
Syntactical Analysis

May 13, 2020

Syntactical analysis, also known as parsing, is the task of taking a text, check-
ing whether it belongs to a given context-free language described by a grammar,
and reconstructing its derivation in that grammar. The topic is mostly associ-
ated with compiler construction but can be applied to any case where one must
process non-regular input, such as mathematical formulae.

Technically speaking, parsing unites theory from regular and from context-
free languages and consists of two tasks: lexical analysis and syntactical analysis.

Example 1 Consider this grammar G:

E → int | E + E | E ∗ E | (E)

And this stream of input symbols: 1 0 * (6 + 5)

To see that the input is a valid word generated by G, it first needs to be
split into a stream of terminal symbols that make sense to G, such as this:

int ∗ (int + int)

This step is called lexical analysis. One then wishes to reconstruct a derivation
that generates this word, such as this:

E → E∗E → E∗(E)→ E∗(E+E)→ E∗(E+int)→ E∗(int+int)→ int∗(int+int)

or alternatively, a parse tree:

E

∗E E

(int E)

+E E

int int

This step is called syntactic analysis. The parse tree allows to semantically
evaluate the expression.

Sophisticated tools exist to automatize these tasks: lex / flex for lexical
analysis and yacc / bison for syntactic analysis.

1

1 Lexical analysis

This first step is the easier of the two, and we will treat it less formally. Recall
that the goal of lexical analysis is to transform a sequence of input symbols
(bytes or characters) into a sequence of terminals. Each terminal will be either
a single input symbol (such as + or *) or a sequence such as 10 (an int) or
keywords like if and then. The same terminal may take different forms, e.g.
10 and 5 are both instances of int. Likewise, in a programming language, an
identifier could be any alphanumerical sequence.

In common practice, every terminal is represented by a regular expression.
In the case of keywords, these admit a single match, in the case of int they
would admit non-empty sequences of digits (Rint := {0, . . . , 9}+), etc. This
leaves two problems:

• The input stream 10 could correspond to either one single occurrence of
Rint or two seperate ones. The convention here is to match a maximal
part of the input, so this would translate into one occurrence.

• Two different regular expressions could match the same maximal input.
P.ex., then could be either a keyword or an identifier. One therefore orders
the expressions in decreasing priority (e.g., prioritising keywords).

The lexical-analysis problem is then solved as follows:

– Input: Regular expressions R1, . . . , Rk and input a1 · · · an.

– Output: A sequence of terminals (identified as 1, . . . , k).

1. Set i := 1 and translate the regular expressions into deterministic complete
automata A1, . . . , Ak.

2. While i ≤ n, repeat the following:

(a) Find the longest word ai · · · aj accepted by some Al. If no such word
exists, report a syntax error.

(b) Find the least l such that Al accepts ai · · · aj .
(c) Output l and set i := j + 1.

Whitespace in the input is usually handled by an additional regular expres-
sion whose occurrences are omitted from the output. The running time of the
algorithm is “usually” linear but worst-case quadratic (for pathological Ri). The
tool flex allows one to perform the algorithm above for a given set of regular
expressions. Each expression is associated with C code to be executed when an
occurrence is found.

2

2 Syntaxtic analysis with PDA

This is a more complex topic, we will treat it more formally. In this section, we
will develop a pushdown automaton that can parse context-free grammars. We
will then consider how to determinize and optimize it in Section 3. However, the
concepts presented in this section already go a long way towards understanding
syntactic-analysis tools in practice.

2.1 Grammars and parse trees

We will assume that the theory surrounding context-free languages and gram-
mars is well-known. The following definitions are merely to establish notations.

Definition 2 A (context-free) grammar is a tuple G = 〈Σ, V, P, S′〉, where Σ
is a finite alphabet of terminals, V is a finite set of variables, P is a set of
productions, and S′ is a starting symbol. Here, a production is of the form
X → α, where X ∈ V and α ∈ (Σ ∪ V)∗. We assume that S′ only appears in a
single production P0 := S′ → S.

