
1/89

Tree Automata and Applications

M1 course, 2023/2024

2/89

Organization
Timetable

Exercises: Thursday 8:30 – 10:30 (Luc Lapointe)

Course: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams

DM or CC (to be specified by Luc)

Final Exam: 2h, 11 January

First session: DM/CC + Exam (50/50)

Second session: DM/CC + Repeat Exam (50/50)

Course materials

Website: lecturer’s homepage + Wiki MPRI, course 1-18
(exercise sheets, slides, former exams)

Hubert Comon et al.
Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/

3/89

Motivations

1 Natural extension of formal-language notions (automata, logic, . . .)

2 Treatment of tree-like data structures: parse tree, XML documents
(XPath, CSS selectors)

3 Applications e.g. in compiler construction, formal verification

4/89

Trees
We consider finite ordered ranked trees.

ordered : internal nodes have children 1 . . . n

ranked : number of children fixed by node’s label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N∗:

ε

1 2 3

21 22

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗

such that w(i + 1) ∈ Pos implies wi ∈ Pos for all w ∈ N∗, i ∈ N.

5/89

Ranked Trees

Ranked symbols

Let F0,F1, . . . be disjoint sets of symbols of arity 0, 1, . . .
We note F :=

⋃
i Fi .

Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping t : Pos → (F ∪ X) satisfying:

Pos is a tree;

for all p ∈ Pos, if t(p) ∈ Fn, n ≥ 1 then Pos ∩ pN = {p1, . . . , pn};
for all p ∈ Pos, if t(p) ∈ X ∪ F0 then Pos ∩ pN = ∅.

6/89

Trees and Terms

Definition: Terms

The set of terms T (F ,X) is the smallest set satisfying:

X ∪ F0 ⊆ T (F ,X);

if t1, . . . , tn ∈ T (F ,X) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X).

We note T (F) := T (F , ∅). A term in T (F) is called ground term.
A term of T (F ,X) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}

f (g(a), b) ∈ T (F);

f (x , f (b, y)) ∈ T (F ,X) is linear;

f (x , x) ∈ T (F ,X) is non-linear.

We confuse terms and trees in the obvious manner.

7/89

Height and size

Definition

Let t ∈ T (F ,X). We note H(t) the height of t and |t| the size of t.

if t ∈ X , then H(t) := 0 and |t| := 0; (for notational convenience)

if t ∈ F0, then H(t) := 1 and |t| := 1;

if t = f (t1, . . . , tn), then H(t) := 1 + max{H(t1), . . . ,H(tn)} and
|t| := 1 + |t1|+ · · ·+ |tn|.

8/89

Subterms / subtrees

Definition: Subtree

Let t, u ∈ T (F ,X) and p a position. Then t|p : Posp → T (F ,X) is the
ranked tree defined by

Posp := { q | pq ∈ Pos };
t|p(q) := t(pq).

Moreover, t[u]p is the tree obtained by replacing t|p by u in t.

t D t ′ (resp. t B t ′) denotes that t ′ is a (proper) subtree of t.

9/89

Substitutions and Context

Definition: Substitution

(Ground) substitution σ: mapping from X to T (F ,X) resp. T (F)

Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}
Extension to terms: for all f ∈ Fm and t ′1, . . . , t

′
m ∈ T (F ,X)

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t ′m))

Notation: tσ for σ(t)

Definition: Context

A context is a linear term C ∈ T (F ,X) with variables x1, . . . , xn.
We note C [t1, . . . , tn] := C{x1 ← t1, . . . , xn ← tn}.

Cn(F) denotes the contexts with n variables and C(F) := C1(F).
Let C ∈ C(F). We note C 0 := x1 and Cn+1 = Cn[C] for n ≥ 0.

10/89

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)

Non-deterministic bottom-up and top-down are equally powerful

Deterministic bottom-up equally powerful

Deterministic top-down less powerful

11/89

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

Q is a finite set of states;

F a finite ranked alphabet;

G ⊆ Q are the final states;

∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Example: Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf

12/89

Move relation and computation tree

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

t = C [f (q1, . . . , qn)] for some context C ;

t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗A for the transitive and reflexive closure of →A.

Computation

Let t : Pos → F a ground tree. A run or computation of A on t is a labelling
t ′ : Pos → Q compatible with ∆, i.e.:

for all p ∈ Pos, if t(p) = f ∈ Fn, t ′(p) = q, and t ′(pj) = qj for all
pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆

13/89

Regular tree languages

A tree t is accepted by A iff t →∗A q for some q ∈ G .

L(A) denotes the set of trees accepted by A.

L is regular/recognizable iff L := L(A) for some NFTA A.

Two NFTAs A1 and A2 are equivalent iff L(A1) = L(A2).

14/89

NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA A = 〈Q,F ,G ,∆〉, where ∆ can additionally contain
rules of the form q → q′, with q, q′ ∈ Q.

Semantics: Allow to re-label a position from q to q′.

Equivalence of ε-NFTA

For every ε-NFTA A there exists an equivalent NFTA A′.

Proof (sketch): Construct the rules of A′ by a saturation procedure.

15/89

Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f ∈ Fn and q1, . . . , qn ∈ Q, there exists
at least one rule f (q1, . . . , qn)→ q ∈ ∆.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of A is accessible if there exists a tree t s.t. t →∗A q.
A is said to be reduced if all its states are accessible.

16/89

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all t ∈ L
with H(t) > k there exist contexts C ,D ∈ C(F) and u ∈ T (F) satisfying:

D is non-trivial (i.e. not just a variable);

t = C [D[u]];

for all n ≥ 0, we have C [Dn[u]] ∈ L.

Proof: Let k be the number of states of an NFTA A recognizing L.
Then an accepting run for t has positions p, pp′ (p′ 6= ε) labelled with the
same state q. Let C := t[x]p, D := t|p[x]p′ , and u := t|pp′ . We have
t = C [D[u]] ∈ L, D[u]→∗A q, and u →∗A q, hence the accepting run of t
implies D[q]→∗A q and C [q]→∗A qf , for some final qf . Therefore,
C [u]→∗A qf and for any n ≥ 0, (by induction)

C [Dn+1[u]]→∗A C [Dn[D[q]]]→∗A C [Dn[q]]→∗A C [q]→∗A qf

17/89

Illustration of pumping lemma

Let L = { f (g i (a), g i (a)) | i ≥ 0 } for F = {f (2), g(1), a}.
Suppose (by contradiction) that L is recognizable by NFTA A with k
states. Let t = f (gk(a), gk(a)).

