
Architecture and Systems

Stefan Schwoon, ENS Cachan, Cours L3, 2014/15

October 20, 2014

This document covers part of the material of the course on Architecture
and Operating Systems at ENS Cachan in 2014/15. It will evolve as the
course continues.

1 Logical gates

Computers need to store and process information. The very first computers
were based on mechanical, then electro-mechanical devices, then vacuum
tubes. Since the mid-1950s, most computers are based on various types of
transistors.

base

emitter

collector

Figure 1: A transistor.

Figure 1 shows a transistor. If the voltage at the base is low, the transistor
blocks. If the voltage at the base is “high”, i.e. surpasses a certain threshold,
then electric current can flow between collector and emitter.

1.1 Logical circuits

Transistors can be used to implement logical circuit. Consider Figure 2 (a).
If the voltage A at the transistor base is low, then the transistor blocks, and
voltage C at the output is high. If voltage A is high, then the transistor
unblocks and the current at C approximates that of the ground (low). Thus
C is the “inverse” of A. If we associate high voltage with value 1 or logical
value true and low voltage with 0 or false, then C = 1−A, or C is the logical
inverse of A. Figure 2 (b) shows a block symbol for a NOT circuit.

1



resistor

input (A)

output (C)

high voltage

ground

(a) (b)

CA

Figure 2: (a) Transistor used to realize a NOT-gate. (b) Symbol for NOT
circuit.

ground

ground

resistor

input (A)

(b)

input (B)

high voltage

output (C)

A
C

B

A
C

B

resistor

input (A)

output (C)

high voltage

(a)

input (B)

Figure 3: Circuits realizing (a) NAND gate; (b) NOR gate.

2



A

B

C

Figure 4: An XOR gate realized with NAND gates of depth 3.

A

B
C

OR

A

B
C

AND XOR

A

B
C

Figure 5: Symbols for additional logical gates.

Further logical functions can be realized, e.g., as shown in Figure 3, where
in (a) we have C = ¬(A ∧ B) and in (b) C = ¬(A ∨ B). Notice that either
NOR or NAND are sufficient to implement any logical function. For instance,
using ∧̄ to signify NOT-AND, we have

• ¬A ≡ A∧̄A;

• A ∧B ≡ (A∧̄B)∧̄(A∧̄B);

• A ∨B ≡ (A∧̄A)∧̄(B∧̄B).

Similar laws hold for NOR. As an example, Figure 4 shows how to
implement an exclusive-or (XOR) gate using only NAND gates. Figure 5
shows some more symbols commonly used to denote logical gates.

Many different circuits can be used to implement the same logical func-
tions. It is interesting to optimize circuits with respect to (i) their size, i.e.
the number of logical gates (transistors, respectively); (ii) their depth, i.e.
the length of the longest path from an input to an output, measured in terms
of the number of logical gates along the way. The size of a circuit affects the
cost of building it. The depth affects the speed with which outputs can be
produced. For instance, the XOR gate from Figure 4 has a depth of 3. Note:
An XOR gate can also be realized from NOR gates with depth 3, but only
with five gates. If one allows AND and OR gates with arbitrary number of
inputs (by generalizing the circuits from Figure 3), then any logical function
F with n inputs can be realized with constant depth by exploiting the con-
junctive/disjunctive normal form of F . However, this may lead to circuits
with an enormous size and is hardly practical. The best compromise can
hope for in general is to build circuits of size O(n) and depth O(log n).

3



A
S

C
B

HA
A

B C

S

Figure 6: A half adder and its symbol.

HA

HA

FA

y
x

c0 s

c1

yx

c1

s

c0

Figure 7: A full adder and its symbol.

1.2 Adder

We shall discuss how to implement arithmetic functions using logical gates.
Consider Figure 6, which shows a so-called half-adder ; the sum S contains
the sum (modulo 2) of A and B and C the so-called carry. If . signifies
concatenation, then we have (C.S)2 = A + B, where the subscript 2 means
the interpretation in binary.

Two half-adders can be combined to form a so-called full adder, which
provides the sum and carry for three bits (two bits x, y) and a carry c0 from
another addition as in Figure 7; here we have (c1.s)2 = x+ y + c0.