A derivation for w ∈ Σ∗ is a sequence of productions transforming S′ into w,
and a derivation can be associated with a parse tree, see Example 1. In a left-
most/rightmost derivation, each production is applied to the leftmost/rightmost
remaining terminal. For instance, the derivation shown in Example 1 is right-
most. The word w is in the language of G (w ∈ L(G)) if there exists a derivation
for w. A grammar is said to be unambiguous is each w ∈ L(G) possesses a unique
parse tree. For instance, the grammar G in Example 1 is ambiguous.

The syntactic-analysis problem is to test whether w ∈ L(G), and if so,
construct a corresponding parse tree. In general, the syntactic- analysis problem
can be solved in time O(|w|3), e.g. using the algorithm of Cooke, Younger,
and Kasami (CYK), and said algorithm also allows to construct all possible
parse trees for w. However, a cubic running time is unacceptable for many
applications, like compilers. Also, a programming language with an ambiguous
grammar cannot have a well-defined semantics. Thus, we will be interested in
grammars G with the following properties:

(i) The syntactic-analysis problem for G must be solvable in O(|w|).

(ii) G must be unambiguous.

Given a word w, we will read it from left to right. There are two fundamental
ways to construct a parse tree for w. In both cases, the parser keeps a state
γ ∈ (Σ ∪ V)∗.

Top-down parsing: Initially γ := S′. It then either expands the state or
consumes a symbol:

• Expansion: If γ = Xδ for some variable X, choose a production X → α
and set γ := αδ.

3

• Consumption: If γ = aδ for some terminal a, and a is the next input
symbol is a, consume a and set γ := δ.

• Accept if γ = ε at the end of w.

This generates the parse tree from top to bottom, and the order of expansions
corresponds to a leftmost derivation.

Bottom-up parsing: Initially γ := ε. There are two actions, Shift and
Reduce:

• Shift: If a is the next input symbol, set γ := γa.

• Reduce: If γ = δα and there is a production X → α, set γ := δX.

• Accept if γ = S′ at the end of w.

This generates the parse tree from bottom to top, and the order of reductions
is the reverse of a rightmost derivation.

Exercise: Apply both methods to Example 1.

Both variants possess rich theories. For time reasons, we shall concentrate
on the bottom-up approach, which also happens to be the one implemented by
the tools we consider.

2.2 Pushdown automata

Definition 3 A pushdown automaton (PDA) is a tuple A = 〈Q,Σ, Z, T, q0, F 〉,
where Q is a finite set of states, Σ, Z are finite alphabets of input and stack
symbols, respectively, T are the transitions, q0 is an initial state, and F ⊆ Q
are the final states.

Σ′ denotes Σ ∪ {ε}. We make two departures from the standard notation:

• Configurations will be noted with the top of the stack to the right. And
for convenience, we shall also place the state there, so a configuration is a
tuple 〈w, q〉 ∈ Z∗ ×Q. The initial configuration is 〈ε, q0〉.

• Transitions can either push or pop a symbol:

T ⊆ (Q× Σ′ × Z ×Q) ∪ (Z ×Q× Σ′ ×Q)

where (i) 〈w, q〉 a−→ 〈wz, q′〉 if 〈q, a, z, q′〉 ∈ T , and (ii) 〈wz, q〉 a−→ 〈w, q′〉
if 〈z, q, a, q′〉 ∈ T .

As usual, a PDA accepts when reaching a state of F at the end of the input.
The bottom-up parser from Section 2.1 works like a pushdown automaton

(with Z := Σ∪ V), except that reductions allow to look at multiple symbols on
the stack. This is a special case of PDA with regular stack conditions:

4

Definition 4 A regular PDA is a PDA A = 〈Q,Σ, Z, T, q0, F 〉, where the set
of transitions T is

T ⊆ (Rec(Z∗)×Q× Σ′ × Z ×Q) ∪ (Rec(Z∗)×Q× Σ′ ×Q)

where (i) 〈w, q〉 a−→ 〈wz, q′〉 if 〈L, q, a, z, q′〉 ∈ T and w ∈ L (push), and (ii)

〈wz, q〉 a−→ 〈w, q′〉 if 〈L, q, a, q′〉 ∈ T and wz ∈ L (pop).

