
Architecture et Systèmes

Stefan Schwoon

Cours L3, 2014/15, ENS Cachan

What is an operating system?

Characterisation according to Tanenbaum:
Software consists of two categories: the
system programs, which enable the op-
eration of the computer, and the applica-
tion programs, which resolve the user’s
problems. The operating system is the
most important of the system programs.
It controls the resources of a computer
and provides a basis for the application
programs.

Thus, the operating system intervenes between the hardware and the actual
applications that the user sees.

2

Tasks of an operating system

Enable good things:

Provide functionality to applications, making them easier to write.

Abstract from hardware details, enable same software to run on different
computers.

Provide useful abstractions: files, processes, windows, . . .

Smooth handling of concurrency; every application may run as if it was alone.

3

Tasks of an operating system

Prevent bad things:

Keep different users from interfering with one another, maliciously or
inadvertently.

Ditto for different processes of the same user.

Provide for a fair distribution of resources.

Do not allow malicious processes (e.g., viruses) to corrupt the system.

4

Organisation of the operating system

Within an operating system, we can distinguish the following components:

The kernel: set of low-level system calls; always resides in memory; critical
code allowed to access ‘real’ mode.

The library functions providing a more user-friendly interface to the kernel.

Low-level applications like the shell etc.

5

System and library functions

A programmer often does not interact with system calls directly, but through the
libraries.

Example: brk (system call that sets boundary of heap);
malloc (library call to allocate some part of the heap)

Another example: write (system call) / printf (library function)

Calls to library functions and system calls can be observed with the shell
commands ltrace and strace.

6

Low-level applications

Set of programs that allow the user to do anything useful at all with the system
(without actually resorting to programming).

Examples: shell and associated programs (ls, cat, . . .)

In today’s computers: graphical-user interface

Line between OS programs and application programs not always precise.

7

Domains of an OS

Processes, Threads, Signals, Scheduling

File system, Networking, I/O in general

Memory management

User management

(graphical user interface)

. . .

8

Unix and Posix

Unix was the name of a first vendor-independent OS created in 1970 by
Kernighan and Ritchie.

The same authors developed the C language, notably as a base for
programming in Unix.

Incompatibilities between Unix and various clones lead to the creation of the
Posix standard in the 1980s.

Posix defines a large set of system/library calls and their behaviours; also
(largely) adhered to by MacOS / Windows.

This course: based on Posix

9

Processes

CPU: (traditionally) sequential
machine, treats one instruction
after another

Process: data structure within the
OS representing a task or “unit of
execution”; OS assures fair time-
sharing and non-interference

10

What is a process?

Processes can be seen as a data structure representing a sequential “unit of
execution” in a multi-tasking system.

A process (or: task) is a sequential activity pursued by the computer; it executes
some code, has its own data and other attributes.

Not to be confused with program. Analogy with cooking: If a program is a recipe,
the act of cooking is the analogue of a process.

Examples: the “init” process, service programs (daemons), shell, programs
invoked by the shell, editor, . . .

Each process has a numerical identifier (pid). A list of current processes can be
viewed with shell commands like ps or top.

11

Why processes?

Facilitates programming: each program can be written in sequential style, without
taking care of other processes (unless interaction is explicitly desired), operating
system takes care of the concurrency-related aspects.

Processes are isolated from one another: cannot spy on/modify other processes,
failure in one process won’t harm the others.

Processes can interact only in carefully defined ways.

12

Multitasking on a sequential CPU

On a (single-core) only one process can execute at the same time.

The OS puts each process into its own “virtual machine” and switches between
active processes, giving each one small timeslot at a time.

User perspective: illusion of concurrency
Process perspective: sequential execution

We will look at the precise mechanics of scheduling later in the course.

13

The Unix command-line shell

Provides a rich, text-based interface for managing processes.

Easy access to other systems programs that implement OS functionalities, in
particular operations on files.

User types commands at the prompt.

Shell executes the command (typically launching one or more processes) and
waits for its completion before accepting the next command.

14

Simple shell commands

Standard form of a shell command:
program name arg1 arg2 ...

Spaces separate the program name and the arguments.

Example: echo Bonjour

Command: echo (simply outputs its arguments)

Example: cat foo.txt

Command: cat (shows contents of file)

Example: ll

Command: ls (ll is an alias for ls -l)

If an argument itself contains a space, enclose it in quotes:
cat "my file"

15

What happens?

The shell will start looking for a program with the given name. For this, it will use
the PATH variable.

If the program is found in on of the directories named by PATH, a new process is
created.

This process then executes the program and passes the parameters to it.
In C:

int main (int argc, char **argv)

16

Process hierarchy and creation

Each process may create children by issuing the fork system call.

fork duplicates the calling (“parent”) process, creating a copy called the
“child”.

If successful, parent receives the process id of the child, the child receives 0.
In case of failure, returns -1.

Details: man fork

The child may obtain the process id of its parent by calling getppid, and any
process may obtain its own id using getpid.

In Unix, processes are organized as a tree, according to their creation, with the
special “init” process as the root (command: pstree).

17

fork and memory

After the call to fork we have two processes that are identical, except for two
things:

their process identifier (pid)

the value that fork just returned

All memory contents will be identical at the beginning.

However, parent and child now have separate memories, any changes in one
process will not affect the other.

18

Attributes of a process

Process id (numeric, PID), parent id

Context (program counter, CPU registers)

Memory: code, data, stack

State (active, waiting, blocked, . . .)

many others, we will see some. . .

19

Life and death of a process

A process may terminate by calling exit or returning from the main function.

In doing so, it may return a value called the exit code of the process.

A parent process may wait for one of its children to terminate. (This is what the
shell does before it accepts another command from the user.)

wait also returns information about the child (whether it terminated normally, its
exit code, etc).

Notably, the parent can obtain the exit code of the child from the return value of
wait by using the WEXITSTATUS macro.

20

Process states

Scheduling means that processes alternate between two basic states:

Active: the process is currently running, i.e. it has been selected by the
scheduler.

Suspended: the process is not currently executing (another process is).

21

Looking closer at the suspended states, we find that some processes cannot
continue working for logical reasons,

e.g., it is waiting for input; or for a child;

or it has been put to sleep, etc

To avoid uselessly scheduling such processes, the suspended processes are
further subdivided:

Waiting: the process is willing to execute but is currently suspended by the
scheduler.

Blocked: the process is waiting for something, will not be scheduled until it is
unblocked.

The scheduler only considers the waiting processes.

22

Special process states

Unix knows some other process states, for example:

Created: entry created in the process table, but process is still being set up.

Zombie: process has finished execution but not been purged from memory.
Will disappear when the parent calls wait.

Note (1): when a program terminates, its children are attached to another
process (usually the init process, but depends on OS). The shell uses this
opportunity to clean up zombies.

Note (2): Unix has some other special states for processes, these are only the
most important ones.

23

Exec

The exec family of functions allows a process to replace itself with another
program. The system will then load the specified program into memory and start
executing it under the id of the process that called the function.

Example (launching a command in the shell):

The user types a command at the prompt.

The shell first forks.

The child calls, e.g., execvp to launch the desired program.

The parent waits for the child to terminate, then returns to the prompt.

24

Combining multiple commands in the shell

cmd1 ; cmd2: execute first cmd1, then cmd2

shell launches one child, waits for its termination, then launches another child

cmd1 ‖ cmd2: execute cmd1, and if return code non-null, execute cmd2

cmd1 && cmd2: execute cmd1, and if return code null, execute cmd2

same principle, but query the code returned by wait before eventually
launching the second child

25

