
Examen d’Architecture et Système

16 janvier 2015

Duration: 2 hours. Answers can be given in either English or French. Justify all your
answers. The final mark for the course will be either the average of the marks for the
midterm and the final exam, or the mark of this exam, whichever is better.

Notes on the correction: There were 50 points available in total, 23 for the first
section, 12 for the second, and 15 for the third. The marks were calculated on a basis of 45
points. (I.e. 22.5 points to obtain a mark of 10, 45 to obtain a mark of 20.)

1 Processes, threads and locks

In this part, we will review processes and threads, their similarities and differences, and
approaches to synchronization. Consider the programs P1 and P2 presented in Figure 1.

(a) In the following, you will be given a series of potential outputs of the programs P1 and
P2. For every output, discuss whether this output could be obtained from executing P1
or P2, respectively. If the output is possible, describe an execution leading to this output.
Otherwise, justify why the output cannot be obtained.

(i) Two Three One

(ii) Two One Two

(iii) Two Two Two

(iv) Three Three

Solution: Recall that spawned processes and threads can be executed in any arbitrary
order; and that one main difference between processes and threads is that each process
possesses its own address space, whereas global variables are shared between threads.

(i) This output can be obtained from both P1 and P2. For P1, the main process P1
first spawns a child process C1 in line 7 and sleeps; C1 runs, calls f("One") and
then outputs One; P1 wakes up, spawns a child process C2 in line 11 and sleeps; C2
executes and outputs Two, etc. The execution pattern works analogously for P2.

1

// Program P1

1: char* s;

2: void* f(void* data) {

3: s = (char*) data;

4: printf("%s ", s);

5: }

6: int main() {

7: int pid = fork();

8: if (pid == 0) {

9: f("One");

10: } else {

11: pid = fork();

12: if (pid == 0) {

13: f("Two");

14: } else {

15: pid = fork();

16: if (pid == 0)

17: { f("Three"); }

18: }

19: }

20: }

// Program P2

1: char* s;

2: void* f(void* data) {

3: s = (char*) data;

4: printf("%s ", s);

5: }

6: int main() {

7: pthread_t t1,t2,t3;

8: pthread_create(&t1,NULL,

f,"One");

9: pthread_create(&t2,NULL,

f,"Two");

10: pthread_create(&t3,NULL,

f,"Three");

11: pthread_join(t1, NULL);

12: pthread_join(t2, NULL);

13: pthread_join(t3, NULL);

14: }

Figure 1: Program P1 (left) and P2 (right).

(ii) This output cannot be obtained by P1. In P1, each time f is called with a different
argument, and since child processes run in their own address space, every output
One, Two and Three has to occur exactly once.

This output also cannot be obtained by P2. The shared variable s can only be set
to "Two" once. However, after having been set to "Two" for the first time, s gets set
to "One", and thus the second output "Two" is not possible.

(iii) The same argument as above shows that this cannot be obtained as an output of
P1.

It is, however, an output of P2. First, P2 spawns three threads T1, T2 and T3 which
immediately sleep after being spawned. Then, T1 awakes and sets s to "One", then
T3 awakes and sets s to "Three", and then T2 awakes and sets s to "Two". Now all
three threads progress and call the printf function, which outputs the value of the
shared variable s, which now is "Two" in all three threads.

(iv) This output cannot be obtained from either P1 or P2. For P1, the reasoning is

Page 2

// Thread T1

a1();

sem_wait(&semB);

sem_post(&semA);

a2();

// Thread T2

b1();

sem_wait(&semA);

sem_post(&semB);

b2();

Figure 2: The two threads T1 (left) and T2 (right).

as above. For P2, since all three threads produce some output, and P2 waits for
all three threads to finish, there have to be at least three, not necessarily different,
outputs.

(b) In P2, there is a line that can be moved to another place so that the program behaves like
P1. Which line is it, and where should it be moved?

Solution: When line 1 is moved to become the first line of the f function, s becomes
a local variable of each thread, and thus its value cannot be changed by other threads.
Consequently, any execution that exists in P1 has a corresponding execution in P2, and
vice versa.

(c) Which of the outputs given in (a) would additionally be possible if the last three lines
(11-13) of P2 were to be removed?

Solution: Output (iv) would additionally be possible. The last three lines wait for each
thread to terminate. If they are removed, as soon as the main process P2 terminates, all
previously spawned threads are terminated as well. An execution similar as in case (iii)
could thus lead to output (iv) when one thread is terminated before it can call the
printf function.