The following result was shown in the TP:

Proposition 5 Let A be a regular PDA. One can construct a (normal) PDA
A′ accepting the same language, as follows. Let k be the number of rules in
T and Ai = 〈Qi, Z, δi, ιi, Fi〉, for i = 1, . . . , k, deterministic complete au-
tomata for the regular languages used in T . Denote Q := Q1 × · · · × Qk,
ι := 〈ι1, . . . , ιk〉, Fi := { 〈q1, . . . , qk〉 ∈ Q | qi ∈ Fi }, and δ : Q × Z → Q
with δ(〈q1, . . . , qk〉, z) := 〈δ1(q1, z), . . . , δk(qk, z)〉. We then construct A′ :=
〈Q ×Q,Σ,Q× Z, T ′, 〈ι, q0〉,Q× F 〉, where:

• (push) for each 〈Li, q, a, z, q′〉 ∈ T and f ∈ Fi we will have a tuple
〈〈f, q〉, a, 〈f, z〉, 〈δ(f, z), q′〉〉 ∈ T ′;

• (pop) for each 〈Li, q, a, q′〉 ∈ T , z ∈ Z, q′′ ∈ Q, and f ∈ Fi we will have
〈〈q′′, z〉, 〈f, q〉, a, 〈q′′, q′〉〉 ∈ T ′.

This construction maintains an invariant where if A reaches a configuration
〈z1 · · · zn, q〉, then A′ reaches the configuration 〈〈q′0, z1〉 · · · 〈q′n−1, zn〉, 〈q′n, q〉〉,
where q′0 = ι and q′i+1 = δ(q′i, zi+1) for i = 0, . . . , n − 1. In other words, A′
uses its stack to record the unique path that the stack contents of A take in the
(finite) automata A1, . . . ,Ak.

2.3 The Shift/Reduce automaton

We can now specify the behaviour of the bottom-up parser as a regular PDA.

Definition 6 Let G = 〈Σ, V, P, S′〉 be a grammar. The items of a production
X → α are Items(X → α) = {X → β.γ | α = βγ }. The items of G are
the items of all its productions. We let IG := 2Items(G) and write I if G is
understood.

Example 7 Let G1 = 〈{a, b, c}, {S′, S, T, U}, {P0, P1, P2, P3, P4}, S〉, with

P0 := S′ → S P1 := S → TU P2 := T → aTb P3 := T → ab P4 := U → c

Then Items(G) = {S′ → .S, S′ → S., S → .TU, S → T.U, S → TU., T →
.aT b, T → a.TB, . . .}.

A grammar G can be recognized by a regular PDA 〈Q,Σ, Z, T, q0, F 〉:

• Q := {⊥,>} ∪ Items(G)

5

• Z := Σ ∪ V

• q0 := ⊥

• F := {>}

• T := Tshift ∪ Treduce ∪ Taccept with

– Tshift = { 〈Z∗,⊥, a, a,⊥〉 | a ∈ Σ };
– Treduce = { 〈Z∗α,⊥, ε,X → α.〉 | X → α ∈ P }
∪ { 〈Z∗, X → αz.β, ε,X → α.zβ〉 | X → αβ ∈ P }
∪ { 〈Z∗, X → .α, ε,X,⊥〉 | X → α ∈ P \ {P0} };

– Taccept = {〈{S},⊥, ε,>〉}.

With Tshift one simply consumes an input symbol and pushes it onto the
stack, remaining in state ⊥. With Treduce , one replaces α by X on the stack if
X → α ∈ P ; here the items are simply used as temporary control states. State >
is used for accepting when the stack only contains S′. Most of the transitions use
Z∗ as their regular language (so there is nothing to check), the only exceptions
are the conditions Z∗α in Treduce ; these are simply checking whether the last
symbols on the stack correspond to a right-hand side of a production. For P0

we instead check whether the stack contains only S and accept right away.
Let us see how an ordinary PDS for G looks like, according to the construc-

tion of Proposition 5. We need automata recognizing Z∗α, for any right-hand
side α in P \ P0. The following proposition is given without proof:

Proposition 8 Let X → α be a production. The minimal deterministic com-
plete automaton recognizing Z∗α is (isomorphic to)

〈Items(X → α), Z, δ,X → .α,X → α.〉

and δ(X → .α, w) = X → β.γ such that β is the longest prefix of α that is also
a suffix of w.

