1 Residuals

For $\mathcal{F} = \{f(2), a(0)\}$ and $n > 0$, let L_n be the language of trees that have at least one branch of length exactly n, i.e.

$$L_n = \{ t \in T(\mathcal{F}) \mid \exists p \in Pos(t) : |p| = n - 1 \land t(p) = a \}.$$

E.g., $f(a, f(a, f(a, a))) \in L_3$ because it contains one branch of length 3 (as well as one of length 2 and two of length 4).

(a) Give a (bottom-up) NFTA for L_n with $n + 1$ states.

(b) Show that the minimal DFTA for L_n has at least 2^{n-1} states.

Let $L \subseteq T(\mathcal{F})$ be a language of trees and $C \in \mathcal{C}(\mathcal{F})$ a context. The residual of L by C is defined as $C^{-1}L := \{ t \in T(\mathcal{F}) \mid C[t] \in L \}$. We define $R(L) = \{ C^{-1}L \mid C \in \mathcal{C}(\mathcal{F}) \}$ as the set of residuals of L.

(c) Show that if L is recognizable, then $|R(L)|$ is finite.

(d) Show that for L_n as above, $|R(L_n)| = n + 2$.

2 Prime decompositions

Let $\mathcal{F} = \{0(1), 1(1), \bot(0)\}$. For $n \in \mathbb{N}$, its encoding \tilde{n} is defined as:

- $\tilde{0} = 0(\bot)$ and $\tilde{1} = 1(\bot)$;
- if $n = 2m > 0$, then $\tilde{n} = 0(\tilde{m})$;
- if $n = 2m + 1 > 1$, then $\tilde{n} = 1(\tilde{m})$.

In other words, \tilde{n} is the (reverse) binary encoding of n, without leading zeros.

Moreover, let $\mathcal{F} = \{ \langle f, g, h \rangle(k) \mid f \in \mathcal{F}_m, g \in \mathcal{F}_n, h \in \mathcal{F}_\ell, k = \max\{m, n, \ell\} \}$. A tree over \mathcal{F} encodes a triple of natural numbers, with \bot filling unused positions, e.g., $\langle 2, 1, 5 \rangle = \langle 011 \rangle(\langle 1 \bot \rangle(\langle \bot \bot \bot \rangle(\langle \bot \bot \bot \bot \bot \rangle)))$.

(a) Show that $L = \{ \langle \tilde{n}, \tilde{m}, \tilde{n+m} \rangle \mid n, m \in \mathbb{N} \}$ is recognizable. Give an accepting run of your automaton on $\langle \tilde{6}, \tilde{3}, \tilde{9} \rangle$.

We now consider another encoding \(\pi \) for \(n \in \mathbb{N} \), using trees over \(\mathcal{G} = \{0(1), 1(1), \perp(0), f(2)\} \). If \(n > 1 \), let \(p_1, \ldots, p_k \) be the (unique) increasing sequence of prime numbers up to \(p_k \), where \(p_k \) is the largest prime factor of \(n \). There are \(n_1, \ldots, n_k \) such that \(n = \prod_{i=1}^{k} p_i^{n_i} \). Then we let \(\pi = 1(f(\pi_1, f(\pi_2, \ldots, f(\pi_k, \perp) \ldots))) \). Moreover, define \(\overline{0} = 0(\perp) \) and \(\overline{1} = 1(\perp) \). E.g., \(20 \) is shown below, given that \(20 = 2^2 \cdot 3^1 \cdot 5^1 \):

```
       1
     /\  
   0   f
 /\  /\  
1 f 1 f 0
/\ /\ /\ /\ /\ 
\perp \perp \perp \perp \perp
```

(b) Show that \(\{ \pi \mid n \in \mathbb{N} \} \) is recognizable.

(c) Show that \(\{ \langle \pi, m, \overline{n} \times \overline{m} \rangle \mid n, m \in \mathbb{N} \} \) is recognizable.

3 Closures

Let \(\mathcal{F} = \{f(2)\} \cup \Sigma \), where \(\Sigma = \{a, b\} \). For \(t \in \mathcal{T}(\mathcal{F}) \), let \(fr(t) \in \Sigma^* \) denote the word obtained from reading the leaves of \(t \) from left to right, i.e. in increasing lexicographical order of their positions.

We call \(L \subseteq \mathcal{T}(\mathcal{F}) \) closed under commutativity if \(C[f(t, t')] \in L \) implies \(C[f(t', t)] \in L \), for any context \(C \in \mathcal{C}(\mathcal{F}) \) and trees \(t, t' \in \mathcal{T}(\mathcal{F}) \). We call \(L \) closed under associativity if \(C[f(f(t, t'), t'')] \in L \) implies \(C[f(f(t, t'), t'')] \in L \) and vice versa. The closure of some \(L \subseteq \mathcal{T}(\mathcal{F}) \) under commutativity/associativity is the least tree language containing \(L \) and closed under commutativity/associativity.

(a) Let \(L_1 \subseteq \mathcal{T}(\mathcal{F}) \) be the language of trees having the same number of \(a \)-leaves as \(b \)-leaves. Is \(L_1 \) recognizable?

(b) Let \(L_2 \subseteq \mathcal{T}(\mathcal{F}) \) be the least set of trees containing \(f(a, b) \) and such that \(t \in L_2 \) implies \(f(f(a, t), b)) \in L_2 \). Is \(L_2 \) recognizable?

(c) Let \(L \subseteq \Sigma^* \) be a regular word language. Is the tree language \(\{ t \in \mathcal{T}(\mathcal{F}) \mid fr(t) \in L \} \) recognizable in general?

(d) Let \(L \subseteq \mathcal{T}(\mathcal{F}) \) recognizable. Is the associative closure of \(L \) recognizable in general?

(e) Let \(L \subseteq \mathcal{T}(\mathcal{F}) \) recognizable. Is the associative and commutative closure of \(L \) recognizable in general?

(f) Let \(L \subseteq \mathcal{T}(\mathcal{F}) \) recognizable. Is the commutative closure of \(L \) recognizable in general?