D

u

f

g g

g g

g g

a a

...
...

...
...

...
...

qf

q

q
k + 1

Pumping D creates trees outside L ⇒ L not recognizable.

18/89

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f)→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Move relation: t →A t ′ iff

t = C [q(f (t1, . . . , tn))] for some context C , f ∈ Fn, and
t1, . . . , tn ∈ T (F);

t ′ = C [f (q1(t1), . . . , qn(tn))] for some rule q(f)→ (q1, . . . , qn).

t is accepted by A if q(t)→∗A t for some q ∈ I .

19/89

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F ,G ,∆′〉, with

∆′ := { q(f)→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗A q iff q(t)→∗A′ t.

Base: t = a (for some a ∈ F0)

t = a→∗A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗A′ a

Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→∗A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →∗A qi

⇐⇒ ∃q1, . . . , qn : q(f)→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti)→∗A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→∗A′ f (t1, . . . , tn)

20/89

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,
where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.

21/89

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1] Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.

22/89

Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q′n〉)→ 〈q, q′〉 ∈ ∆

Remarks:

If A1,A2 are D(C)FTA, then so is A.

If A1,A2 are complete, replace G1 × G2 with (G1 × Q2) ∪ (Q1 × G2)
to recognize L1 ∪ L2.

23/89

Tree languages and context-free languages
Front

Let t be a ground tree. Then fr(t) ∈ F∗0 denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

Let L be a recognizable tree language. Then fr(L) is context-free.

Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

Given a T-NFTA recognizing L, construct a CFG from it.

L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.

24/89

Visibly pushdown automata

Visibly pushdown automaton

Let A = 〈Q,Σ, Γ,T , q0z0,F 〉 be a pushdown automaton.
A is called visibly pushdown (VPA) if there exist Σ0,Σ1,Σ2 such that

Σ = Σ0] Σ1] Σ2

T ⊆
⋃2

i=0(Q × Γ)× Σi × (Q × Γi)

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let L ⊆ T (F) be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.

25/89

From TA to VPA

Let A = 〈Q,F , I ,∆〉 be a T-NFTA accepting L.
For convenience, assume I = {q0} is a singleton (closure under union). We
construct a single-state VPA B = 〈Σ, Γ,T , q0〉 accepting by empty stack
and recognizing the terms of L (can be converted into a normal VPA).

Σ0 = F0 ∪ {) }, Σ1 = F \ F0, Σ2 = { , , (}
Γ = Q ∪ { ri | r ∈ ∆, r = q(f)→ (q1, . . . , qn), n ≥ 1, 0 ≤ i ≤ n }
T =

⋃
r∈∆ Tr

for r = q(a)→ ε, we have Tr = { 〈q, a, ε〉 };
for r = q(f)→ (q1, . . . , qn), n ≥ 1, we have
Tr = {〈q, f , r0〉, 〈r0, (, q1r1〉, 〈rn,) , ε〉}
∪ { 〈ri , , , qi+1ri+1〉 | 1 ≤ i < n }

Idea: q
t→∗B ε iff q(t)→∗A t

26/89

From TA to VPA: Example
Consider a T-NFTA 〈Q,F , I ,∆〉 accepting L = { f (g i (a)) | i ≥ 0 }:

Q = {q0, q1, qf }, F = {f (2), g(1), a}, I = {qf };
∆ := {α :q0(a)→ ε, β :q1(g)→ q0, γ :q1(g)→ q1, δ :qf (f)→
(q1, q1)}.

We construct the single-state VPA 〈Σ, Γ,T , qf 〉, where:

Σ0 = {a,) }, Σ1 = {f , g}, Σ2 = { , , (};
Γ = Q ∪ {β0, β1, γ0, γ1, δ0, δ1, δ2};
Tα = {〈q0, a, ε〉};
Tβ = {〈q1, g , β0〉, 〈β0, (, q0β1〉, 〈β1,) ε〉};
Tγ = {〈q1, g , γ0〉, 〈γ0, (, q1γ1〉, 〈γ1,) ε〉};
Tδ = {〈qf , f , δ0〉, 〈δ0, (, q1δ1〉, 〈δ1, , , q1δ2〉, 〈δ2,) ε〉}.

Run on f (g(a), g(g(a))):

qf
f→ δ0

(→ q1δ1
g→ β0δ1

(→ q0β1δ1
a→ β1δ1

)→ δ1
,→ q1δ2

g→ γ0δ2
(→ q1γ1δ2

g→ β0γ1δ2
(→ q0β1γ1δ2

a→ β1γ1δ2
)→ γ1δ2

)→ δ2
)→ ε

27/89

Tree homomorphism

Definition

Let Xn := {x1, . . . , xn} and F ,F ′ ranked alphabets.
A tree homomorphism is a mapping h : F → T (F ′,X),
with h(f) ∈ T (F ,Xn) if f ∈ Fn.

Extension of h to trees (T (F)→ T (F ′)):

h(f (t1, . . . , tn)) = h(f){x1 ← h(t1), . . . , xn ← h(tn)}

Intuition:

h(f) “explodes” f -positions into trees

reorders/copies/deletes subtrees.

28/89

Examples
Example

F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c , d}
h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

f

g g

a a

=⇒

f ′

g ′

g ′

g ′

c d

c

d

Example (ternary to binary tree)

F = {f (3), a, b}, F ′ = {g(2), a, b}
h32(f) = g(x1, g(x2, x3)), h32(a) = a, h32(b) = b

29/89

Properties of homomorphisms

A homomorphism h is

linear if h(f) linear for all f ;

non-erasing if H(h(f)) > 0 for all f ;

flat if H(h(f)) = 1 for all f ;

complete if f ∈ Fn implies that h(f) contains all of Xn;

permuting if h is complete, linear, and flat;

alphabetic if h(f) has the form g(x1, . . . , xn) for all f .