Suppose that we have two 4-bit vectors x, y with x = (x3.x2.x1.x0)2 and
y = (y3.y2.y1.y0)2. The addition of x and y can be realized by a chain of full
adders, as shown in Figure 8, where (c4.s3.s2.s1.s0)2 = x+y+c0. The symbol
on the right of the figure shows a symbolic representation of such a multi-bit
adder, where multiple lines of inputs/outputs are indicated by a crossed line.

If the circuit in Figure 8 is generalized to n-bit vectors, it has size and

FA FA FA FA FA

4

4 4

c0

y3x3 y2x2 y1x1 y0x0

s3 s1s2 s0

c1c2c3
c4 c0c4

x y

s

Figure 8: Adding two 4-bit numbers with a sequence of full adders.

4



PGCPG

pj+1,k

ck+1

gj+1,k pi,j gi,j

pi,k gi,k

ci

cj+1

yixi

gi,ipi,i

cisi

Figure 9: Symbols for propagate/generate/carry computation for 1 bit (PG)
and combining two blocks (PGC).

depth O(n). The latter is undesirable because it would mean that addition
becomes slower when a computer can process more bits. We shall discuss a
realization with logarithmic depth. It is based on the principle of computing,
for ‘blocks’ of increasing size within x and y, whether those blocks generate
or propagate a carry bit. E.g., let 0 ≤ i ≤ j < n, then we are interested
in the block consisting of xj · · ·xi and yj · · · yi. Then we say that this block
generates a carry if cj+1 = 1, independently of the other bits in the input.
And we say that the block propagates a carry if ci = 1 implies cj+1 = 1.
For instance, if i = j, then gi,j = 1 (the generating bit) iff xi + yi ≥ 2, and
pi,j = 1 iff xi +yi ≥ 1; both can be easily implemented with logical functions.
Moreover, the results from two blocks can be combined, for 0 ≤ i ≤ j ≤ k <
n, we have gi,k = gj+1,k ∨ (gi,j ∧ pj+1,k) and pi,k = pi,j ∧ Pj+1,k. Also, we can
compute the carry ck+1 from ci by ck+1 = gi,k ∨ (ci ∧ pi,k.

Consider Figure 9, where the circuit PG symbolizes a full adder combined
with the aforementioned computation of the propagate/carry bit for one pair
of inputs xi, yi. Moreover, PGC denotes the combination of two blocks and
the carry computation. Then an n-bit addition can be performed by the
circuit shown in Figure 10 for 8 bits. This circuit has logarithmic depth if
the input is generalized to n bits. Indeed, it can be seen to function in two
phases, both of logarithmic depth. In the first phase, all propagate/generate
bits are be computed using log2 n PGC circuits. The second phase gener-
ates the carries by propagating them through the PGC circuits to the PG
circuits. Indeed, the carries c1, c2, c4, c8 become available one step after all
propagate/generate bits are available, c3, c6 two steps later, and c7 three steps
later Thus, the second phase also has logarithmic depth. The summation bits
(not shown) are produced when all carries are available.

5



PG PG PG PG PG PG PG PG

PGC PGC PGC PGC

PGCPGC

c0

c8

Figure 10: 8-bit adder with logarithmic depth (output of summation bits not
shown for space reasons).

R

S
Q̄

Q

Figure 11: An RS-latch with reset (R) and set (S) inputs.

1.3 Flip-flops and registers

Flip-flops (also called latches, fr. bascules) are used to store one bit. They
are realized by circuits with feedback. Figure 11 shows a so-called RS-latch.
If R = 1 and S = 0 (reset), then the circuit will stabilize with the outputs
Q̄ = 1 and Q = 0. If R = 0 and S = 1 (set), then the circuit will stabilize
with Q̄ = 0 and Q = 1. If R = S = 0, the circuit is quiescent, its outputs
remain as they are. Thus, a bit can be set to 1 or 0 by raising either R or S
for a short time, then lowering the signal. If R = S = 1, then Q̄ = Q = 0,
and once R and S are lowered, the outputs may oscillate; this input is thus
forbidden.

