Rappel: Grammaires

Définition :
$$G = (\Sigma, V, \rightarrow, S)$$
 où

- $ightharpoonup \Sigma$ alphabet *terminal* (fini)
- V variables (ensemble fini)
- $\longrightarrow \subseteq (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ ensemble fini de *productions*
- S variable initiale

Grammaire de type 2 (hors contexte ou algébrique) : $\rightarrow \subseteq V \times (\Sigma \cup V)^*$

Exemple:
$$S \to aSb \mid \varepsilon$$
 engendre $\{a^nb^n \mid n \ge 0\}$

Intérêt des langages algébriques :

- ▶ spécification de langages au-délà des reconnaissables, analyse syntaxique
- correspondent aux automates à pile

Automates à pile

Définition :
$$\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$$
 où

- Q ensemble fini d'états
- $ightharpoonup \Sigma$ alphabet d'entrée
- Z alphabet de pile
- $T\subseteq QZ\times (\Sigma\cup \{arepsilon\})\times QZ^*$ ensemble fini de transitions
- $q_0z_0 \in QZ$ configuration initiale
- ${lue F}\subseteq Q$ acceptation par état final.

De plus, \mathcal{A} est temps-réel s'il n'a pas d' ε -transition.

Définition : Système de transitions (infini) associé

- $\mathcal{T} = (QZ^*, T', q_0z_0, FZ^*)$
- ullet Une configuration de ${\mathcal A}$ est un état $ph\in QZ^*$ de ${\mathcal T}$
- ► Transitions de \mathcal{T} : $T' = \{pzh \xrightarrow{a} qgh \mid (pz, a, qg) \in T\}$.
- $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists \ q_0 z_0 \xrightarrow{w} qh \in FZ^* \ \mathsf{dans} \ \mathcal{T} \}.$

Automates à pile

Exemples:

- $L_1 = \{a^n b^n c^p \mid n, p > 0\} \text{ et } L_2 = \{a^n b^p c^p \mid n, p > 0\}$
- $L=L_1\cup L_2$ (non déterministe)

Exercices:

- 1. Montrer que le langage $\{w\tilde{w}\mid w\in\Sigma^*\}$ et son complémentaire peuvent être acceptés par un automate à pile.
- 2. Montrer que le complémentaire du langage $\{ww \mid w \in \Sigma^*\}$ peut être accepté par un automate à pile.
- 3. Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile. Montrer qu'on peut construire un automate à pile équivalent \mathcal{A}' tel que $T'\subseteq Q'Z\times (\Sigma\cup\{\varepsilon\})\times Q'Z^{\leq 2}.$

Propriétés fondamentales

Lemme: fondamental

Soient $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile, $p,r\in Q$, $g,h\in Z^*$, $w\in \Sigma^*$ et $n\geq 0$. Les conditions suivantes sont équivalentes:

- 1. $pgh \xrightarrow{w} r$ est un calcul de \mathcal{A} ,
- 2. il existe deux calculs $pg \xrightarrow[n_1]{w_1} q$ et $qh \xrightarrow[n_2]{w_2} r$ de $\mathcal A$ avec $q \in Q$, $w = w_1w_2$ et $n = n_1 + n_2$.

Preuve

 \Longrightarrow : Dans le calcul $pgh \xrightarrow[n]{w} r$, on considère la première fois que le contenu de la pile est h (possible car initialement gh, finalement ε). Soit qh la configuration correspondante après n_1 étapes. Le calcul s'écrit $pgh \xrightarrow[n_1]{w_1} qh \xrightarrow[n_2]{w_2} r$.

Si $p_0g_0h \xrightarrow{a_1} p_1g_1h \cdots \xrightarrow{a_k} p_kg_kh$ est un calcul de $\mathcal A$ tel que $g_i \neq \varepsilon$ pour $0 \leq i < n$ alors $p_0g_0 \xrightarrow{a_1} p_1g_1 \cdots \xrightarrow{a_k} p_kg_k$ est un calcul de $\mathcal A$.

 \Leftarrow : On utilise la remarque suivante: Si $sf \xrightarrow{v} s'f'$ est un calcul de \mathcal{A} avec $s \in Q$, $f, f', f'' \in Z^*$ alors $sff'' \xrightarrow{v} s'f'f''$ est aussi un calcul de \mathcal{A} .

