
Partiel d’Architecture et Système

14 novembre 2014

Duration: 2 hours. Answers can be given in either English or French. Justify all your
answers. The computers in the room cannot be used during the exam.

There is a maximum of 30 points to be gained in the questions.
The final mark for the course will be either the average of the marks for this exam and

the final exam, or the mark of the final exam, whichever is better.

1 Sorting networks

We first recall some basic facts about sorting networks, as treated in one of the exercises.
The purpose of a sorting network is to sort n numbers in ascending order. For a given

network, n is fixed. A network is called correct if for all possible inputs, the output is sorted,
with the lowest element at the top and the highest at the bottom. It is known that a sorting
network is correct iff it is correct for all sequences consisting of 0 and 1 (zero-one principle),
so we shall assume that all inputs are 0 or 1.

The basic element of a sorting network is a comparator. It takes two values and yields two
outputs, the upper line being the smaller and the lower line the bigger of the two values. A
sorting network consists of n wires, for a fixed n, connected by comparators. For convenience,
we shall draw connectors simply as vertical wires. Below is a sorting network for n = 4 and
an example of its input and output.

1

1

1

0 1

1

1

0

Prove or refute the following statements. It is not enough to say “yes” or “no”, you need
to justify your response. Every answer is worth 2 points.

(i) In every correct network there is at least one comparator between every pair of neigh-
bouring wires.

(ii) Every network that contains at least one comparator between every pair of wires is
correct.

1

(iii) A correct network stays correct if one adds any comparator at the end.

(iv) A correct network stays correct if one adds any comparator anywhere in the network.

2 Floating-point numbers

We recall some basic facts about floating-point representations. A floating-point number
consists of three components, the sign, the exponent, and the mantissa. The value of a triple
(s,m, e) is thus ±2e ·m.

The sign is represented by a single bit, which is 0 for positive and 1 for negative. We
speak of a (k, `)-format if k bits are used for the exponent and ` bits for the mantissa. Thus,
the format used for the float data type in C would be a (8, 23)-format. As in the IEEE-754
standard we assume that if the bit pattern used for the exponent, interpreted as an unsigned
integer, has value E, then 2k−1− 1 must be subtracted from E to obtain the exponent value
e. Thus, in the float data type, a value of 128 actually means an exponent of 1. As for the
mantissa, its value is in the range [1, 2), where the most significant bit has a weight of 1/2,
the second most significant bit 1/4, etc. Thus, if ` = 3 and the bit pattern of the mantissa
is 101, then the represented value is 1 + 1/2 + 1/8.

Note: The representations of 0, infinity, and “not a number” will be irrelevant for the
following exercises.

Due to the limited number of bits that are available for mantissa and exponent, not all
real values (not even all rational values) can be represented exactly.

(a) (3 points) Assume a (4, 7)-format for floating-point numbers, and provide the bit pat-
terns for the values 2.5, −42, and 12.34. If any of these numbers is not exactly repre-
sentable in this format, round it to the nearest value that is.

(b) (2 points) In the (4, 7)-format, what is the smallest positive integer that cannot be
represented exactly? What is it in the (3, 7)-format?

(c) (2 points) Given some (k, `)-format, let N(k, `) denote the smallest positive integer
that cannot be represented exactly in this format. For a fixed `, give a formula for the
minimal value of k such that for any k′ > k, N(k, `) = N(k′, `).

3 De Bruijn sequences

In this part of the exam, we will develop an efficient method to count the number of trailing
zero bits in a given (unsigned) integer value x such that x > 0. Equivalently, we can compute
the position of the least significant bit whose value is 1. Incidentally, one concrete application
– when x has 64 bits – is to encode the positions of pieces on a chess board and iterate over
these. Here however, we will simplify matters by assuming that x has only 8 bits.

An index in a bit string is identified from right to left starting at zero. E.g., for x =
(10110100)2, the bits of x at index 0 and 1 are 0, and the bit with index 2 is 1.

Page 2

Given x ∈ N such that 0 < x < 28, we will be interested in implementing a function
` : {1, . . . , 28 − 1} → {0, . . . , 7} such that `(x) is equal to smallest index that is set to 1 in
the binary representation of x. In the example above, we have `(x) = 2.

In principle, we could solve the problem using the C function below, which shifts x to
the right until the least significant bit is 1.

unsigned int l (unsigned int x) { // we assume 0 < x < 256

int result = 0;

while (x & 1 == 0) {

result++;

x = x >> 1;

}

return result;

}

However, the running time of this function depends on the number of bits in x. We will
develop another algorithm has constant running time, i.e. independent of the actual number
of zeros. To this end, we will study de Bruijn sequences. A de Bruijn sequence s(n) of order
n is a cyclic bit string such that every binary string of length n occurs exactly once in s.
Cyclic means that once you reach the end of s(n) you may continue at the beginning of s(n).
For example, for n = 2 we can set s(n) = 0011 since 00, 01, 10 and 11 can all be found in
s(n); in particular 10 starts at index 0 of s(n) and then continues at index 3 of s(n).

An obvious lower bound for the minimal length of a de Bruijn sequence s(n) is 2n. We
will see that a sequence of this length can always be found, then use it to achieve our initial
goal.

(a) (3 points) De Bruijn sequences can be obtained from paths in de Bruijn graphs. The
vertices of a de Bruijn graph of order n are all bit strings of length n. There is a
directed edge between two vertices b1b2 · · · bn and c1c2 · · · cn if and only if b2 = c1, b3 =
c2, . . . , bn = cn−1. The figure below depicts the de Bruijn graph of order 2.

00

0110

11

Figure 1: De Bruijn graph of order 2.

Draw the de Bruijn graph of order 3.

Page 3

(b) (2 points) A de Bruijn sequence can be obtained from a de Bruijn graph by following
a Hamiltonian cycle that starts and ends in the vertex 0 · · · 0. A Hamiltonian cycle is
a cycle that visits each vertex exactly once before returning to the starting vertex. For
instance, the only Hamiltonian cycle in the graph in the figure above is 00 → 01 →
11→ 10→ 00. This cycle corresponds to the aforementioned de Bruijn sequence 0011.
One can in fact prove that such a Hamiltonian cycle exists in every de Bruijn graph.

Read off two different de Bruijn sequences of order 3 by following two different Hamil-
tonian paths in your de Bruijn graph of order 3 starting in vertex 000.

(c) (2 points) Choose a de Bruijn sequence s(3) of order 3 from (b) and complete the fol-
lowing table:

bit-string 7 - index in s(3)
000 0
001
010
011
100
101
110
111

(d) (2 points) Let s(3) be the de Bruijn sequence from (c) and 0 ≤ j < 8. What is the
value assigned by the table in (c) of the bit string

((s(3)� j)� 5) & 0x7

Here, � and � mean shift-left and shift-right, respectively, and & is binary AND.

(e) (2 points) Given an unsigned integer k > 0, what is the value of k & (−k), where −k
is the two’s complement of k?

(f) (3 points) Complete the following code skeleton such that it computes `(x):

const int index[8] = { 0, ... }; // the right-hand side of the table

// in (c) here

const int s3 = 0b...; // your de Bruijn sequence used in (c)

unsigned int l(unsigned int x) { // we assume 0 < x < 256

return index[...]; // complete code in the brackets

}

(g) (1 point) What other advantage does the algorithm above have with respect to our
initial while loop, besides being constant runtime? (Think of the way assembly code is
executed in a CPU, and how modern processors try to optimize that execution.)

Page 4