Example: h32 is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

Example: h(f) = f ′(x1, x1), h(g) = g(x1), h(a) = a

L = { f (g i (a)) | i ≥ 0 } (recognizable)

h(L) = { f ′(g i (a), g i (a)) | i ≥ 0 } (not recognizable)

30/89

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

L = { f (g i (a), g k(a)) | i , k ≥ 0 }
A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with
∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1q1

q0

β

α

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

qf

q1

q0

Run on A
Rules used

to produce states

Run on A

Rules used
to produce states

Construct automaton
for h(L) preserving
state labels from A

Construct automaton
for h(L) preserving
state labels from A

+
Guess the rules.

α β

δ

31/89

Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′,F ′,G ,∆′〉 for h(L).

Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆, ∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f) };
∆′ contains, for each transition r : f (s1, . . . , sn)→ s in ∆ and
p ∈ Posh(f):

f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f)(p) = f ′ ∈ F ′k
si → 〈r , p〉 if h(f)(p) = xi
〈r , ε〉 → s

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

q0

〈α, ε〉

〈α, 1〉 〈α, 2〉

q1

〈β, 1〉

〈β, 2〉

〈β, ε〉

〈δ, ε〉

〈δ, 12〉

qf

〈δ, 11〉

〈δ, 12〉

〈δ, 1〉

〈δ, ε〉

=⇒

32/89

Correctness

To prove: A′ accepts h(L).

h(L) ⊆ L(A′):
For t ∈ T (F), prove that t →∗A q implies h(t)→∗A′ q,
by structural induction over t.

h(L) ⊇ L(A′):
For t ′ ∈ T (F ′), prove that if t ′ →∗A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗A q,
by induction on number of states (of Q) in the computation t ′ →∗A′ q.

33/89

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L ⊆ T (F ′) be recognizable and h : F → F ′ a tree homomorphism (not
necessarily linear). Then h−1(L) is recognizable.

Given an NFTA A′ = 〈Q,F ′,G ,∆′〉 for L,
construct NFTA A = 〈Q] {!},F ,G ,∆〉 for h−1(L).

For all n ≥ 0 and f ∈ Fn, and p1, . . . , pn ∈ Q,

add f (!, . . . , !)→ ! to ∆;

if h(f){x1 ← p1, . . . , xn ← pn} →∗A′ q, add f (q1, . . . , qn)→ q to ∆,
with:

qi =

{
pi if xi appears in h(f)

! otherwise

Proof: Show t →∗A q iff h(t)→∗A′ q, for all t ∈ T (F).

34/89

Intersection problem
Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

Membership: Compute the accessible tuples of states in A1× · · · ×An.

Hardness: Simulate an polynomial-space ATM M with input of length
n and space p(n) (using EXPTIME=APSPACE).
If M accepts the input, there is an accepting run.
Encode runs of M as configuration trees.
Construct a collection of T-NFTA Ai , for i = 1, . . . , p(n), such that
the intersection of their languages is non-empty iff M has an
accepting run. Ai checks the following:

1 if M starts with the correct configuration;
2 if all configurations in the run are of length p(n);
3 if all final configurations are accepting;
4 if the part of the configurations around the i-th symbol are coherent.

Detailed proof: Veanes, 1997

35/89

Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

≡ is called a congruence if for any n ≥ 0 and f ∈ Fn,
u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.

For L ⊆ T (F), write u ≡L v if

∀C ∈ C(F) : C [u] ∈ L⇔ C [v] ∈ L

Myhill-Nerode Theorem for trees

The following are equivalent:

1 L ⊆ T (F) is recognizable.

2 L is saturated by some congruence of finite index.

3 ≡L is of finite index.

36/89

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is a congruence of finite index and saturates L.

2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

37/89

Path languages

Path languages

Let t ∈ T (F). The path language π(t) is defined as follows:

if t = a ∈ F0, then π(t) = {a};
if t = f (t1, . . . , tn), for f ∈ Fn, then π(t) = { fiw | w ∈ π(ti) }.

We write π(L) =
⋃
{π(t) | t ∈ L } for L ⊆ T (F).

Example: L = {f (a, b), f (b, a)}, π(L) = {f 1a, f 2b, f 1b, f 2a}.

Path closure

Let L ⊆ T (F) be a tree language.

The path closure of L is pc(L) = { t | π(t) ⊆ π(L) } ⊇ L.

L is called path-closed if L = pc(L).

Example: pc(L) = {f (a, a), f (a, b), f (b, a), f (b, b)}, so L is not path-closed.

38/89

Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

π(L) is a recognizable word language.

pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

Construct A′ = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

∀i : q(f)→∆ (qi ,1, . . . , qi ,n) → q(f)→∆′ (q1,1, . . . , qn,n)

Let Lq = L(〈Q,F , {q},∆〉) and L′q = L(〈Q,F , {q},∆′〉).
Prove t ∈ L′q ⇔ π(t) ⊆ π(Lq) for all q ∈ Q, t ∈ T (F) by induction.

39/89

Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof (sketch):

“→”:
Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F ,G ,∆′〉 as follows:
for all a ∈ F0, S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
for all n ≥ 1, f ∈ Fn, S(f)→∆′ (S1, . . . ,Sn)

where Si = { qi | ∃q ∈ S , q(f)→∆ (q1, . . . , qn) }.
“←”:
Let A be a complete T-DFTA for L, define Lq as before.
Prove that π(t) ⊆ π(Lq) implies t ∈ Lq, for all q ∈ Q, t ∈ T (F).

40/89

Logic over trees

Alternative specification for sets of trees

E.g., to describe valid HTML documents:

A p tag may only appear inside a body tag.

A dl tag must contain pairs of dt and dd tags.

Roadmap

We shall define a logic that defines such properties of trees.

The sets of trees definable in that language will be recognizable.