Acceptation généralisée

Définition :

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile et $K\subseteq QZ^*$ un langage reconnaissable. Le langage reconnu par \mathcal{A} avec acceptation généralisée K est

$$\mathcal{L}_K(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists \ q_0 z_0 \xrightarrow{w} qh \in K \ \mathsf{dans} \ \mathcal{T} \}$$

Cas particuliers :

- $K = FZ^*$: acceptation classique par état final.
- K = Q: acceptation par pile vide.
- ightharpoonup K = F: acceptation par pile vide et état final.
- $K = QZ'Z^*$ avec $Z' \subseteq Z$: acceptation par sommet de pile.

Exemple:

 $L = \{a^nb^n \mid n \ge 0\}$ peut être accepté par pile vide ou par sommet de pile.

Proposition: Acceptation généralisée

Soit $\mathcal A$ un automate à pile avec acceptation généralisée K, on peut effectivement construire un automate à pile $\mathcal A'$ acceptant par état final tel que $\mathcal L_K(\mathcal A)=\mathcal L(\mathcal A')$. Donc, tous les modes d'acceptation ci-dessus sont équivalents.

Automates à pile et grammaires

Proposition: Grammaire vers automate à pile

Soit $G=(\Sigma,V,P,S)$ une grammaire. On peut construire un automate à pile simple (un seul état) $\mathcal A$ qui accepte $L_G(S)$ par pile vide.

On construit l'automate à pile simple non déterministe acceptant par pile vide : $\mathcal{A}=(\Sigma,\Sigma\cup V,T,S)$ dont les transitions sont

- des expansions : $x \xrightarrow{\varepsilon} \alpha$ avec $(x, \alpha) \in P$,
- ou des vérifications : $a \xrightarrow{a} \varepsilon$ avec $a \in \Sigma$.

Remarques:

- ► AAP simple: un seul état (non noté dans les transitions)
- dérivation gauche \rightarrow_g^* : remplacer toujours la variable la plus à gauche
- dérivation droite \rightarrow_d^* : analogue

Preuve (idée) : pour tout $\alpha \in (\Sigma \cup V)^*$ et $w \in \Sigma^*$, prouver $\alpha \to_g^* w$ ssi $\alpha \xrightarrow[]{w^*} \mathcal{A}$

- →: recurrence sur longueur de dérivation
- ► ←: recurrence sur longueur du calcul

Automates à pile et grammaires

Proposition: Automate à pile vers grammaire

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ un automate à pile reconnaissant par pile vide. On peut construire une grammaire G qui engendre $\mathcal{L}(\mathcal{A})$.

Construction:

- $G = \langle \Sigma, \{S\} \cup (Q \times Z \times Q), \rightarrow, S \rangle$
- ▶ pour tout $q \in Q$, $S \to \langle q_0, z_0, q \rangle$;
- ▶ pour tout $a \in \Sigma \cup \{\varepsilon\}$ et $\langle qz, a, q' \rangle \in T$, $\langle q, z, q' \rangle \to a$;
- ▶ pour tout $a \in \Sigma \cup \{\varepsilon\}$, $n \ge 1$, $\langle qz, a, q'a_1 \cdots a_n \rangle \in T$ et $q_1, \ldots, q_n \in Q$,

$$\langle q, z, q_n \rangle \to a \langle q', a_1, q_1 \rangle \langle q_1, a_2, q_2 \rangle \cdots \langle q_{n-1}, a_n, q_n \rangle$$

Preuve (idée): $\langle q, z, q' \rangle \to w$ dans G ssi $qz \stackrel{w}{\to}^* q'$ dans $\mathcal A$ (par récurrence sur longueur de dérivation resp. calcul)

Configurations accessibles (mots de pile)

Proposition : Reconnaissabilité des configurations accessibles

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

Pour $p \in Q$ et $g \in Z^*$, on note

$$\mathcal{C}(pg) = \{qh \in QZ^* \mid \exists \ pg \Rightarrow qh \ \mathsf{dans} \ \mathcal{T}\}$$

l'ensemble des configurations accessibles à partir de pg.

