ldots, pp_n. Then in A_2 we want the subtrees of u at pp_1, \ldots, pp_n to be substitutable for the corresponding subtrees in v.
Transitive closure: Intuition

Consider the runs of t, v, u in $\langle A_1, A_2 \rangle$:

Adding $q_i \rightarrow q_i'$ to the right-hand side automaton achieves the objective.
Transitive closure: $R^* \subseteq L(\langle B_1, B_2 \rangle)$

Proof by induction: Let $\langle t, u \rangle \in R^i$, for $i \geq 0$.

- $i = 0$: trivial
- $i \rightarrow i + 1$: Let v s.t. $\langle t, v \rangle \in R^i$ and $\langle v, u \rangle \in R$.
 Then (by induction) $\langle t, v \rangle$ is accepted by $\langle B_1, B_2 \rangle$.
 Let P be the positions in which $\langle t, v \rangle$ differ
 and P' be the positions in which $\langle v, u \rangle$ differ.
 All incomparable pairs in $P \times P'$ are handled by the definition of GTT.
 For $p \in P$ and $pp_1, \ldots, pp_n \in P'$ consider the previous drawings.
 The case $pp_1, \ldots, pp_n \in P$ and $p \in P'$ is symmetric.
Transitive closure: \(R^* \supseteq L(\langle B_1, B_2 \rangle) \)

Let \(\langle B_1^i, B_2^i \rangle \) denote the GTT after adding \(i \) transitions and show that its language is included in \(R^* \).

- \(i = 0 \): trivial
- \(i \rightarrow i + 1 \): Let \(q \rightarrow q' \) be the transition added in the \((i + 1)\)-th step (to \(B_1 \), say) and let \(q \rightarrow q' \) be used \(j \) times in accepting some \(\langle t, u \rangle \).

If \(j = 0 \), then \(\langle t, u \rangle \in R^* \) by induction hypothesis. Otherwise:
 1. there exist \(n \geq 0 \), \(C \in C^n(\mathcal{F}) \) etc such that \(t = C[t_1, \ldots, t_n] \), \(u = C[u_1, \ldots, u_n] \) and \(\forall k : t_k \rightarrow_{B_1^{i+1}}^* q_k \leftarrow_{B_2^{i+1}}^* u_k \).
 2. Suppose \(t_k = C'[t'] \rightarrow_{B_1^{i+1}}^* C'[q] \rightarrow C'[q'] \rightarrow_{B_2^{i+1}}^* q_k \) for some \(k, C', t' \).
 3. There must be some \(v \in T(\mathcal{F}) \) with \(v \rightarrow_{B_1^i}^* q \) and \(v \rightarrow_{B_2^i}^* q' \).
 4. From (2) et (3) we have \(C'[v] \rightarrow_{B_1^{i+1}}^* q_k \).
 5. Replacing \(t_k \) by \(C'[v] \) in (1) we get \(\langle t[t'/v], u \rangle \in L(\langle B_1^{i+1}, B_2^{i+1} \rangle) \) with fewer than \(j \) times \(q \rightarrow q' \), thus by ind.hyp. \(\langle t[t'/v], u \rangle \in R^* \).
 6. From (2) and (3), \(t' \rightarrow_{B_1^{i+1}}^* q \leftarrow_{B_2^i}^* v \), with fewer than \(j \) times \(q \rightarrow q' \).
 7. From (6) by ind.hyp. \(\langle t, t[t'/v] \rangle \in R^* \).
Application: XML

XML = Extensible Markup Language

- Conceived for platform-independent exchange of *structured data*
- An XML document consists of *tags with attributes* and text (parsed character data, *pcdata*)

Example:

```xml
<html><head><meta charset="UTF-8"/>
<title>My web page</title></head>
<body><p>Bonne année !</p></body></html>
```

- A *well-formed* XML document forms a tree (balanced tags, one single root tag)
- Testing for validity / generating tree from document: visibly pushdown automaton, LL/LR parser
Valid XML documents

- Languages of XML documents defined by *schemas* (DTD, XML Schema, Relax NG)
- Schemas define permissible tag (+attributes) and their nesting
- Examples of XML languages: HTML, SVG, KML, ...

- *Valid* XML document: well-formed document satisfying a schema
- Example: XML-Schema for KML
DTD for XML

DTD = Document Type Definition

DTD define a (restricted) subclass of XML languages. Essentially, defines a regular language of child tags for each tag type.

Example (from Wikipedia):

```xml
<!ELEMENT html (head, body)>
<!ELEMENT hr EMPTY>
<!ELEMENT div (#PCDATA | p | ul | | table | pre | hr | h1|h2|h3|h4|h5|h6 | blockquote | ...)*>
<!ELEMENT dl (dt|dd)+>
```

Validity checking of DTD

The language of XML documents defined by DTD is accepted by NHA.
Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.

Example: \(\{f(g(a)), f'(g(b))\} \)

DTD contain another restriction:

\textit{It is an error if the content model allows an element to match more than one occurrence of an element type in the content model.}

E.g., \((ab|ac)\) is not allowed (but \(a(b|c)\) is).
Deterministic regular expressions

Definition: Marked RE

Let e be a RE over Σ. The marked RE \bar{e} is a RE over $\Sigma \times \mathbb{IN}$ obtained by adding a unique subscript to each letter in e.

Example: $e = (ab|ac)$, then $\bar{e} = (a_1b_2|a_3c_4)$

Definition: Deterministic RE

Let e a RE over Σ. We call e deterministic if \bar{e} satisfies the following: for all $u, v, w \in (\Sigma \times \mathbb{IN})^*$ and $a \in \Sigma$, if $ua_i v, ua_j w \in L(\bar{e})$ then $i = j$.

Example: $e = (ab|ac)$, $\bar{e} = (a_1b_2|a_3c_4)$, not deterministic because $a_1b_2, a_3c_4 \in L(\bar{e})$
Parsing deterministic RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial (linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.
XML Schema can define more expressive XML languages.

Example:

```xml
<xsd:complexType name="track">
  <xsd:sequence minOccurs="1" maxOccurs="unbounded">
    <xsd:choice>
      <xsd:element name="invSession" type="invSession"
        minOccurs="1" maxOccurs="1"/>
      <xsd:element name="conSession" type="conSession"
        minOccurs="1" maxOccurs="1"/>
    </xsd:choice>
    <xsd:element name="break" type="xsd:string"
      minOccurs="0" maxOccurs="1"/>
  </xsd:sequence>
</xsd:complexType>
```
XML Schema = NHA

XML Schema (restricted to occurrence and nesting conditions) correspond to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

- constraints on data types in attributes and pcdata
- consistency constraints (e.g., unique keys)
XSL Transformation

- XSLT allows to transform XML documents into other documents (incl. non XML)
- XQuery used to specify nodes on which to apply a transformation

Example (from Wikipedia):

```xml
<xsl:template match="//title">
  <em>
    <xsl:apply-templates/>
  </em>
</xsl:template>
<xsl:for-each select="book">
  <xsl:sort select="price" order="ascending" />
</xsl:for-each>
```