
Architecture et Système

Stefan Schwoon

Cours L3, 2014/15, ENS Cachan



Processor architecture

Hardwired

Microprogrammed

CISC / RISC (Complex / Reduced instruction set computer)

Explicit Parallelism (EPIC / VLIW)

2



Recall: Basic architecture

A first sketch:

ALU

Control
unit

Clock
peripherals

memory
IP
AX
BX
SP
Status

processor (CPU)

B
u
s

MP

consult

select source/destination

interrupt

3



Data path and control unit

Processor can be said to consist of two parts:

Data path: everything that stores/manipulates data, e.g. registers, ALU, bus, . . .

Control: responsible for organising transfers inside the data path; control unit,
control signals, multiplexer/decoders, . . .

Most components have both aspects, e.g., a bus contains data lines co-ordinated
by control signals.

4



Sample CPU design

PC

pc_out

pc_inc

+1

ma_inpc_in

addrop

ir_in

MA

IR

ALU

r_out

R

CU+1
reset

op

ia_out

control signals

step

system bus

AC

MD

md_inmd_out

ac_in ac_out

cpu bus

write read

alu_op

5



This design has a CPU-internal bus and a system bus.

MA/MD communicate with the memory via system bus.

IR: instruction register / MA: memory address / MD: memory data

Input/output to buses controlled by the named signals written next to them;
these are provided by the CU.

6



How the CU works

Input (in this example): op (operation code) / step (clock phase)

To execute the next operation, we fetch it from memory (IF):

phase 0: load PC into MA, increase PC (pc out, ma in, pc inc)

phase 1: fetch operation from memory (read)

phase 2: move operation to IR (md out, ir in)

Phase 3 and following serve to execute the operation.

Note: This could be sped up, e.g., if we allow PC to access the system bus
directly.

7



Executing an operation

Let us regard two operations:

LOAD addr: load content of addr into accumulator

phase 3: load addr into MA: (ia out, ma in)

phase 4: fetch data from memory (read)

phase 5: transfer to ALU, next op (md out, alu in, reset)

ADD addr: add content of addr to accumulator

phase 3: load addr into MA: (ia out, ma in)

phase 4: fetch data from memory (read)

phase 5: perform addition (alu op=add)

phase 6: transfer to ALU, next op (r out, alu in, reset)

8



Control signals

How to obtain the correct control signals:

Hardwired:

Build a logical circuit for each signal, with inputs op and phase.

Used in first computer designs.

Microprogramming:

Use op and phase as index into a ROM, which delivers the values of all
signals.

(needs additional mechanisms for conditional branching)

Very popular until 1970s/80s.

Advantages: ROM faster than memory / complex instructions possible (ease
for compilers) / flexible (can exchange ROM if needed)

9



Example: Intel instruction set

Complex instruction set, with powerful instructions (including loops)

Operands with 8/16/32 bits

Can use part or all of registers

Varying length of instructions (1-7 bytes), requires additional instruction decode
phase

Requires more complex control

CISC = complex instruction set computer

10



RISC architecture

Starting from 1970s, becomes popular in the 1990s (faster memory, more
transistors possible)

RISC = reduced instruction set computer

idea: only provide basic, most necessary operations in CPU
(shift complexity from microcode to assembly code)

better speed thanks to:

every instruction executable in one clock cycle, thanks to hardwired logic

allows to interleave phases of executions (IF/ID/EX), multiple instructions
executed at once (superscalar)

wider, regular instruction words: opcode always of same length, operands
always at same position ⇒ simpler, faster control logic

more registers available

11



Issues in superscalar architecture

CPU tries to execute the next n instructions in parallel

Problems due to data dependencies and branching

Solutions: speculative execution, branch prediction

12



EPIC / VLIW

EPIC = explicitly parallel instruction computing

VLIW = very long instruction word

Instruction word contains several instructions at one, which can be executed in
parallel

Shift complexity onto the compiler, who must find out about data dependencies

13