41/89

Recall: First-/second-order logic

First-order logic (FO)

Let σ = ((Ri)1≤i≤n) be a relation signature and X1 = {x1, x2, . . .} a set of
variables. The first-order formulas FO(σ) are:

Ri (xj1 , . . . , xji) | x = x ′ | ¬φ | φ ∧ φ′ | ∃x .φ

Second-order logic: allow quantifying over relations
Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and X1 = {x1, x2, . . .}, X2 = {X1,X2, . . .} sets of first-
/second-order variables. The set of MSO(σ) formulae are:

Ri (xj1 , . . . , xji) | x = x ′ | x ∈ X | ¬φ | φ ∧ φ′ | ∃x .φ | ∃X .φ

Weak second-order: only quantify over finite sets

WSkS (weak MSO over with k successors)

WSkS = MSO(<1,. . . ,<k)

42/89

Semantics of MSO

Definition

Let M a domain, σ a signature, ν a valuation with

ν(x) ∈M for x ∈ X1

ν(X) ⊆M for X ∈ X2

M, σ, ν |= Ri (xj1 , . . . , xji) if (ν(xj1), . . . , ν(xji)) ∈ Ri

M, σ, ν |= x = x ′ if ν(x) = ν(x ′)
M, σ, ν |= x ∈ X if ν(x) ∈ ν(X)
M, σ, ν |= ¬φ if M, σ, ν 6|= φ
M, σ, ν |= φ ∧ φ′ if M, σ, ν |= φ ∧ M, σ, ν |= φ′

M, σ, ν |= ∃x .φ if ∃m ∈M. M, σ, ν[x 7→ m] |= φ
M, σ, ν |= ∃X .φ if ∃M ⊆M. M, σ, ν[X 7→ M] |= φ

We omit M, σ when clear from context.

43/89

Recall: Common abbreviations

∀x , ∀X , ∨, etc can be expressed in the usual way.

X ⊆ Y :
∀x .(x ∈ X → x ∈ Y)

Z = X ∪ Y :
∀x .(x ∈ Z ↔ x ∈ X ∨ x ∈ Y)

Partition(X ,X1, . . . ,Xm):(
∀x .
(

x ∈ X ↔
m∨
i=1

x ∈ Xi

))
∧
(m∧

i=1

∧
j 6=i

∀x .(x /∈ Xi ∨ x /∈ Xj)

)
Similarly, X = ∅, X = {x}, X = Y ,. . .

44/89

WSkS and trees
Let M = N∗, we fix <i to be the relation <i = { 〈p, pip′〉 | p, p′ ∈ N∗ }.
We define < =

⋃k
i=1 <i and ≤ as usual, and ε for the minimal element.

We write xi to denote the least q s.t. ν(x) <i q.

Coding of a tree

Let t ∈ T (F) and k the maximal arity in F .
As a shorthand, define SF := (Sf)f ∈F .
We note C (t) := (S , SF), where:

S =
⋃

f ∈F Sf ;

for all f ∈ F , Sf = { p ∈ Post | t(p) = f }.

(S , SF) encodes a tree if Tree(S , SF) holds:

Tree(S ,SF) := S 6= ∅ ∧ Partition(S , SF)
∧ ∀x .∀y .(x ∈ S ∧ y < x)→ y ∈ S

∧
∧k

n=1

∧
f ∈Fn

∧n
i=1(x ∈ Sf → xi ∈ S)

∧
∧k

n=1

∧
f ∈Fn

∧k
i=n+1(x ∈ Sf → xi /∈ S)

45/89

Semantics of WSkS on trees

Coded valuation

Let F ′ := F × 2X1∪X2 . The arity of (f , τ) is n if f ∈ Fn.
Let t ∈ T (F) and ν a valuation. The tuple 〈t, ν〉 is coded by a tree t ′ ∈
T (F ′), as follows, for all p ∈ Pos and t ′(p) = 〈f , τ〉:

if x ∈ X1 then τ(x) = 1 iff p = ν(x);

if X ∈ X2 then τ(X) = 1 iff p ∈ ν(X).

A tree t ′ ∈ T (F ′) is valid (t ′ ∈ Tv (F ′)) if it codes some 〈t, ν〉.

Semantics of WSkS

Let φ be a formula of WSkS and V ⊆ (X1 ∪ X2)] ({S} ∪ SF) its free
variables.

L(φ) := { 〈t, ν〉 ∈ Tv (F ′) | ν[(S , SF) 7→ C (t)] |= φ }

46/89

Examples

Let t = f (g(a), a).
Left: 〈t, ν〉 with ν(x) = ε, ν(y) = 11, and ν(Z) = {ε, 11, 2}.
Right: 〈t, ν ′〉 with ν ′(x) = 1

〈f , 101〉

〈g , 000〉 〈a, 001〉

〈a, 011〉

〈f , 0〉

〈g , 1〉 〈a, 0〉

〈a, 0〉

We have C (t) = (S ,Sf , Sg , Sa) with S = {ε, 1, 11, 2},
Sf = {ε}, Sg = {1}, Sa = {11, 2}.
ν ′[(S , SF) 7→ C (t)] |= x ∈ Sg , thus 〈t, ν ′〉 ∈ L(x ∈ Sg)

t ∈ L(∃x .x ∈ Sg)

47/89

WSkS and recognizability

Theorem

A tree language L ⊆ T (F) is recognizable
iff L = L(φ) for some formula φ(S ,SF) of WSkS.

Proof: (sketch)

DCFTA A → WSkS: Construct formula φ that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

WSkS φ → NFTA A: Proceed by recurrence on φ,
show that all subformulae of φ are recognizable.

48/89

Example: DCFTA → WSkS

Let Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf

(automate à compléter !)

Corresponding formula:

φ = Tree(S ,SF)
∧ ∃Q0,Q1,Qf .Partition(S ,Q0,Q1,Qf)

∧ ∀x .(x ∈ Sa → x ∈ Q0)
∧ ∀x .((x ∈ Sg ∧ x1 ∈ Q0)→ x ∈ Q1)
∧ ∀x .((x ∈ Sg ∧ x1 ∈ Q1)→ x ∈ Q1)
∧ ∀x .((x ∈ Sf ∧ x1 ∈ Q1 ∧ x2 ∈ Q1)→ x ∈ Qf)
∧ · · ·
∧ ε ∈ Qf

49/89

Example: WSkS → NFTA

Consider F = {f (2), g(1), a}.

φ = x ∈ Sg

Aφ = 〈{q, q′},F × 2{x}, {q′},∆〉 with transitions

〈a, 0〉 → q
〈g , 1〉(q)→ q′ 〈g , 0〉(q)→ q 〈g , 0〉(q′)→ q′

〈f , 0〉(q, q)→ q 〈f , 0〉(q, q′)→ q′ 〈f , 0〉(q′, q)→ q′

accepts L(x ∈ Sg) (scans for a single g -position with τ(x) = 1).