Several variations of latches exist. In order to provide reliable operations
in a computer, it makes sense to synchronize all circuits and allow writing
operations only at specified times. This is usually done by employing an
oscillator, that emits electric signals at regular intervals. Figure 12 shows a
synchronized D-latch. The input C is expected to come from an oscillator,
and the Schmitt trigger outputs a 1 signal only when the signal from the
oscillator is in its rising flank. Thus, the signal D is translated into set/reset

6



R

SD

C

C

D

Q̄

Q

Q̄

Q

Figure 12: A D-latch with clock signal and its symbol

signals only during the rising flanks of the oscillator, i.e. at regular intervals
the value of D can be written to the latch.

We can now imagine a register inside the CPU (processor) or a word in
main memory to be realized as a vector of D-latches. Further extensions are
generally used, e.g. D-latches are often extended with an enable signal (C
and D are only taken into account if enable is set).

1.4 Multiplexer and decoder

This section discusses some general-purpose circuits that are useful for de-
scribing the architecture of a processor.

An (n,m)-multiplexer, for some m,n ≥ 1, takes as inputs 2n vectors
x0, . . . , x2n−1, where each vector is composed of m bits, and a selector s, i.e.
a vector of n bits. It outputs the vector xi, where i is the value of s interpreted
as a binary number. For m = n = 1, s is just one bit that chooses between
two bits x0 and x1, which can be easily realized by AND and OR gates. The
extension for arbitrary values of m consists merely of duplicating this circuit
for different pairs of inputs. When n becomes bigger, multiple such circuits
can be used in sequence, selecting first according to the lowermost bit of s,
then the next most significant etc. A schematic symbol of a multiplexer is
shown on the left of Figure 13.

An n-decoder is a circuit that takes as input an n-bit vector x. All output
lines y0, . . . , y2n−1 are 0 except for xi, where i is the value of x. Such a decoder
is shown in Figure 13 on the right-hand side.

7



m

m m

x0 x2n−1

s
n

y

n

...

x

y0 y2n−1

decode

...

MUX

Figure 13: A multiplexer (left) and a decoder (right).

1.5 Further arithmetic-logic functions

Next to addition, other arithmetic (multiplication, division) and logical func-
tions are necessary for the functioning of a computer. Multiplication can in
principle realized using multiple additions although there exist more efficient
ways to do it. Comparison between two numbers (bigger, equal, smaller) can
be easily implemented using standard logical circuits.

Among the logical functions, we mention the bitwise functions (AND,
OR, etc). E.g., the AND function applied to two vectors x = xn · · ·x1 and
y = yn · · · y1 is xn∧yn · · ·x1∧y1, which can be realized with a constant-depth
circuit that performs all AND operations in parallel.

Finally, a d-shift operation on a vector x = xn · · ·x1 consists of moving
the contents of x by d positions to the left/right, filling non-defined bits by
0. E.g. a d-left shift operation yields the vector xn−d · · · x0.0d, effectively
multiplying the binary value of x by 2d (modulo n). For a fixed value of d,
a shift operation can be implemented with a constant-depth circuit; for an
arbitrary value of d (between 0 and n), it can be done with a circuit of O(n)
depth by combining 1-shift, 2-shift, 4-shift, etc. operations with multiplexers.

2 Basic computer architecture

We can now discuss in some detail how a transistor-based computer works.
Figure 14 shows a basic computer architecture with the following elements:

• the processor (CPU), consisting of a control unit, an arithmetic-logical
unit (ALU), several registers for storing values, a microprogramming
unit (MP), and a clock that synchronizes all actions inside the com-
puter;

• the main memory ;

8



ALU

Control
unit

Clock
peripherals

memory
IP
AX
BX
SP
Status

processor (CPU)

B
u
s

MP

consult

select source/destination

interrupt

Figure 14: Basic computer architecture.

• the peripherals, i.e. further devices;

• the system bus, which serves to transfer data between the different
components.

We discuss the individual components.

2.1 The memory

The memory serves to store large amounts of information, including both the
instructions (code) and the data to be processed (this is called von Neumann
architecture).