In the course, you learned that semaphores allow to synchronize threads. Figure 2 shows
two threads, T1 and T2, that run in parallel. The threads share two semaphores, semA and
semB, which have been initialized with sem_init(&semA,0,0) and sem_init(&semB,0,0),
i.e., capacity zero. The goal of the programmer was to make sure that a2 and b2 can only
be executed after both a1 and b1 have finished.

(d) What happens when you execute both threads in parallel? How does one call this type
of problem, and under which circumstances does it happen in general? (A short expla-
nation is sufficient.)

Page 3

Solution: Both threads hang, because T1 waits for semB to be released, and T2 waits
for semA to be released. In general, this is called a deadlock, which occurs when there
are cyclic dependencies on shared ressources between threads.

(e) Fix the implementation such that the original goal is achieved. Note that the order in
which a1 and b1 are executed should not be pre-determined.

Solution: Swapping the sem_wait and sem_post lines in either T1 or T2 fixes the
problem. Suppose we swap those lines in T1. Then a1() and b1() can be executed
in any order. As soon as T1 finishes a1(), it releases semA and waits for semB to be
released, i.e., for T2 to finish b1(). Likewise, after executing b1(), T2 waits for semA

to be released, i.e., for T1 to finish the execution of a1(), and then releases semB.

Finally, we will consider a classical mutual exlcusion problem. Suppose there are a car
and n passengers that want to take a ride with the car. The car has capacity c < n and will
only drive once it is full and only once (i.e., some passengers are left behind). We wish to
model the car and the passengers as threads.

The thread modeling the car can invoke the functions load, drive and unload. The
thread modelling the passengers can invoke the functions board and unboard. (We assume
that these five functions are given and do not take any arguments.)

The use of these functions is subject to the following conditions:

• Passengers cannot invoke board until the car has invoked load.

• The car cannot invoke drive until c passengers have boarded.

• No more than c passengers can board the car.

• Passengers cannot unboard until the car has invoked unload.

(f) Write code that is executed in a separate thread by each passenger and for the car
that enforces these constraints. You may use local variables and operations on them,
semaphore functions, and the above mentioned functions board, unboard, load, drive,
and unload.

Solution: We will use four shared semaphores in order to synchronize between cars
and passengers, semBoard, semAllBoarded, semUnload and semAllUnboarded which
are all initialized with capacity zero. A possible solution for the car could be as follows

load(); // initiate loading of the car

int i;

for (i = 0; i < c; i++) {

sem_post(&semBoard); // signal car can be boarded c times

}

Page 4

sem_wait(&semAllBoarded); // wait for full loading

drive(); // drive

unload(); // initiate unloading of the car

for (i = 0; i < c; i++) {

sem_post(&semUnload); // signal car can be unboarded c times

}

sem_wait(&semAllUnboarded); // wait for all passengers to be unboarded

(optional)

In addition, passengers use two additional semaphores in order to coordinate entering
the car, sem1 and sem2, both initialized with capacity 1. They also share integer
variables boarders and unboarders initialized with value 0. A possible solution for
the passengers could be as follows

sem_wait(&semBoard); // wait for boarding signal

board();

sem_wait(&sem1); // lock to ensure atomicity

boarders++; // increment number of boarded passengers

if (boarders == c) { // if c passengers have boarded...

sem_post(&semAllBoarded); // ...give a signal to the car

}

sem_post(&sem1); // unlock

sem_wait(&semUnload); // wait for unloading signal

unboard();

sem_wait(&sem2); // lock to ensure atomicity

unboarders++; // increment number of unboarded pass.

if (unboarders == c) { // if c passengers have unboarded...

sem_post(&semAllUnboarded);// ...give a signal to the car

}

sem_post(&sem2); // unlock

Notes on the correction: There were 8+2+2+3+2+6=23 points available in this
section.

Page 5

2 Input/output

Pipes are used to facilitate communication between processes. Recall that the system call
pipe(p) returns two file descriptors, where p[0] is used for reading and p[1] for writing.
Also recall that file descriptor 1 is the standard output, usually the console.

(a) Consider the program P3 on the left-hand side of Figure 3. The parent sends the words
Please, fix, and me!! to the child, with small pauses in between. What is the output
of the program?

Solution: An almost identical program was shown in class. Recall that read will
block until some input is available. If some input is available, it will return as many
characters as it can get, but at most the number given in the call (5 in this example).

The parent first writes seven characters to the pipe. The child will consume the first
five in its first read, leading to the output Pleas. The second read will obtain only two
characters; thus the first two bytes in the buffer are overwritten but all five written to
the console. The output from the second read is therefore e eas.