φ′ = ∃x .φ
Obtain Aφ′ from Aφ by stripping τ(x):

Aφ′ = 〈{q, q′},F , {q′},∆〉
a→ q
g(q)→ q′ g(q)→ q g(q′)→ q′

f (q, q)→ q f (q, q′)→ q′ f (q′, q)→ q′

50/89

Unranked trees

We now consider finite ordered unranked trees.

ordered : internal nodes have children 1 . . . n

unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

“A html tag contains an optional head and an obligatory body.”

“A div tag contains an unlimited number of p, ol, ul, . . . tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗.

51/89

Hedge automata

Definition: (Bottom-up) hedge automaton

A hedge automaton (NHA) is a tuple A = 〈Q,Σ,G ,∆〉, where:

Q is a finite set of states;

Σ a finite alphabet;

G ⊆ Q are the final states;

∆ is a finite set of rules of the form

a(R)→ q

for a ∈ Σ, q ∈ Q, and R a regular (word) language over Q.

Example: Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

This accepts trees of the form x(h, b(p, . . . , p)) and x(b(p, . . . , p)).

52/89

Semantics of hedge automata

Remark:

The R in a(R)→ q are called horizontal languages.

They are (finitely) represented by regular expressions or finite
automata.

Computation of NHA

Let t ∈ T (Σ) be a tree. A run or computation of A on t is a tree t ′ ∈ T (Q),
i.e. for all p ∈ Pos:

if t(p) = a ∈ Σ, t ′(p) = q ∈ Q, and Pos ∩ pN = {p1, . . . , pn},
there exists a(R)→ q ∈ ∆ such that t ′(p1) · · · t ′(pn) ∈ R.

Acceptance condition: t ′(ε) ∈ G

L ⊆ T (Σ) is called hedge-recognizable if L = L(A) for some NHA A.

53/89

Complete / normalized / deterministic HA

An NHA is . . .

complete if for all t ∈ T (Σ), t →∗A q for some q;

full if for all a ∈ Σ, q ∈ Q, there is some a(R)→ q;

reduced if a(R1)→ q, a(R2)→ q ∈ ∆ implies R1 = R2;

deterministic (DHA) if a(R1)→ q1, a(R2)→ q2 ∈ ∆ implies
R1 ∩ R2 = ∅ or q1 = q2.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

complete: add garbage state, as usual

full: add rules a(∅)→ q where necessary

reduced: replace a(R1)→ q and a(R2)→ q with a(R1 ∪ R2)→ q
where necessary

54/89

Determinization

Determinization of NHA

Let A = 〈Q,Σ,G ,∆〉 be a complete, full, reduced NHA. The complete, full,
reduced DHA A′ = 〈2Q ,Σ,G ′,∆′〉 is equivalent to A where:

G ′ = {S ⊆ Q | S ∩ G 6= ∅ };
let Ra,q denote the (unique) language s.t. a(Ra,q)→ q ∈ ∆;

R ′a,q := Ra,q[q′ → (S ∪ {q′}) | q′ ∈ Q,S ⊆ Q]

for all a ∈ Σ, S ⊆ Q, we have a(Ra,S)→ S ∈ ∆′;

Ra,S :=

(⋂
q∈S

R ′a,q

)
\
(⋃

q/∈S

R ′a,q

)

55/89

Encoding unranked trees

Bijective encoding of unranked into ranked trees

Let Σ an alphabet; FΣ := {@(2)} ∪ { a(0) | a ∈ Σ }.
Define the coding C@(t) ∈ T (FΣ) of t ∈ T (Σ) as

C@(a(t1, . . . , tn)) = @(@(. . . (@(︸ ︷︷ ︸
n

a,C@(t1)),C@(t2)), . . .),C@(tn))

Example:

x

h b

p p p

⇒

@

@

x h

@

@

@

b p

p

p

56/89

Recognizing encoded trees

Theorem

A language L ⊆ T (Σ) is hedge-recognizable iff C@(L) is recognizable.

NHA → NFTA:
Let A = 〈Q,Σ,G ,∆〉 an NHA; ∆ = {a1(R1)→ q1, . . . , an(Rn)→ qn};
Ri represented by det.compl. FA Ai = 〈Si ,Q, s

(i)
0 ,Fi , δi 〉.

Construct NFTA A′ = 〈Q ′,FΣ,G ,∆
′〉, where:

Q ′ = Q ∪
⊎n

i=1 Si

∆′ =
⋃n

i=1(∆i
1 ∪∆i

2 ∪∆i
3)

∆i
1 = { ai → s

(i)
0 }

∆i
2 = {@(s, q)→ δi (s, q) | s ∈ Si , q ∈ Q }

∆i
3 = { sf → qi | sf ∈ Fi }

57/89

Example: NHA → NFTA

Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

Automaton for first rule:
s0 s1 s2qh qb

qb

Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

58/89

Recognizing encoded trees

Theorem

A language L ⊆ T (Σ) is hedge-recognizable iff C@(L) is recognizable.

NFTA → NHA:
Let A = 〈Q,FΣ,G ,∆〉 an NFTA (without ε-moves).

Define ∆R := { 〈q0, q1, q2〉 | @(q0, q1)→∆ q2 }
and Out := G ∪ { q | ∃q′, q′′ : @(q′, q)→∆ q′′ }.
For q ∈ Q, q′ ∈ Out, let Aq,q′ := 〈Q,Q, q, {q′},∆R〉 a word
automaton.

Construct NHA A′ := 〈Q,Σ,G ,∆′〉, where

∆′ = { a(L(Aq,q′))→ q′ | a→∆ q, q′ ∈ Out }

Corollary

Hedge-recognizable languages are closed under boolean operations.

59/89

Unranked trees and logic

UTL = weak MSO(child,next) interpreted over M = N∗, where

child(x , y) iff y = xi for some i ∈ N

next(x , y) iff ∃z , i : x = zi ∧ y = z(i + 1)

Further predicates can be defined from this:

right(x , y) = “y is a right sibling of x”

desc(x , y) = “y is a descendant of x” = “x ≤ y”

Notions like L(φ) are defined in analogy with WSkS.