Example 9 For P3 := T → ab, the minimal deterministic complete automaton
recognizing Z∗ab is:

T → .ab T → a.b T → ab.

b, c

a b

c

a

a

b, c

6

It follows from Proposition 8 that the PDA A′ constructed from Proposi-
tion 5 has states I×Q and stack alphabet I×Z. A configuration of that PDA is
a tuple 〈〈I0, z1〉 · · · 〈In−1zn〉, 〈In, q〉〉. If we concentrate on configurations having
state ⊥, then we can more conveniently denote the state as a path between of
item sets, linked by stack symbols. Also, we will ignore the items for P0 since
they are treated specially.

Example 10 Consider G1 from Example 7 on the input aabbc. An accepting
run of A′ is as follows:

The initial configuration consists of only the initial items:

I0 := {S → .TU, T → .aT b, T → .ab, U → .c}.

We can then shift the first a (leaving abbc), going to configuration I0
a−→ I1

with
I1 := {S → .TU, T → a.T b, T → a.b, U → .c}.

Next, we shift a again (leaving bbc), going to I0
a−→ I1

a−→ I1.

We shift b (leaving bc) and go to I0
a−→ I1

a−→ I1
b−→ I2 with

I2 := {S → .TU, T → .aT b, T → ab., U → .c}.

Since T → ab. is a final state, we can reduce the corresponding rule P3, replacing
ab by T on the stack. This involves multiple steps of A′, ending up with I0

a−→
I1

T−→ I3, where:

I3 := {S → T.U, T → aT.b, T → .ab, U → .c}.

Shifting b we obtain I0
a−→ I1

T−→ I3
b−→ I4, where:

I4 := {S → .TU, T → aTb., T → .ab, U → .c}.

We not reduce P2, going to I0
T−→ I5:

I5 := {S → T.U, T → .aT b, T → .ab, U → .c}.

Shifting c we obtain I0
T−→ I5

c−→ I6:

I6 := {S → .TU, T → .aT b, T → .ab, U → c.}.

Reducing P4, we end up at I0
T−→ I5

U−→ I7:

I7 := {S → TU., T → .aT b, T → .ab, U → .c}.

Reducing P1 gives I0
S−→ I8, from which we can use P0 and accept.

The inverse order of the rules that were applied is P0, P1, P4, P2, P3; one can
verify that this is indeed a rightmost derivation from S′ to aabbc.

7

This automaton still has two weak points:

1. It is non-deterministic. Indeed when A′ has the chance to apply a reduc-
tion, it can always decide to shift the next symbol instead. This is called
a shift/reduce conflict. Moreover, A′ may have the choice between two
different reductions. This is called a reduce/reduce conflict. For in-
stance, if P3 was replaced by T → ε, then a P3-reduction could happen at
any time during the run.

2. The item sets are unnecessarily large, increasing the size of the automaton.
Intuitively, at the beginning of the run, it seems unnecessary to track
the progress of production P4, which can only intervene near the end.
Likewise, near the end it seems unnecessary to track the progression of P2

and P3.

In Section 3, we will study how to address both weak points at the same
time. Indeed, they are related: if we manage to track only “relevant” items, this
automatically reduces the number of shift/reduce and reduce/reduce conflicts.

Before continuing, make sure that you have understood the concepts pre-
sented in this section, in particular the concept of a bottom-up parser, what
shift, reduce and associated conflicts mean, and what items are. Indeed, armed
with this knowledge you will already be largely operational to use bison. Indeed,
that tool builds a parser following these concepts, and its states will be sets of
items. These sets can be inspected with the option -v.

3 LR parsing

In this section, we will consider several variants of deterministic automata that
implement bottom-up parsing. All of them accept only a subset of unambiguous
grammars, and they represent different trade-offs between in how large a subset
of grammars they can accept vs how much memory they need. The names of
all these parsers contain the letters LR, standing for:

• L: the input is read from left to right;

• R: the parser produces a rightmost derivation.

All variants of LR parsers work with some form of lookahead : they can
inspect the next k unconsumed symbols in the input before deciding what to
do next. This behaviour can be simulated by a PDA: the PDA can read the k
next symbols into its control state, then perform an ε-transition to simulate a
shift or reduce. However, the notion of lookahead is more convenient. Other
than that, LR parsers behave very similarly to the shift-reduce automaton from
Section 2.3.

