
LSV / ENS de Cachan 2014/2015
Architecture et Système Feuille de TP n◦ 3

TP3

The course homepage is here :

http://www.lsv.ens-cachan.fr/~schwoon/enseignement/systemes/ws1415/.

You will find the slides from the course and some other files for the exercise there.

1 Verification of Circuits

A serious problem in hardware design is to ensure that a circuit fulfils its functionality under
all circumstances. We shall discuss such a method (for static circuits), using sorting networks
as example.

The purpose of a sorting network is to sort n numbers in ascending order. For a given network,
n is fixed. It is known that a sorting network works correctly iff it works correctly for all
sequences consisting of 0 and 1 (zero-one principle), so we shall assume that all inputs are 0
or 1.

The basic element of a sorting network is a comparator. It takes two values and yields two
outputs, the upper line being the smaller and the lower line the bigger of the two values.

y

x min(x,y)

max(x,y)
CMP

(a) Give a circuit realising the function of the comparator.

A sorting network consists of n wires, for a fixed n, connected by comparators. For conve-
nience, we shall draw connectors simply as vertical wires. Below is a sorting network for n = 4
and an example of its input and output.

1

1

1

0 1

1

1

0

(b) This network gives the correct result for the example input, but not for all inputs. Find
an input for which it gives an incorrectly sorted sequence.

1

One possibility to easily design a correct network is by taking inspiration from classical,
sequential sorting algorithms. For instance, the network below imitates Bubble Sort : The
first series of comparisons finds the biggest element, the next series the second biggest etc.

The course hompeage provides a Sorting Network Simulator (snsim.pl). Download it and
unzip the package. Before running the program, you need to make it executable. In the shell,
cd to the directory where you installed the files, then run chmod +x *pl.

The simulator takes as input a file listing the pairs of wires, to be compared. For instance,
the network above is given as follows (see the file bubble-4.sn).

1 2

2 3

3 4

1 2

2 3

1 2

You can now simulate this network in the shell by running

./snsim.pl bubble-4.sn 0101

where the latter is the input sequence.

However, this sorting network is inefficient. As usual, there are two measures for the efficiency
of a network : the size, i.e. the number of comparators, and the depth. The depth has the
usual meaning for logical circuits, it can equivalently be defined on wires :

— A wire has depth 0 if it is connected to an input value.
— If the wires entering a comparator have depth d1 and d2, then its outgoing wires have

depth 1 +max(d1, d2) ; we also say that the comparator itself has this depth.
The depth of a network then is the largest depth of any of its wires. For instance, the “bubble
sort” network has size 6 and depth 5. The simulator provides you with this data for a given
network.

(c) Design a network for n = 4 that is both correct and more efficient (with respect to
both measures) than the one shown above. Enter its syntax into the network simulator
and use it for testing.

(d) Similarly, find networks for n = 5 and n = 6, trying to minimize size and depth.

How do we verify that a given network correctly sorts, whatever its input ? One possibility
is to try for every possible input, of which there are 2n, either manually or by letting the
computer do it. Another possibility is to formulate the question in a suitable logic, in this
case propositional logic. Our goal is to transform a network N into a formula φN such that
φN has a satisfying assignment iff N is incorrect for some sequence. Searching for a satisfying

2

assignment can be done with so-called SAT solvers. (Note that while SAT solving is no more
efficient than enumerating 2n potential solutions in the worst case, it is often much more
efficient in practice.)

The variables of our formula φN will be of the form xdi , which takes the value of a wire on
the i-th line with depth d. The variables x0i , for i = 1, . . . , n, are the inputs.

(e) Let C be a comparator at depth d whose inputs are at depth d1 and d2. Using the
result from (a), give a formula φC relating the variables representing the inputs and
outputs of C.

Let C be the set of comparators and di the final depth of the i-th input. Then φN can be
formulated as follows :

φN :=

(∧
C∈C

φC

)
∧ ¬φsort(xd11 , . . . , x

dn
n)

where φsort expresses that the final output is sorted.

(f) Find the formula φsort .

On the course homepage, you find a program that assembles φN , given a network N . It then
feeds φN into the SAT solver Z3 and tells you whether there is an incorrect input. All that is
missing are φC and φs.

(g) Complete snverif.pl with the missing formulae. Run the completed program on your
networks to check whether they are correct. Again, using the Bubble Sort network as
example, the syntax is ./snverif.pl bubble.sn 4, where 4 is the value of n.

2 Synthesis of circuits

A more far-reaching application than verification is to automatically synthesize a circuit with
desired properties. Instead of asking whether, given a fixed circuit, there exists an input
violating its desired properties, we would ask, given desired properties, whether there exists
a circuit satisfying them for all its inputs.

We shall discuss this idea, again using Sorting Networks as example. The discussion is based
on the paper Synthesis of Parallel Sorting Networks using SAT Solvers by Morgenstern and
Schneider, 2011.

The basic idea is that a sorting network of depth d can be expressed as a sequence of permu-
tation vectors P1, . . . , Pd, where Pi specifies the behaviour of all comparators of depth i. More
precisely, we suppose that Pk,i = j and Pk,j = i if a comparator with depth k is connected to
wires i and j. Moreover, Pk,i = i if the i-th wire is not connected to any comparator at depth
k. The example below gives the five permutation vectors for the Bubble Sort example :

P1 = (2 1 3 4), P2 = (1 3 2 4), P3 = (2 1 4 3), P4 = (1 3 2 4), P5 = (2 1 3 4)

Given n and d, we can now construct a formula φsynthn,d that asks for the existence of a sorting
network for n values with depth d. Its variables are the integer-valued elements of Pk and the
boolean values xki (i = 1, . . . , n and k = 0, . . . , d). This formula has three components that
ensure

3

(i) that Pk is indeed a permutation vector, for all k (φperm) ;

(ii) that the values xki are consistent with Pk, for all inputs (φcons) ;

(iii) that the final result is sorted, for all inputs (φsort).

φsynthn,d :=

(d∧
k=1

φperm(Pk)

)
∧
(∧

x0
1,...,x

0
n∈{0,1}

(d∧
k=1

φcons(Pk, xk−1, xk)
)
∧ φsort(xd)

)

As for the first, φperm can exploit that the permutations are all symmetric :

φperm(Pk) :=
n∧

i=1

Pk,Pk,i
= i

φcons adapts our formula φC from exercise 1(e) :

φcons(Pk, xk−1, xk) :=
n∧

i=1

xki =

{
xk−1i ∨ xk−1Pk,i

if i ≤ Pk,i

xk−1i ∧ xk−1Pk,i
otherwise

φsort finally is like in exercise 1(f).

(a) The program snfind.pl generates φsynthn,d automatically. Use it to find optimal-depth
networks for n = 5, 6, 7, . . .

This principle can also be applied to other functions than sorting. Suppose that we want
to build some functionality of n inputs only from NAND gates. In a first step, we can still
encode the connectivity by symmetric permutation vectors, i.e. for a NAND-gate at depth k
with inputs from wires i and j, we have Pk,i = j and Pk,j = i. The only difference is that this
time the output goes to the wire with the smaller index, and the wire with the higher index
becomes useless.

(b) Adapt φcons to NAND-gates instead of comparators.

(c) Supposing that n = 2 and the desired functionality is XOR, find a suitable replacement
for φsort . What about other functionalities that you can think of ?

(d) Does this scheme always find the circuit with the smallest depth ? If not, state why
and propose an improvement.

(e) (advanced exercise) Adapt snfind.pl to find the smallest circuit for XOR or other
functions.

4