Theorem: UTL = NHA

A language L ⊆ T (Σ) is hedge-recognizable
iff L = L(φ) for some formula φ(S ,SΣ) of UTL.

60/89

UTL = NHA: Proof sketch

UTL → NHA:
Let φ be an UTL formula. Define φ′ of WS2S s.t. L(φ′) = C@(L(φ)).

Define leftmost(x , y) as

∀X :
(
x ∈ X ∧ ∀z , z ′ : (z ∈ X ∧ z ′ = z1→ z ′ ∈ X)
∧ ∀z : (z ∈ X → z = x ∨ (∃z ′ : z ′ ∈ X ∧ z = z ′1))

)
→ (y ∈ X ∧ ∀z : z ∈ X → z ≤ y)

(“y is the maximal position in x1∗”)

Then child and next can be translated as follows:
child(x , y) := ∃z : leftmost(z , x) ∧ leftmost(z2, y)
next(x , y) := ∃z : leftmost(z12, x) ∧ leftmost(z2, y)

61/89

UTL = NHA: Proof sketch

NHA → UTL:
Let A be a complete, full, normalized, deterministic NHA.

Construct formula φ(S , SΣ) of UTL that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA → WSkS construction is (iii):
(iii): whenever the computation puts q on an a-labelled position p,
guess a run of the automaton for Ra,q over p and its children

62/89

Tuples of trees
Let t1, t2 ∈ T (F) ranked trees. Add a fresh symbol − to F0 and let

F ′ := { 〈f , g〉(k) | f ∈ Fm, g ∈ Fn, k = max{m, n} }.
〈t1, t2〉 denotes the ranked tree t ∈ T (F ′) as follows:

Post = Post1 ∪ Post2

for all p ∈ Post ,

t(p) =

〈f , g〉 if t ∈ Post1 ∩ Post2 , t1(p) = f , t2(p) = g

〈f ,−〉 if t ∈ Post1 \ Post2 , t1(p) = f

〈−, g〉 if t ∈ Post2 \ Post1 , t2(p) = g

Example:
f

f

a a

a

f

a g

g

a

〈f , f 〉

〈f , a〉

〈a,−〉〈a,−〉

〈a, g〉

〈−, g〉

〈−, a〉

⇒

63/89

Tree relations
We consider (binary) relations R ⊆ T (F)2.

Let R2 be the class of recognizable relations
(= recognizable languages over F ′).

Let X2 be the class of finite unions of cross products

R ∈ X2 iff R =
⋃n

i=1

(
L

(i)
1 × L

(i)
2

)
, for some n ≥ 0 and L

(i)
1 , L

(i)
2

recognizable for all i

Let T2 be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A ground tree transducer (GTT) is pair G = 〈A1,A2〉 of bottom-up NFTA
over F . (The states of A1 and A2 may overlap.)
The relation accepted by G is

{ 〈t, u〉 | ∃n ≥ 0, C ∈ Cn(F),
t1, . . . , tn ∈ T (F), u1, . . . , un ∈ T (F), q1, . . . , qn :

t = C [t1, . . . , tn] ∧ u = C [u1, . . . , un]
∧ ∀i : ti →∗A1

qi
∗
A2
← ui }

64/89

Relations between R2,X2,T2

Propositions

1 R2 6⊆ X2 and T2 6⊆ X2

2 R2 6⊆ T2 and X2 6⊆ T2

3 X2 ⊆ R2

4 T2 ⊆ R2

5 X2 ∪ T2 (R2

Proofs:

1 { 〈t, t〉 | t ∈ T (F) } is in T2 ∩R2 but not X2

2 ∅ is in X2 ∩R2 but not T2

3 see next slides

4 see next slides

5 see next slides

65/89

Proof of X2 ⊆ R2

3 Let Ai = 〈Qi ,F ,Gi ,∆i 〉 (for i = 1, 2) be NFTA
and let R = L(A1)× L(A2) ∈ X2.

Construct NFTA A = 〈Q,F ′,G1 × G2,∆〉 with L(A) = R:

Q = (Q1 ∪ {−})× (Q2 ∪ {−})
for every f ∈ Fm, g ∈ Fn, m ≥ n, ¬(f = g = −)
∆ contains

〈f , g〉(〈q1, q
′
1〉, . . . , 〈qn, q′

n〉, 〈qn+1,−〉, . . . , 〈qm,−〉)→ 〈q, q′〉 if
f (q1, . . . , qm)→ q ∈ ∆1 and g(q′

1, . . . , q
′
n)→ q′ ∈ ∆2

〈g , f 〉(〈q1, q
′
1〉, . . . , 〈qn, q′

n〉, 〈−, q′
n+1〉, . . . , 〈−, qm〉)→ 〈q, q′〉 if

f (q′
1, . . . , q

′
m)→ q ∈ ∆2 and g(q1, . . . , qn)→ q′ ∈ ∆1

(reminder: we assume that − is a fresh symbol in F0)

Intuition: Modified cross-product construction.

66/89

Proof of T2 ⊆ R2

4 Let G = 〈A1,A2〉, Ai = 〈Qi ,F ,Gi ,∆i 〉 (for i = 1, 2).
We construct NFTA A′ = 〈Q ′,F ′, {qf },∆′〉 with L(A′) = L(G).

Construct NFTA A = 〈Q,F ′,G ,∆〉 from A1,A2 as in previous proof.
Then:

Q ′ = Q] {qf }
∆′ = ∆ ∪∆1 ∪∆2

∆1 = { 〈q, q〉 → qf | q ∈ Q1 ∩ Q2 }
∆2 = { 〈f , f 〉(qf , . . . , qf)→ qf | f ∈ Fn, f 6= −}

Intuition:
∆ reads pairs of trees from A1,A2;
∆1 allows to plug pairs of subtrees into some context C ;
∆2 reads the remaining context C .

67/89

Proof of X2 ∪ T2 (R2

5 Let F = {f (1), g(1), a}.
Let R = { 〈t1, t2〉 | ∃C ∈ C(F), t ∈ T (F) : t1 = C [t] ∧ t2 = C [f (t)] }.

R /∈ X2:
By pigeonhole principle using 〈f i (a), f i+1(a)〉, i ≥ 0.