The memory typically consists of 2n so-called words of m bits each, where
m,n are some parameters. Typically, in today’s computers, the basic unit of
a memory is a byte consisting of 8 bits, e.g., m = 8. (Notice, however, that
for reasons of efficiency it is often possible to obtain multiple bytes at a time,
but we ignore this point in this discussion of basics.) A modern computer,
even a laptop, can often store rather large amounts of memory, e.g., n = 32

9



(which corresponds to 4 GB). All storage can be implemented, e.g., using the
latches discussed in Section 1.3.

A word w from address a can be obtained from memory by using a multi-
plexer (see Section 1.4), where a is specified by the CPU. Similarly, if a word
w is to be written into memory at address a, w is obtained from the bus,
a from the CPU, and a decoder (again, see Section 1.4) chooses from a the
correct latches to enable the writing.

2.2 The bus

The bus serves to transfer data between different parts of the computer (CPU,
memory, peripherals). This can again be realized by a couple of sufficiently
dimensioned multiplexers and decoders. The source and the destination of
each transfer are chosen by the CPU. To keep the bus simple, only one
memory transfer is allowed at a time, so that the CPU cannot, e.g., add the
contents of two memory locations immediately.

2.3 The processor

The processor is also called central processing unit, or CPU, for short. It
contains several features:

The registers serve as a kind of short-term memory. They have different
purposes:

• the instruction pointer (IP) contains the memory address from which
the next operation (instruction) is to be obtained;

• general-purpose registers (called, e.g., AX, BX, etc in 80x86 archite-
ture) serve to hold data;

• the status register is used to indicate certain events or status flags (e.g.,
the result of a comparison);

• the stack pointer (SP) points to the memory address that currently
holds the top of a so-called stack (used by programming languages to
implement local variables, for instance).

The arithmetic-logical unit (ALU) is the only part in this basic architec-
ture that actually manipulates data. It implements the functions discussed
in Section 1, e.g., addition, shift, logical and, etc. It can take one or two

10



operands from the registers and/or the bus and write the result of an oper-
ation back to them. Operands, destination, and function to be executed are
selected by multiplexers.

The control unit (CU) is at the core of all logical operations. For each
instruction, it operates in several phases, which are synchronized by the clock
signal. (The clock has connections to all parts in the computer, which are not
shown in the drawing for practical reasons.) Each phase basically consists
of organizing the transfers inside the computer; the CU controls the sources
and destinations on the bus, the inputs and outputs of the ALU (and the
function that it computes) by providing the selectors of various multiplexers
on the bus and ALU, respectively.

E.g., in the first phase, the ALU transfers the value of register IP into the
address selector of the memory, and it programs the bus so that it transfers
a word from memory into a special instruction register inside the CPU (not
shown). At the same time, the value of IP is incremented. Then, several
more phases can follow. Let us consider the case where the instruction is add
ax,[0x20], i.e. the value of memory address 32 = (20)16 is to be added to
the value of register AX and to be stored in the same.

• In the second phase, the CU programs the multiplexers connected to
the bus and the registers so that the contents of AX and memory cell 32
are provided as operands to the CPU; moreover, the function addition is
chosen by suitably programming the function selector inside the ALU.

• In the third phase, The CU instructs the ALU to transfer the result to
AX, again by suitably programming the output selectors of the ALU.

The CU is then ready to process the next instruction.
In order to provide the correct selectors to all components concerned,

the CU used the so-called microprogramming unit (MP). This is a read-
only memory, which basically contains a lookup table specifying, for each
instruction and each phase, the correct selection bits that must be supplied
to bus/ALU/registers etc.

2.4 The peripherals and interrupt handling

Peripherals is a summary name for all other devices connected to the CPU
that provide input and output. They include, for instance, the keyboard,
the mouse, the display, the hard disk, printers, network connections etc. In

11



order to communicate with these devices, the CPU arranges for words to be
transferred (via the bus) to and from those devices; special CPU instructions
such as in and out exist for this purpose.