On peut effectivement construire un automate fini $\mathcal B$ qui reconnaît $\mathcal C(pg)$.

Preuve: Voir plus loin.

Corollaire : Décidabilité du vide

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$ un automate à pile.

On peut décider si $\mathcal{L}(\mathcal{A}) = \emptyset$.

Preuve

Il suffit de tester si $q_0 \in F$ ou $\mathcal{C}(q_0 z_0) \cap FZ^* \neq \emptyset$.

Calculs d'accessibilité

Corollaire:

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

On peut effectivement calculer les ensembles suivants :

- 1. $X = \{(p, x, q) \in Q \times Z \times Q \mid \exists \ px \Rightarrow q \ \mathsf{dans} \ \mathcal{T}\}$
- 2. $Y = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists \ px \Rightarrow qy \ \mathsf{dans} \ \mathcal{T}\}$
- 3. $W = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \Rightarrow qyh \text{ dans } \mathcal{T}\}$
- 4. $X' = \{(p, x, q) \in Q \times Z \times Q \mid \exists px \xrightarrow{\varepsilon} q \text{ dans } \mathcal{T}\}$
- 5. $Y' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists \ px \xrightarrow{\varepsilon} qy \ \mathsf{dans} \ \mathcal{T}\}$
- 6. $W' = \{(p, x, q, y) \in Q \times Z \times Q \times Z \mid \exists px \xrightarrow{\varepsilon} qyh \text{ dans } \mathcal{T}\}$

Preuve

- 1. $(p, x, q) \in X$ ssi $q \in C(px)$.
- 2. $(p, x, q, y) \in Y \text{ ssi } qy \in \mathcal{C}(px)$.
- 3. $(p, x, q, y) \in W \text{ ssi } \mathcal{C}(px) \cap qyZ^* \neq \emptyset$.

On applique ce qui précède à l'automate \mathcal{A}' obtenu à partir de \mathcal{A} en ne conservant que les ε -transitions.

Clôture et réduction.

Soit Γ un alphabet, $\overline{\Gamma}=\{\overline{a}\mid a\in\Gamma\}$ une copie de Γ et $\widetilde{\Gamma}=\Gamma\uplus\overline{\Gamma}$.

On définit la réduction sur $\widetilde{\Gamma}^*$ par $\overline{a}a \xrightarrow{\operatorname{red}} \varepsilon$ pour $a \in \Gamma$.

Remarque : Soit
$$D = \{ w \in \widetilde{\Gamma}^* \mid w \xrightarrow{\operatorname{red}} \varepsilon \}.$$

On peut montrer que D est engendré par la grammaire $S \to \varepsilon + \sum_{a \in \Gamma} \overline{a} S a S$. Il s'agit donc du langage de Dyck en considérant \overline{a} comme une parenthèse ouvrante et a comme la parenthèse fermante correspondante.

 $\text{Pour } L \subseteq \widetilde{\Gamma}^* \text{ on pose } \operatorname{Clot}(L) = \{ w \in \widetilde{\Gamma}^* \mid \exists v \in L, \ v \xrightarrow{\operatorname{red}} w \}.$

Lemme : Reconnaissabilité de la clôture

Si $L\subseteq\widetilde{\Gamma}^*$ est un langage reconnaissable alors $\mathrm{Clot}(L)\subseteq\widetilde{\Gamma}^*$ aussi.

On peut construire un automate pour $\mathrm{Clot}(L)$ à partir d'un automate pour L (PTime).

Configurations accessibles (Preuve)

Soit $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0)$ un automate à pile.

On définit $\Gamma = Q \uplus Z$ et le langage fini $K = \{qh\overline{x}\,\overline{p} \mid \exists \ (px,a,qh) \in T\} \subseteq \widetilde{\Gamma}^+.$

Lemme : Soit $n \ge 0$

il existe un calcul $pg \xrightarrow{r} qh$ dans $\mathcal A$ ssi il existe $w \in K^n$ tel que $wpg \xrightarrow{\operatorname{red}} qh$

Corollaire : $C(pg) = Clot(K^+pg) \cap QZ^*$.