In practice, most parsers use a lookahead of k = 1. We shall discuss three
such parsers, SLR, LR(1), and LALR. They represent different trade-offs in
terms of the class of grammars they can handle and their memory requirements.

8

3.1 First and Follow

We first introduce some easy-to-understand concepts that are common to all
parsers that we consider.

Definition 11 Let k ≥ 0 and G = 〈Σ, V, P, S〉 a grammar.

• For w = a1 · · · al ∈ Σ∗, let Firstk(w) := w if l ≤ k and Firstk(w) :=
a1 · · · ak otherwise.

• For L ⊆ Σ∗, let Firstk(L) := {Firstk(w) | w ∈ L }.

• For α ∈ (Σ ∪ V)∗, let Firstk(α) := Firstk(LG(α)).

In other words, Firstk(α) is the set of words up to length k that can be
derived from α.

Example 12 In the grammar from Example 1, we have

First2(E) := {((, (int, int+, int∗, int}.

Definition 13 Let k ≥ 0, G = 〈Σ, V, P, S〉 a grammar, and X ∈ V . Then

Followk(X) := {w ∈ Σ∗ | ∃S′ →∗ γXδ ∧ w ∈ Firstk(δ) }.

Thus, Followk(X) contains all the terminal words (up to length k) that may
follow an occurrence of X in a derivation of G.

Example 14 In the grammar from Example 1, we have Follow1(E) := {ε,),+, ∗}.

3.2 SLR parser

SLR stands for Simple LR. In general, this type of parser can work with a
lookahead of any k symbols, denoted SLR(k); when k is not specified, it is
assumed to be 1. In the following, we present the SLR(1) parser.

While being a bottom-up parser, SLR tries to identify ‘useful’ productions to
track with a top-down approach: the goal of the parser is to apply the reduction
P0 = S′ → S, but in the beginning, S is not yet on the stack. Thus, one starts
with the item S′ → .S and then defines a closure operation:

Definition 15 Let I ⊆ Items(G). Then clot(I) ⊆ Items(G) is the least J ⊇ I
satisfying the following condition:

If X → α.Y β ∈ J , Y ∈ V , and Y → γ ∈ P , then Y → .γ ∈ J .

Example 16 In Example 7, we have clot({S′ → .S}) = {S′ → .S, S →
.TU, T → .aT b, T → .ab}. E.g., in order to obtain S′, one must first obtain
S, and therefore T . However, U is not useful in this context.

One now defines the function goto, which is similar of δ from Proposition 5
but working only on items that are still interesting:

9

Definition 17 Let I ⊆ Items(G) and z ∈ Σ ∪ V . Then

goto(I, z) := clot({X → αz.β | X → α.zβ ∈ I }).

Example 18 Let J := clot({S′ → .S}) from Example 16. Then

goto(J, a) = {T → a.T b, T → a.b, T → .aT b, T → .ab}.

Construction of the SLR parser

The states of an SLR parser are those that are reachable from the initial state
q0 := clot({S′ → .S}) by means of goto. The parser assigns to each state q and
to each possible lookahead u ∈ Σ′ a set of actions actions(q, u). Those actions
can be:

• shift (s): shift the next input symbol: if that symbol is a ∈ Σ, push 〈q, a〉
onto the stack and go to goto(q, a).

• reducePi
(ri): apply the reduction for Pi = X → α by removing α from

the top of the stack, going back to some state q′, then push 〈q′, X〉 on the
stack and goto(q′, X).

• accept (a): does what it says

More precisely:

• shift is in actions(q, a) if a ∈ Σ and q contains an item X → α.aβ;

• reduceX→α is in actions(q, u) if q contains X → α., u ∈ Follow1(X) and
X 6= S′;

• accept is in actions(q, ε) if q contains S′ → S.

Definition 19 A grammar G is said to be SLR if |actions(q, u)| ≤ 1 for all
reachable states q and lookaheads u.

