
LSV / ENS de Cachan 2014/2015
Architecture et Système Feuille de TP n◦ 9

TP9

The course homepage is here:

http://www.lsv.ens-cachan.fr/~schwoon/enseignement/systemes/ws1415/.

You will find the slides and demonstration programs from the course and some other files for
the exercise there.

Details of shell commands and C functions can be obtained by using the man command.

1 Semaphores

Remember that threads run in the same address space as the process creating them and in
particular share globally defined variables. Now consider the following program (counter.c):

#include <pthread.h>

#include <stdio.h>

#define MAX 100000

int counter = 0;

void* count(void* data) {

int i;

for (i = 0; i < MAX; i++) counter++;

}

int main () {

pthread_t t1, t2;

pthread_create(&t1, NULL, count, NULL); // create first thread

pthread_create(&t2, NULL, count, NULL); // create second thread

pthread_join(t1, NULL); // wait for first thread

pthread_join(t2, NULL); // wait for second thread

printf("Counter: %d\n", counter);

}

(a) What output do you expect from this code?

(b) What is the reason for unexpected values?

(c) What is the range of values that could potentially be output?

A concept to overcome those problems are semaphores. A semaphore is a data structure used
for synchronization and dealing with limited ressources that are accessed by multiple threads.
In C, the semaphore interface is defined in the header file semaphore.h. The most important
functions that we will use in this class are the following:

1



• int sem_init(sem_t *sem, int pshared, unsigned int value);

This function initializes sem with a given capacity representing the number of shared
ressources available. Under Linux, pshared should always be NULL.

• int sem_wait(sem_t *sem);

If the semaphore has currently zero capacity this function blocks. Otherwise, it decre-
ments the capacity of the semaphore by one and returns.

• int sem_post(sem_t *sem);

Increments the capacity of the semaphore and consequently unlocks it.

Read the man pages of the aforementioned functions in order to familiarize yourself with them.

(d) Use semaphores to fix the program counter.c.

Finally, consider the following program (order.c):

#include <pthread.h>

#include <semaphore.h>

#include <stdio.h>

#include <stdlib.h>

void* first(void* data) { printf("First\n"); }

void* second(void* data) { printf("Second\n"); }

void* third(void* data) { printf("Third\n"); }

int main () {

pthread_t t1, t2, t3;

pthread_create(&t3, NULL, third, NULL);

pthread_create(&t2, NULL, second, NULL);

pthread_create(&t1, NULL, first, NULL);

// wait for all threads

pthread_join(t1, NULL); pthread_join(t2, NULL); pthread_join(t3, NULL);

}

Your task is make sure that after executing the compiled program it always outputs:

First

Second

Third

(e) Write a C program that spawns two threads. The first thread outputs all even numbers
up to 100, the second thread outputs all odd numbers. Use semapores to make sure
that the numbers are printed in order.

2



2 Producer/consumer

A typical problem in concurrent programming is the producer/consumer problem. One pro-
cess generates data, while another process consumes them. Consider the program procon.c.
Here, the producer reads characters from a file and sends them to a common buffer shared
with the consumer, which prints the characters. However, there is no synchronisation in place
between the two threads.

Change the program so that it outputs the contents of the file correctly.

3 Mandelbrot

Let c be a complex number. We regard the associated series z0 := 0 and zn+1 := z2n + c. The
Mandelbrot set is the set of values for c such that the series of zn remains bounded. It turns
out that this is the case iff zn never exceeds a circle of radius 2 around the origin. If the series
does exceed this radius, let m(c) be the smallest index n for which zn does so.

A popular application is to use m(c) for drawing nice images. On the course webpage you will
find such a program. Your task is to speed it up by making use of multiple threads that can
run in parallel on a multi-core CPU (use cat /proc/cpuinfo to find more about the CPU
on your machine). Each thread can be instructed to compute one slice of the picture.

Note: Compile the program using make.

Note (2): This exercise does not require semaphores.

Man pages: pthreads(7), pthread create(3), pthread join(3), see also the example programs
from the course.

3