While we can (in a first approximation) assume that the CPU can always
send data to any peripheral, the peripherals need to obtain the attention
of the CPU so that it can arrange the data transfer in the other direction.
For instance, a keyboard does not have data to send all the time, but only
when the user presses a key (which is rare, relative to the speed of the
CPU). For this purpose, each of the peripherals possesses a wire (the so-called
interruption signal) that is connected to the control unit (or some special
register, alternatively). By raising the voltage on this wire, a peripheral
signals to the CPU that its attention is required.

The behaviour of the CU is then modified as follows: Whenever a new
instruction is to be executed, the CU first checks whether any interrupt signal
has been raised. If this is not the case, it executes the next instruction as
normal. Otherwise, it chooses a peripheral that has raised its signal and
interrupts its own work to communicate with that device first. The current
instruction pointer is saved on the stack and replaced by the address of a
device-specific interrupt handler, obtained from a fixed part of the memory
that is set aside for this purpose. The code in the interrupt handler then may
then communicate with the device, organizing the transfer of data, store it
in memory etc. On the communication is done, the interrupt signal is reset
to 0, and normal execution resumes.

3 Data representation

This section concerns some facts about the representation of various types of
data within a computer.

The following names are widely used to denominate the units of informa-
tion stored and treated within a computer:

• A bit is the most basic piece of information, either 0 or 1. It is stored
by a latch (see Section 1.3).

• A byte is the smallest addressable unit in the computer’s memory, typ-
ically consisting of 8 bits (some historic computers had less than that).

• A word may denominate any vector of bits treated or transferred as a
unit. E.g., a register word may refer to the contents of a register, or

12



a bus word the unit of data transferred on the system bus. Without
addition, word usually means a register word.

3.1 Integers

Integers are stored in a word with a fixed size, say n bits. In C, various
data types for integers exist: char, short int, int, long int, long long

int. Their sizes are not fixed by the C standard, only their minimal sizes,
with are 8, 16, 16, 32, 64 bits, respectively. (In the machines available in the
computer room, int is actually 32 bits.)

In word with n bits, one can store 2n values. Thus, these types store only
a subset of the actual integers. The unsigned variations of these types store
values from 0 to 2n − 1. Arithmetic operations like addition/multiplication
etc., are implicitly carried out modulo 2n.

All data types also come in signed variations, being able to store positive
and negative integers. A simple encoding is to simply use the most significant
bit as the sign. In this case, one can use n bits to store values from −2n − 1
to +2n − 1, with 0 having two representations.

However, the encoding used in practically all computers today is called
two’s complement. It stores values from −2n to 2n−1. Words where the most
significant bit is 1 are interpreted as negative numbers, and for a positive
value i (between 1 and 2n − 1) we can obtain −i by substracting 1 and
then inverting all bits. E.g., for n = 8, the binary representation of i = 3
is 00000011, and the representation of −2 is 11111101 (the inverse of the
binary representation of 3− 1 = 2). Alternatively, −i can be obtained from
the unsigned binary representation of 2n − i.

Thus, if we take the binary representations of i and −i and add them,
we obtain 2n, which is 0 (modulo 2n). The two’s complement therefore has
the great advantage that on the binary level, all arithmetic operations are
exactly the same as in the unsigned case. The computer then does not need
to ‘know’ whether a word represents an unsigned number or one in two’s
complement - this becomes merely a matter of interpretation of the result.

3.2 Big-endian vs little-endian

Typically, the size of a word is bigger than that of a byte (e.g., 32 vs 8).
This means that a word takes up several bytes in memory. This poses the
question how the contents of the word are distributed in memory.

13



Big-endian means the convention of storing the most significant byte first.
E.g., a word whose hexadecimal representation is 89abcdef is stored as four
bytes, in the order 89, ab, cd, ef . Little-endian means the inverse, the least
significant byte is stored first, in the example ef , cd, ab, 89.

This issue becomes important when data is to be exchanged between
computers that might employ different standards. Whenever binary data
is written into files or read/written from/to network connections, it should
be converted to a so-called network format (a standard that happens to be
big-endian). In C, the functions ntohl and htonl exist for this purpose (the
name means network to host/host to network for long integers).