Example 20 We construct the tables for actions and goto for the grammar
from Example 7.

state actions goto
a b c ε a b c S T U

q0 s q1 q8 q3
q1 s s q1 q2 q4
q2 r3 r3
q3 s q5 q7
q4 s q6
q5 r4
q6 r2 r2
q7 r1
q8 a

We have Follow1(S) = {ε}, Follow1(T) = {b, c}, Follow1(U) = {ε}.
The states represent the following item sets:

10

• q0 := {S′ → .S, S → .TU, T → .aT b, T → .ab}

• q1 := {T → a.T b, T → a.b, T → .aT b, T → .ab}

• q2 := {T → ab.}

• q3 := {S → T.U, U → .c}

• q4 := {T → aT.b}

• q5 := {U → c.}

• q6 := {T → aTb.}

• q7 := {S → TU.}

• q8 := {S′ → S.}

Example 21 Let us run the SLR parser on the input aabbc.

11

q0

q0
a−→ q1

q0
a−→ q1

a−→ q1

q0
a−→ q1

a−→ q1
b−→ q2

q0
a−→ q1

T−→ q4

q0
a−→ q1

T−→ q4
b−→ q6

q0
T−→ q3

q0
T−→ q3

c−→ q5

q0
T−→ q3

U−→ q7

q0
S−→ q8

shift a

shift a

shift b

reduce P3 (T → ab)

shift b

reduce P2 (T → aTb)

shift c

reduce P4 (U → c)

reduce P1 (S → TU)

accept

3.3 LR(1) parser

LR(1) parsers can handle a larger class of grammars than SLR. Like SLR, they
do the parsing in linear time and with a lookahead of one character. The price
to pay is a larger state table and a more complicated construction. One weak
point of SLR is its reduction rule:

reduceX→α is in actions(q, u) if q contains X → α., u ∈ Follow1(X)
and X 6= S′;

The lookahead u is compared to the characters that may follow X. Now, X
may appear in multiple places in the grammar, and according to the context it
appears in, different characters may follow. However, the SLR items ignore the

12

context in which an item appears. This may cause unnecessary conflicts, as the
following example shows.

Example 22 Consider the following grammar G2:

P0 : S′ → S P1 : S → TTb P2 : S → U P3 : T → a P4 : U → ab

We have Follow1(T) = {a, b} and Follow1(S) = Follow1(U) = {ε}. The initial
state of the SLR parser would be q0 := {S′ → .S, S → .TTb, S → .U, T →
.a, U → .ab}, and goto(q0, a) = {T → a., U → a.b} =: q1. Now, actions(q1, b)
contains both shift (because of U → a.b) and reduceT→a (because of T → a.
and b ∈ Follow1(T)). Therefore, G2 is not SLR.

The shift/reduce conflict in G2 exists because the second T in P1 = S → TTb
is followed by b; but the item T → a. in q1 corresponds to the first T . LR(1)
parsers remember this context and hence allow for a more precise reduction rule.

Definition 23 Let G = 〈Σ, V, P, S′〉 be a grammar. A 1-item of G is a tuple
[X → β.γ, u] such that X → βγ ∈ P and u ∈ Σ≤1. The set of 1-items of G is
denoted Items1(G).

Intuitively, a 1-item [X → β.γ, u] represents a situation where X appears in a
derivation where it can be followed by u. The initial state of an LR(1) parser
is therefore clot({[S′ → .S, ε]}), where clot is defined as follows:

Definition 24 Let I ⊆ Items1(G). Then clot(I) ⊆ Items1(G) is the least J ⊇ I
satisfying the following condition:

If [X → α.Y β, u] ∈ J , Y → γ ∈ P , and v ∈ First1(βu), then
[Y → .γ, v] ∈ J .

Example 25 We have clot({[S′ → .S, ε]}) = {[S′ → .S, ε], [S → .TTb, ε], [S →
.U, ε], [T → .a, a], [U → .ab, ε]}.

The function goto is straightforward to adapt:

Definition 26 Let I ⊆ Items1(G) and z ∈ Σ ∪ V . Then

goto(I, z) := clot({ [X → αz.β, u] | [X → α.zβ, u] ∈ I }).

Construction of the LR(1) parser

We can now use 1-items to refine the reduction rule.