R /∈ T2:
Suppose that R is accepted by GTT 〈A1,A2〉 with n states in common.
For all i ≥ 0, let qi such that g i (a)→∗A1

qi and f (g i (a))→∗A2
qi .

Contradiction follows from pigeon-hole principle.

R ∈ R2:
Let A = 〈{qa, qf , qg , q},F ′, {q},∆〉 with:

〈−, a〉 → qa 〈x , y〉(qx)→ qy qf → q 〈x , x〉(q)→ q

for x , y ∈ {f , g , a}

68/89

Closure properties

Boolean closure

X2 and R2 are closed under boolean operations.

Transitive closure

If R ∈ T2, then R∗ ∈ T2.

Proof: Let 〈A1,A2〉 with states Q1,Q2 a GTT accepting R.
We construct 〈B1,B2〉 accepting R∗ by adding transitions to A1 and A2

using the following saturation rule:

For i 6= j and all q ∈ Q1 ∩ Q2, q′ ∈ Qj , if there exists a tree t s.t.

t →∗Bi q and t →∗Bj q′

then add q → q′ to Bj .

69/89

Transitive closure: Intuition

Suppose that 〈t, v〉, 〈v , u〉 ∈ R. The interesting case is illustrated below:

Suppose that 〈t, v〉 differ in a position p
and 〈v , u〉 in positions pp1, . . . , ppn.

Then in A2 we want the subtrees of u at pp1, . . . , ppn to be substitutable
for the corresponding subtrees in v .

70/89

Transitive closure: Intuition
Consider the runs of t, v , u in 〈A1,A2〉:

Adding qi → q′i to the right-hand side automaton achieves the objective.

71/89

Transitive closure: R∗ ⊆ L(〈B1,B2〉)

Proof by induction: Let 〈t, u〉 ∈ R i , for i ≥ 0.

i = 0: trivial

i → i + 1: Let v s.t. 〈t, v〉 ∈ R i and 〈v , u〉 ∈ R.
Then (by induction) 〈t, v〉 is accepted by 〈B1,B2〉.
Let P be the positions in which 〈t, v〉 differ
and P ′ be the positions in which 〈v , u〉 differ.
All incomparable pairs in P × P ′ are handled by the definition of GTT.
For p ∈ P and pp1, . . . , ppn ∈ P ′ consider the previous drawings.
The case pp1, . . . , ppn ∈ P and p ∈ P ′ is symmetric.

72/89

Transitive closure: R∗ ⊇ L(〈B1,B2〉)
Let 〈Bi1,Bi2〉 denote the GTT after adding i transitions
and show that its language is included in R∗.

i = 0: trivial

i → i + 1: Let q → q′ be the transition added in the (i + 1)-th step
(to B1, say) and let q → q′ be used j times in accepting some 〈t, u〉.
If j = 0, then 〈t, u〉 ∈ R∗ by induction hypothesis. Otherwise:

1 there exist n ≥ 0, C ∈ Cn(F) etc such that t = C [t1, . . . , tn],
u = C [u1, . . . , un] and ∀k : tk →∗Bi+1

1

qk
∗

Bi+1
2

← uk .

2 Suppose tk = C ′[t ′]→∗Bi+1
1

C ′[q]→ C ′[q′]→∗Bi+1
1

qk for some k,C ′, t ′.

3 There must be some v ∈ T (F) with v →∗Bi
2

q and v →∗Bi
1

q′.

4 From (2) et (3) we have C ′[v]→∗Bi+1
1

qk .

5 Replacing tk by C ′[v] in (1) we get 〈t[t ′/v], u〉 ∈ L(〈Bi+1
1 ,Bi+1

2 〉)
with fewer than j times q → q′, thus by ind.hyp. 〈t[t ′/v], u〉 ∈ R∗.

6 From (2) and (3), t ′ →∗Bi+1
1

q ∗
Bi

2
← v , with fewer than j times q → q′.

7 From (6) by ind.hyp. 〈t, t[t ′/v]〉 ∈ R∗.

73/89

Application: XML

XML = Extensible Markup Language

Conceived for platform-independent exchange of structured data

An XML document consists of tags with attributes
and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>

<title>My web page</title></head>

<body><p>Bonne année !</p></body></html>

A well-formed XML document forms a tree
(balanced tags, one single root tag)

Testing for well-formedness / generating tree from document:
visibly pushdown automaton, LL/LR parser

74/89

Valid XML documents

Languages of XML documents defined by schemas
(DTD, XML Schema, Relax NG)

Schemas define permissible tags (+attributes) and their nesting

Examples of XML languages: HTML, SVG, KML, . . .

Valid XML document: well-formed document satisfying a schema

Example: XML-Schema for KML

75/89

DTD for XML

DTD = Document Type Definition

DTD define a (restricted) subclass of XML languages.
Essentially, defines a regular language of child tags for each tag type.

Example (from Wikipedia):
<!ELEMENT html (head,body)>

<!ELEMENT hr EMPTY>

<!ELEMENT div (#PCDATA | p | ul | | table | pre | hr |

h1|h2|h3|h4|h5|h6 | blockquote | ...)*>

<!ELEMENT dl (dt|dd)+>

Validity checking of DTD

The language of XML documents defined by DTD is accepted by NHA.

76/89

Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.

Example: {f (g(a)), f ′(g(b))}

DTD contain another restriction:

It is an error if the content model allows an element to match
more than one occurrence of an element type in the content
model.

E.g., (ab|ac) is not allowed (but a(b|c) is).

77/89

Deterministic regular expressions

Definition: Marked RE

Let e be a RE over Σ. The marked RE ē is a RE over Σ × IN obtained by
adding a unique subscript to each letter in e.

Example: e = (ab|ac), then ē = (a1b2|a3c4)

Definition: Deterministic RE

Let e a RE over Σ. We call e deterministic if ē satisfies the following:
for all u, v ,w ∈ (Σ× IN)∗ and a ∈ Σ, if uaiv , uajw ∈ L(ē) then i = j .

Example: e = (ab|ac), ē = (a1b2|a3c4), not deterministic because
a1b2, a3c4 ∈ L(ē)

78/89

Parsing deterministic RE

Parsing det. RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial
(linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.