3.3 Floating-point numbers

For practical reasons, real numbers, like integers, are represented by words
of a fixed size. Thus, only a fraction of real numbers can be represented in
any given format. The most frequent standard for representing real numbers
is IEEE 754, which consists of several parts. We discuss just the standard
for n = 32 bits, corresponding to the C type float.

The float data type represents real numbers in floating-point notation.
In general, a floating-point number is a tuple (s,m, e), where s is the sign,
m is called the mantissa and e the exponent. Depending on s, the value of
(s,m, e) is ±2e ·m. For instance, (+, 1.25, 2) represents the number 5.0

Naturally, not all reals (e.g., π) can be represented like this. Also, such
a representation is not unique, e.g. (s,m, e) represents the same number as
(s, 2m, e − 1). For this reason, some normalizations are introduced. E.g.,
in IEEE 754, the mantissa is always in the range [1, 2), which makes the
representation unique for all non-zero values. In the standard for 32-bit
float, the most significant bit is used for the sign, 8 bits for the exponent,
and 23 bits for the mantissa.

The following conventions are used for interpreting these bits:

• A sign bit of 1 means negative.

• The exponent is computed by subtracting 127 from the aforementioned
8-bit value. Thus, the exponent has the range ±127. (The value 128 is
used for special purposes, like ±∞ or errors.)

• The most significant bit is interpreted as having value 1/2, the next bit
as 1/4 etc. Finally, one adds 1 to the number thus obtained to be in

14



the range [1, 2).

3.4 Error detection and correction

Computers store large amounts of memories. Due to electrical glitches or
mechanical imperfections, the value of a bit (e.g., stored in a latch) may
change unexpectedly. Likewise, when transmitting data over a network, line
noise may corrupt the data being sent. We discuss some methods to guard
against these errors. They consist of complementing the data bits by addi-
tional control bits. These control bits are never seen by the programmer or
user, only used internally by the computer.

Naturally, it is impossible to guard against all possible errors. E.g., if
data and control bits are corrupted at the same time, then an error may pass
without notice. Thus, most schemes are meant to guard against errors under
certain assumptions, e.g., that no more than one or two bits in a word may
be corrupted.

Parity bit. The most basic method is that of equipping each word with a
so-called parity bit, which indicates whether an even or odd number of data
bits is 1. E.g., for a 7-bit word 0101010, the parity bit is 1 (because there is
an odd number of 1s). For 0011000, the parity bit would by 0 (because there
is an even number of 1s. Thus, there is always an even number of 1s if the
parity bit is included in the count.

Parity bits can detect an error when a single bit is corrupted, but a
corruption on two bits will pass unnoticed. Also, it is impossible to find out
which bit has been corrupted.

Hamming code. We discuss a method that removes this flaw. For a word
of size n, it introduces roughly log2 n parity bits. These will allow not just
to detect errors if up to two bits are corrupted, but also to repair a word if
only a single bit is corrupted.

Let us consider the so-called (7, 4)-Hamming code, meaning that for 7
data bits, one adds four parity bits. We will number the bits (data and
parity) from 1 to 11. Then, the parity bits are stored in positions 1, 2, 4,
and 8. The parity bit at position p counts the parity of all positions that in
whose binary representation p is set. E.g., the parity bit at position 1 is for

15



the odd positions, the parity bit at position 2 for positions 2, 3, 6, 7, 10, 11,
the parity bit at position 4 for 4, 5, 6, 7, etc.

Example: Let us consider the 7-bit data word 0101110. It is represented
as an 11-bit word p1p20p4101p8110. We can now compute the parities, and
the word becomes (with parity bits in bold): 10001010110

If a single bit (data or parity) is corrupted, we can identify its position
by considering the set of parity bits that have become incorrect. E.g., if the
bit at position 10 changes, then the parity bits p2 and p8 become incorrect.
We can thus deduce the position of the incorrect bit and correct its value.

If two bits (data or parity) are corrupted, we can no longer uniquely
identify their positions. Worse, if the two corrupted bits are both parity
(e.g., p2 and p8), we may deduce that a single data bit (e.g, at position 10)
has been corrupted. To further guard against these types of mistakes, the
Hamming code uses an additional parity bit that ranges over all data and
parity bits alike.

16


