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Logical circuits in computer architecture

Several levels of abstraction:

physical (transistor) level

logical-gate level

register (word) level

processor level

Static and dynamic circuits (time, storage)
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Physical level

Most computers are built on (various types of) transistors:

base

emitter

collector

Voltage flows from emitter to collector when voltage at base exceeds a certain
threshold (“is high”).
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Logical gates using transistors

NAND (a) and NOR (b) gates built from transistors:
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Logical gates

NAND and NOR gates are important for two reasons:

They can easily be realized using transistors.

All other logical functions can be built from either operator, e.g.:

¬A ≡ A∧̄A;

A ∧ B ≡ (A∧̄B)∧̄(A∧̄B);

A ∨ B ≡ (A∧̄A)∧̄(B∧̄B).

To abstract from physical details, we use a different type of diagram with logical
gates. Here, we are concerned with the treatment of individual bits.
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Logical-gate diagrams

Diagrams for NAND (left) and NOR (right):
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Derived logical diagrams, possibly realised by combining several NAND/NOR
gates at the physical level:
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Complexity of logical circuits

Two characteristics are interesting in logical circuits:

the size, i.e. how many transistors/gates/wires are present;
this determines the cost of a circuit.

the depth, i.e. the largest number of transistors/gates on a path between an
input and an output; this determines the speed of the circuit.

Minimising both size and depth are usually contradictory goals!
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Complexity and derived diagrams

Consider the XOR gate:

A

B
C

Recall that it is physically realized by, e.g., multiple NAND gates:

A

B

C

The first diagram suggests a size/depth of 1.
The second diagram suggests a size of 4 and a depth of 3.
The number of transistors is 8.

But this may change if only NOR gates are available . . .
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Complexity and fan-in

Some functions (AND/OR etc) can be generalised to more than two inputs.

D

A

B

C

At transistor level, the size and depth can be affected as follows:

if only binary circuits are avaiable, the circuit above can be realized by
sequentialising two NAND circuits (4 transistors/depth 2);

if the physical layout allows to sequentialise multiple transistors, then the
circuit can be physically realised with 3 transistors and depth 1.
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Conventions

In the following, we will be interested by functions of n bits, where n is a variable.

We will wish to know how the size/depth of a circuit realizing a certain function
grows as n increases (i.e. their asymptotic complexity).

Typical goal: size O(n), depth O(log n).

Convention: We allow ourselves fixed fan-in (arbitrary, but independent of n) and
the previously given logical gates.

At the transistor level, such gates have some constant size and depth (i.e.
independent of n).

Thus, the asymptotic complexity at transistor level and at gate level coincide.
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Arithmetic functions: Half adder

We first propose a so-called half adder:

two input bits, A and B;

two output bits, C (the carry ) and S (the sum);

desired result: (C.S)2 = A + B (where . denotes concatenation).

Possible realisation:

A
S

C
B

HA
A

B C

S
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Full adder

A full adder produces the addition of three bits, we call the inputs x , y , and c0,
where c0 may be the carry of a previous addition.

Desired result: (c1.s)2 = x + y + c0

Possible realisation:

HA

HA

FA

y
x

c0 s

c1

yx

c1

s

c0

Other realisations are possible, for instance...?
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Adding two integers

Suppose that we have two integers represented as vectors of, e.g., 4 bits.
x = (x3.x2.x1.x0)2 and y = (y3.y2.y1.y0)2.

We wish to compute the sum s = x + y as s = (c.s3.s2.s1.s0)2.

Realisation by sequentialising four adders:

FA FA FA FA 0

y3x3 y2x2 y1x1 y0x0

s3 s1s2 s0

c1c2c3
c
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Suppose that we generalise the principle of the sequential adder to n bits. Then
the size of the circuit is O(n) and its depth also!

The latter is bad because it would mean that a computer would become (much)
slower when its register size is increased.

We shall study a solution with logarithmic depth.
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Adder based on propagate-generate bits

Let 0 ≤ i ≤ j < n. We consider the input bits from position i to j :

the block i..j is said to generate a carry if cj = 1 independently of the bits at
other positions;

the block i..j is said to propagate a carry if ci = 1 implies cj+1 = 1.

Computing these two bits depends only on (xi , yi) · · · (xj , yj):

When i = j , then gi,j = 1 iff xi + yi = 2 and pi,j = 1 iff xi + yi ≥ 1.

Otherwise, let i ≤ k < j , then:

gi,j = gk+1,j ∨ (gi,k ∧ pk+1,j) and pi,j = pi,k ∧ pk+1,j

Also, cj+1 = gi,j ∨ (ci ∧ pi,j).
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Symbol for a one-bit full adder extended with p/g bits:

PG

yixi

gi,ipi,i

cisi

Symbol for combining p/g bits from two blocks:

PGC

pj+1,k

ck+1

gj+1,k pi,j gi,j

pi,k gi,k

ci

cj+1
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Simplified diagram for 8 bits, only the propagation of carries is detailed:

PG PG PG PG PG PG PG PG

PGC PGC PGC PGC

PGCPGC

c0

c8

Notice that the p/g bits of an m-th level PGC block are ready after a delay of
O(m). Once the p/g bits and the input carry are ready, the output carry can be
computed.

The longest path (in terms of PGC blocks) for a carry is approximately 2 log n.
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Further arithmetic/logical functions

Subtraction, multiplication, division, . . .

Comparison, test for zero, . . .

Vector-wise AND, OR, XOR, . . .

Shifting left or right

Multiplexer: input n bits, select one as output

Decoder: input i , output yi = 1 and yj = 0 for j 6= i
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