79/89

XML Schema

XML Schema can define more expressive XML languages.
Example:

<xsd:complexType name="track">

<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:choice>

<xsd:element name="invSession" type="invSession"

minOccurs="1" maxOccurs="1"/>

<xsd:element name="conSession" type="conSession"

minOccurs="1" maxOccurs="1"/>

</xsd:choice>

<xsd:element name="break" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

80/89

XML Schema and Hedge Automata

XML Schema = NHA

XML Schema (restricted to occurrence and nesting conditions) correspond
to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

constraints on data types in attributes and pcdata

consistency constraints (e.g., unique keys)

81/89

XSL Transformation

XSLT allows to transform XML documents into other documents (incl.
non XML)

XQuery used to specify nodes on which to apply a transformation

Example (from Wikipedia):

<xsl:template match="//title">

<xsl:apply-templates/>

</xsl:template>

<xsl:for-each select="book">

<xsl:sort select="price" order="ascending" />

</xsl:for-each>

82/89

Tree transducers

Definition: Bottom-up tree transducer

A (finite bottom-up) tree transducer (NUTT) is a tuple U =
〈Q,F ,F ′,G ,∆〉, where:

Q is a finite set of states and G ⊆ Q are final states;

F ,F ′ are finite ranked alphabets;

∆ is a finite set of rules of the form

f (q1(x1), . . . , qn(xn))→ q(u)

for f ∈ Fn and q, q1, . . . , qn ∈ Q, u ∈ T (F ′,Xn), or

q(x1)→ q′(u)

for q, q′ ∈ Q, u ∈ T (F ′,X1) (ε-rule).

Example: F = {f (1), a}, F ′ = F ∪ {h(2), g(1)};
U1 = 〈{q, qf },F ,F ′, {qf },∆〉, with rules

a→ q(a) f (q(x1))→ q(f (x1)) | q(g(x1)) | qf (h(x1, x1))

83/89

NUTT move relation

Move relation

Let t, t ′ ∈ T (F ,F ′,Q). We write t →U t ′ if the following are satisfied:

t = C [f (q1(u1), . . . , qn(un))] for some context C and
u1, . . . , un ∈ T (F ′);

t ′ = C [q(u{x1 ← u1, . . . , xn ← un}] for some rule
f (q1(x1), . . . , qn(x1))→ q(u) of U .

Idea: Like an NFTA, but can additionally reorder/copy/delete subtrees and
“explode” symbols into subtrees like a homomorphism.

A NUTT U defines the relation R(U) = { 〈t, t ′〉 | t →∗U q(t ′), q ∈ G }.

84/89

Relations of NUTT

We write U(t) for { t ′ | 〈t, t ′〉 ∈ R(U) }.
Examples:

Example 1: U1(fffa) = {h(ffa,ffa), h(fga, fga), h(gfa, gfa), h(gga, gga)}
Example 2: F = {f (2), g(1), a}, F ′ = F ;
U2 = 〈{q, q′, q′′},F ,F ′, {q′′},∆〉, with rules

a→ q(a) g(q(x1))→ q(g(x1)) f (q(x1), q(x2))→ q(f (x1, x2))

a→ q′(a) g(q′(x1))→ q′(g(x1))

f (q(x1), q′(x2))→ q′′(g(x1))

R(U2) = { 〈f (t, gm(a)), g(t)〉 | t ∈ T (F),m ≥ 0 }

85/89

Properties of NUTT

A NUTT U is

ε-free if it contains no ε-rule;

linear if in rules of ∆, u is linear;

non-erasing if in every rule, H(u) > 0 (not just a variable);

complete if for every rule with f ∈ Fn on the left-hand side, u on the
right-hand side contains all of Xn;

deterministic (DUTT) if it is ε-free and no two rules have the same
left-hand side.

Examples:

U1 is non-deterministic, non-linear, complete.

U2 is non-deterministic, linear, non-complete.

86/89

NUTT and other relation classes

(Linear) NUTT and R2 are incomparable

R(U2)−1 is in R2, accepted by the following (with q′′ final):

〈a, a〉 → q 〈g , g〉(q)→ q 〈f , f 〉(q, q)→ q

〈a,−〉 → q′ 〈g ,−〉(q′)→ q′ 〈f , g〉(q, q′)→ q′′

But R(U2)−1 is in R2 is not definable by NUTT: Suppose that such a
NUTT existed with k rules.

R2 is incapable of copying or reordering subtrees.

87/89

Top-down transducers

Definition: Top-down tree transducer

A top-down tree transducer (NDTT) is a tuple D = 〈Q,F ,F ′, I ,∆〉, where:

Q is a finite set of states and I ⊆ Q are initial states;

F ,F ′ are finite ranked alphabets;

∆ is a finite set of rules of the form

q(f)→ u[q1(xi1), . . . , qk(xik)]

for f ∈ Fn, q, q1, . . . , qk ∈ Q, u ∈ Ck(F ′), xi1 , . . . , xik ∈ Xn, or

q(x1)→ u[q1(x1), . . . , qk(x1)]

for q, q′ ∈ Q and u ∈ Ck(F ′) (ε-rule).

88/89

NDTT move relation

Move relation

Let t, t ′ ∈ T (F ,F ′,Q). We write t →D t ′ if the following are satisfied:

t = C [q(f (u1, . . . , un))] for some context C and u1, . . . , un ∈ T (F);

t ′ = C [u[q1(ui1), . . . , qk(uik)]] for some rule
q(f)→ u[q1(xi1), . . . , qk(xik)] of D.

The relation defined by D is R(D) = { 〈t, t ′〉 | q(t)→ t ′, q ∈ I }.

Example: F = {f (1), a}, F ′ = F ∪ {f (1), g(1), h(2), a};
D1 = 〈{q, q′},F ,F ′, {q},∆〉, with rules

q(f (x))→ h(q′(x), q′(x)) q′(f (x))→ f (q′(x)) | g(q′(x)) q′(a)→ a

Then D1(ffa) = {h(fa, fa), h(fa, ga), h(ga, fa), h(ga, ga)}.

89/89

Closure properties

Properties of NUTT and DUTT

There exist relations expressible by NUTT but not NDTT.

There exist relations expressible by NDTT but not NUTT.

NUTT are closed under union, but not intersection.

NUTT are not closed under composition, but linear NUTT are.

Linear complete NUTT and NDTT are equivalent.