After the first sleep in the parent, the child obtains four characters and prints fix s,
then me!!s. Altogether, the output is therefore

Please easfix sme!!s

Notes on the correction: Four points were available, I gave one for each write. (So
Pleas gave at least one point.) Unfortunately, only three persons got the output right.

(b) Apart from the output, what else is wrong with P3? Sketch briefly how to fix it (no
actual code necessary).

Solution: The parent terminates, hence the shell resumes operation. However, the
child has not terminated. While the parent’s access to the writing end of the pipe
is closed when it terminates, the child itself has not closed it, thus read in the child
fails to detect end-of-file. The child is therefore stuck in the fifth call to read (without
consuming any CPU power, but remaining in memory).

The fix is for the child to close p[1] and test for the return value of read, which is 0
when the end of the file has been reached.

Notes on the correction: Four points were available. Explaining what is wrong
(and why!) gave two points, explaining the fix (close pipe and test the result of read)
gave two points. For other methods of fixing the program, up to two points were given
depending on details.

Page 6

// Program P3

1: int main ()

2: {

3: int p[2];

4: pipe(p);

5:

6: if (fork()) {

7: close(p[0]);

8: write(p[1],"Please ",7);

9: sleep(1);

10: write(p[1],"fix ",4);

11: sleep(1);

12: write(p[1],"me!!",4);

13: } else {

14: char c[5];

15: while (1) {

16: read(p[0],c,5);

17: write(1,c,5);

18: }

19: }

20: }

// Program P4

1: int main ()

2: {

3: int p[2];

4: pipe(p);

5: close(p[0]);

6:

7: if (fork()) {

8: while (1) {

9: sleep(1);

10: write(p[1],"a",1);

11: }

12: } else {

13: char c;

14: while (1) {

15: read(p[0],&c,1);

16: }

17: }

18: }

Figure 3: Programs P3 (left) and P4 (right), both using pipes.

(c) Consider the program P4 on the right-hand side of Figure 3. Here, the parent ought
to send a stream of as, one per second. When you run P4, you make the following
observations instead: (i) the program returns to the shell almost immediately; (ii) after
a while your computer feels hot, and you see that the system load is at 100%. Explain
both phenomena. Sketch how to fix the program.

Solution: Again, an almost identical program was shown in class. The fact that the
program returns to the shell tells us that the parent process has terminated (and not
the child!). The fact that CPU power is consumed tells us that the child is still active
and continually executing. (Even if it is was the parent that survived, it would not
consume 100% of the CPU, but sleep most of the time.)

The primary reason for these effects is the close statement before fork. This has two
effects: (i) The parent writes onto a pipe whose reading end has been closed by all
parties, therefore receives an uncaught SIGPIPE signal, which terminates the process.
(ii) The child reads from a closed filehandle, which fails immediately, returning -1 and
an error code (which is not evaluated). This call is repeated without any pause.

Eliminating the offending close statement fixes the error. (The specification of the
program’s intended behaviour does not require it to terminate.)

Page 7

Notes on the correction: Four points were available, distributed as follows:

(i) Deducing that the parent (and not the child) has died gave one point.

(ii) Explaining the reason why the parent dies gave another point (but no one got
it).

(iii) Explaining correctly why the child consumes 100% CPU power gave another
point.

(iv) Fixing the program gave again one point.

Detecting that the close statement was at the origin of the problem but drawing the
wrong conclusions from it gave at least 0.5 points for (i) to (iii).

Page 8

3 Memory allocation strategies

In this part of the exam, we will look at strategies for memory allocation.
A memory allocator allows for reserving isolated blocks of memory inside a larger block

of memory. For this exercise, we consider a memory allocator that is simplified with respect
to the actual memory allocator found in Unix:

• int malloc(int size) allocates size many blocks and returns a unique identifier of
this block. If there is no block of free memory of the requested size available, malloc
will fail.

• void free(int identifier) allows for freeing the block previously allocated by a
call to malloc.

For instance, suppose we are given a chunk of 12 blocks of memory, illustrated below,
where X indicates free space.

+-----------------------------+

|XXXXXXXXXXXXXXXXXXXXXXXXXXXXX|

+-----------------------------+

A call malloc(5) reserves 5 blocks of memory and returns a unique identifier, e.g., id1.

+-----------------------------+

| 5 |XXXXXXXXXXXXXXXXXX|

+-----------------------------+

id1

Two more calls to malloc may partition the memory as follows.

