LSV / ENS de Cachan 2014/2015
Architecture et Systeme Feuille de TP n°® 5

TP5

The course homepage is here:
http://www.lsv.ens-cachan.fr/~schwoon/enseignement/systemes/ws1415/.

You will find the slides from the course and some other files for the exercise there.
Details of shell commands and C functions can be obtained by using the man command.

The goal of this exercise is to work with the data representations for floating-point numbers
and characters. For this, we need to manipulate data at the bit level.

1 Operations on bits

The C language has operators for bitwise operations on words. E.g., let x,y be variables of
some integer type (char, short int, ...) and ® some logical operator. Denote by z;,y; the
i-th bit of x and y, respectively. Then result of x ® y is the word z such that z; = z; ® y;.

The operators are & (and), | (or), ~ (xor), ~ (not). Attention, these are not to be confused
with the logical operators &&, ||, etc, which merely test whether the operands are non-zero.
Thus, 4&2 equals 0 but 4&&2 equals 1.

There exist shorthands for the binary operators, e.g. x|=2 means x=x|2, and x~=y means
x=x"y. Also, operators for shifting are available (<<, >>), e.g. 4<<2 equals 16.

1. Consider the following small fragment of a C program, where x,y are integer types.

X T=ysoy =X X Ty,
What does this fragment do?

2. Consider the following fragment, where c,n are integers. What value does c take as a
function of n?

for (c =0; n '=0; n &= (n-1)) c++;
3. Following (b), when does the following expression yield non-zero?
n & (n-1)

4. Write functions getBit, setBit, toggleBit, and clearBit that each take two argu-
ments of type int; these are n and p such that p indicates the position of a bit in n
(where 0 is the least significant bit). Function getBit should return whether the value
of the p-th bit in n is 1. The other functions should return the value resulting from
changing the p-th bit in n as the name of the function suggests.

2 Floating-point numbers

Recall that in C, the type float represents the 32-bit variant of the IEEE 754 standard, with
1 bit for the sign, 8 bits for the exponent, and 23 bits for the mantissa. Consider the following
data type for storing the three components separately:

typedef struct { int sign; int exponent; int mantissa; } fc;

1. Write a function that decomposes a given float value into its three components (simply
seen as integers, without further modifications). In other words, the input for the
function is a float, its output of type fc. For instance, the bit pattern for 2.5 = 21.1.25
is

0 . 1000 0000 . 010 0000 0000 0000 0000 0000

(points added for better visualization). In this case, we represent the sign as 0, the
exponent as 128 (hex 80), and the mantissa as 4194304 (hex 400000).

2. Write a function that does the inverse, i.e. take a structure of type fc and return the
float value it represents.

3. Implement floating-point addition by writing a function that takes two structures of
type fc and returns an fc structure representing their sum. To keep matters simple, we
implement only a part of the addition procedure, making the simplifying assumptions
that (i) both operands are positive, (ii) no overflow can happen, (iii) we do not deal
with NaN/Inf etc.

The addition takes part in three steps:
(a) Bring both numbers to the same exponent, by shifting the mantissa of the smaller
exponent accordingly.

(b) Add the two resulting mantissas, keeping in mind the “implicit” 1 before their
most significant bits.

(¢c) Re-normalize the mantissa of the sum, adjusting the exponent accordingly.

3 Character encodings

As we saw in the course, there exist different ways to represent characters. A character set
is a mapping of integers (also called code points) to characters (letters, digits, punctuation
marks etc). The most important character sets that one encounters in a Western European
context are:

e ASCII, whose domain is 0..127;
e the so-called Latin-1 (ISO 8859-1) extension of ASCII, covering the domain 128..255;

e Unicode, compatible with ASCII/Latin-1, but defining a much larger code space (hex
0..1FFFF).

A character encoding describes how to describe a code point (or more generally, a sequence
of them). For ASCII/Latin-1, the encoding is trivial, each byte describes one code point.
For Unicode, one uses a variable-length encoding called UTF-8 (which was discussed in the
course). In this encoding, a code point is represented by 1 to 4 bytes.

1. On the course homepage, you find a link to a HI'ML page that does not display correctly
because its author did not understand about character encodings. Save the file on your
home page and correct it.

2. Write a function that takes a Unicode code point and outputs its UTF-8 representation.
Use this function to correctly print the following names of cities on your console:

L’Hay-les-Roses (France)
Krométiz (Czechia)
G06dolls (Hungary)