• shift is in actions(q, a) if a ∈ Σ and q contains an item [X → α.aβ, u];

• reduceX→α is in actions(q, u) if q contains [X → α., u] and X 6= S′;

• accept is in actions(q, ε) if q contains [S′ → S., ε]

13

Definition 27 A grammar G is said to be LR(1) if |actions(q, u)| ≤ 1 for all
reachable states q and lookaheads u.

Example 28 We construct the LR(1) parse table for grammar G2 from Exam-
ple 22. For each state, an example stack content is given; the details of each
state are given in the second table.

state stack actions goto
a b ε a b S T U

q0 ε s q1 q6 q3 q4
q1 a r3 s q2
q2 ab r4
q3 T s q5 q7
q4 U r2
q5 Ta r3
q6 S a
q7 TT s q8
q8 TTb r1

q0 [S′ → .S, ε], [S → .TTb, ε], [S → .U, ε], [T → .a, a], [U → .ab, ε]
q1 [T → a., a], [U → a.b, ε]
q2 [U → ab., ε]
q3 [S → T.Tb, ε], [T → .a, b]
q4 [S → U., ε]
q5 [T → a., b]
q6 [S′ → S., ε]
q7 [S → TT.b, ε]
q8 [S → TTb., ε]

No action contains more than two choices, so the language is LR(1).

3.4 LALR parser

The LALR parser is the most frequently implemented variant of bottom-up
parsers; in particular it is supported by bison. It represents a compromise
between the higher expressive power of LR(1) and the lower memory require-
ments of SLR. Its idea is very simple: One first generates the LR(1) parsing
table. Then, one drops the lookaheads from all 1-items, effectively turning each
state into a collection of items as in Definition 2. One then merges those lines
of the parse table that have identical item sets.

Example 29 Transforming the states from Example 28 yields the following:

14

q0 [S′ → .S], [S → .TTb], [S → .U], [T → .a], [U → .ab]
q1 [T → a.], [U → a.b]
q2 [U → ab.]
q3 [S → T.Tb], [T → .a]
q4 [S → U.]
q5 [T → a.]
q6 [S′ → S.]
q7 [S → TT.b]
q8 [S → TTb.]

No two states are identical, so the parse table remains unchanged. In par-
ticular, the G2 is LALR.

3.5 Extensions and relations

Let us briefly go through some results that are of a more theoretical interest;
we will mention them without proof.

LR(1) parsing can be generalised to LR(k) parsing, i.e. with a lookahead of
k characters (k ≥ 0), in the obvious way: the states will be sets of k-items of
the form [X → α.β, u], where u ∈ Σ≤k, which can then be used to construct the
parse table. A grammar is said to be LR(k) if its LR(k)-parse table contains no
conflicts.

For any k ≥ 0, there exists a grammar that is LR(k + 1) but not LR(k):

S → abkc | Abkd, A→ a

We then have the following relationship between classes of grammars:

LR(0) ⊆ SLR ⊆ LALR ⊆ LR(1) ⊆ LR(2) ⊆ · · ·

The following characterization exists:

Proposition 30 Let G be grammar and let →r denote a rightmost derivation
step in G. Then G is LR(k) if and only if any two derivations S′ →∗r δXw →r

δαw and S′ →∗r γ →r δαw
′ with Firstk(w) = Firstk(w′) satisfy γ = δXw.

By definition, an LR(k) grammar, for any k ≥ 0, has a conflict-free parse
table, and thus there exists a deterministic PDA accepting its language. More-
over, the standard translation of a PDA into context-free language yields an
LR(1) grammar when the PDA is deterministic. Therefore, the class of lan-
guages generated by LR(k) grammars is the same for all k ≥ 1. It is partially
for this reason that parsers with a lookahead of more than one are rarely ever
used in practice.

15

Bibliography

References

[1] Alfred V. Aho, Ravi Sethi et Jeffrey D. Ullman. Compilers: principles,
techniques and tools. Addison-Wesley, 1986.

[2] Alfred V. Aho et Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. Volume I: Parsing. Prentice-Hall, 1972.

[3] John E. Hopcroft et Jeffrey D. Ullman. Introduction to automata theory,
languages and computation. Addison-Wesley, 1979.

16