+-----------------------------+

| 5 | 4 | 2 |XX|

+-----------------------------+

id1 id2 id3

Now a call to free(id2) will lead to the following partition of memory.

+-----------------------------+

| 5 |XXXXXXXXX| 2 |XX|

+-----------------------------+

id1 id3

Note that even though there are 5 blocks of free memory available in total, at most 4 blocks
could be allocated, since a memory allocator is not allowed to move memory around. This
problem is called fragmentation.

Page 9

There exist three popular memory allocation strategies to cope with fragmentation:

• best fit : the allocator places newly requested memory into the smallest possible free
block of memory. In the example above, malloc(1) would return the block to the right
of the block identified by id3.

• worst fit : the allocator places newly requested memory into the largest possible free
block of memory. In the example above, malloc(1) would return one block to the
right of the block identified by id1.

• first fit : the allocator places newly requested memory into the first possible free block
of memory, starting from the left. In the example above, malloc(1) would return one
block to the right of the block identified by id1.

In the following questions, you are free to choose the size of the memory and the size of
the blocks to be allocated.

(a) Develop a sequence of malloc and free operations under the best-fit strategy such that
a subsequent call to malloc will fail, however it would succeed if either the worst-fit or
first-fit strategy would have been used.

Solution: We choose a chunk of 6 blocks of memory and the following sequence of
operations:

1: id1 = malloc(3);

2: malloc(1);

3: free(id1);

4: malloc(1)

5: malloc(2);

6: malloc(2); // fails

This leads to the following sequence of memory configurations when executing lines 1
to 5:

+---------------------+

| 3 | XXXXXXXXX |

+---------------------+

+---------------------+

| 3 | 1 | XXXXX |

+---------------------+

+---------------------+

| XXXXXXX | 1 | XXXXX |

+---------------------+

+---------------------+

| XXXXXXX | 1 | 1 | X |

Page 10

+---------------------+

+---------------------+

| 2 | X | 1 | 1 | X |

+---------------------+

Even though there are 2 free blocks available, malloc(2) fails due to fragmentation.
However, with the worst- and first-fit strategies, at line 5 we would reach the following
configuration, in which line 6 would not fail:

+---------------------+

| 1 | 2 | 1 | XXXXX |

+---------------------+

(b) Develop a sequence of malloc and free operations under the worst-fit strategy such
that a subsequent call to malloc will fail, however it would succeed if either the best-fit
or first-fit strategy would have been used.

Solution: We choose a chunk of 6 blocks of memory and the following sequence of
operations:

1: id1 = malloc(2);

2: malloc(1);

3: free(id1);

4: malloc(1)

5: malloc(3); // fails

This leads to the following memory configuration at line 4:

+---------------------+

| XXXX | 1 | 1 | XXXX |

+---------------------+

However, using the other two strategies we would have obtained the following memry
configuration, in which malloc(3) does not fail:

+---------------------+

| 1 | X | 1 | XXXXXXX |

+---------------------+

(c) Develop a sequence of malloc and free operations under the first-fit strategy such that
a subsequent call to malloc will fail, however it would succeed if either the best-fit or
worst-fit strategy would have been used.

Page 11

Solution: We choose a chunk of 8 blocks of memory and the following sequence of
operations:

1: id1 = malloc(2);

2: malloc(1);

3: id2 = malloc(1);

4: malloc(1)

5: free(id1);

6: free(id2);

7: malloc(1);

8: malloc(2);

9: malloc(2); // fails

This leads to the following memory configuration at line 8:

+-----------------------------+

| 1 | X | 1 | X | 1 | 2 | X |

+-----------------------------+

However, using the other two strategies, malloc(2) in line 9 does not fail. For best-fit,
we obtain the following configuration at line 8:

+-----------------------------+

| 2 | 1 | 1 | 1 | XXXXXXXXX |

+-----------------------------+

For worst-fit, we obtain the following configuration at line 8:

+-----------------------------+

| 2 | 1 | X | 1 | 1 | XXXXX |

+-----------------------------+

(d) Briefly (i.e., in a few lines) discuss advantages and disadvantages you see with any of
the above strategies.

Solution: As we have seen, no strategy is perfected in the sense that there always exist
memory allocation patterns which lead to fragmentation patterns such that even though
sufficiently many free blocks are available, they are not consecutively available. From
a computational perspective, the first-fit strategy has the slight advantage that it does
not have to traverse all free blocks in order to determine where to allocate memory.

Notes on the correction: There were 4+4+4+3=15 points available in this section.

Page 12