Puisque K est un langage fini, le langage K^+pg est reconnaissable et on peut construire (PTIME) un automate $\mathcal B$ qui reconnaît $\operatorname{Clot}(K^+pg)\cap QZ^*$.

AAP régulier

Remarques: Dans ce transparent et le suivant seulement:

- Σ' note $\Sigma \cup \{\varepsilon\}$;
- l'état et sommet de pile sont notés à droite !

Définition : AAP régulier

$$\mathcal{A} = \langle Q, \Sigma, Z, T, q_0, F \rangle$$
, avec

$$T \subseteq (\operatorname{Rec}(Z^*) \times Q \times \Sigma' \times Z \times Q) \cup (\operatorname{Rec}(Z^*) \times Q \times \Sigma' \times Q)$$

- 1. $wq \stackrel{a}{\rightarrow} wzq'$ si $\langle L, q, a, z, q' \rangle \in T$ et $w \in L$ (push)
- 2. $wzq \stackrel{a}{\to} wq'$ si $\langle L, q, a, q' \rangle \in T$ et $wz \in L$ (pop)

AAP régulier \rightarrow **AAP** ordinaire

Soit $\mathcal{A}=\langle Q,\Sigma,Z,T,q_0,F\rangle$ un AAP régulier avec k:=|T| et $\forall i:\mathcal{A}_i=\langle Q_i,Z,\delta_i,\iota_i,F_i\rangle$ DCA acceptant les langages dans T. Définissons:

- $\mathbf{Q} := Q_1 \times \cdots \times Q_k, \quad \iota := \langle \iota_1, \ldots, \iota_k \rangle$
- $F_i := \{ \langle q_1, \dots, q_k \rangle \in \mathcal{Q} \mid q_i \in F_i \}$
- $\quad \bullet \ \delta: \mathcal{Q} \times Z \to \mathcal{Q} \ \text{avec} \ \delta(\langle q_1, \ldots, q_k \rangle, z) := \langle \delta_1(q_1, z), \ldots, \delta_k(q_k, z) \rangle.$

Construction d'un AAP ordinaire équialent à ${\cal A}$

 $\mathcal{A}':=\langle \mathcal{Q} \times Q, \Sigma, \mathcal{Q} \times Z, T', \langle \iota, q_0 \rangle, \mathcal{Q} \times F \rangle$, avec:

- (push) pour tout $\langle L_i, q, a, z, q' \rangle \in T$ et $f \in \mathcal{F}_i$, on a $\langle \langle f, q \rangle, a, \langle f, z \rangle, \langle \delta(f, z), q' \rangle \rangle \in T'$;
- (pop) pour tout $\langle L_i, q, a, q' \rangle \in T$, $z \in Z$, $q'' \in \mathcal{Q}$ et $f \in F_i$, on a $\langle \langle q'', z \rangle, \langle f, q \rangle, a, \langle q'', q' \rangle \rangle \in T'$.

Invariante: Si \mathcal{A} accède à une configuration $z_1\cdots z_nq$, alors \mathcal{A}' accède à $\langle q_0',z_1\rangle\cdots\langle q_{n-1}',z_n\rangle\langle q_n',q\rangle$, avec $q_0'=\iota$ et $q_{i+1}'=\delta(q_i',z_{i+1})$ pour $i=0,\ldots,n-1$.

Calculs d'accessibilité dans une grammaire

Proposition : Reconnaissabilité des configurations précédentes

Soit $G = \langle \Sigma, V, \rightarrow, S \rangle$ une grammaire (algébrique).

Soit $L\subseteq (\Sigma\cup V)^*$ reconnaissable (par un automate $\mathcal A$).

On note $pre(L) = \{ \alpha \in (\Sigma \cup V)^* \mid \exists \beta \in L : \alpha \to_G^* \beta \}.$

On peut construire (en PTIME) un automate fini \mathcal{B} qui reconnaît pre(L).

Preuve: Voir transparent suivant.

Corollaire: Corollaires

Les problèmes suivants sont décidables en PTIME:

- mot: pour $w \in \Sigma$, $w \in \mathcal{L}(G)$?
- variable productive: pour $A \in V$, existe-il $w \in \Sigma^*$ t.q. $A \to_G^* w$?
- $\triangleright \mathcal{L}(G)$ est-il fini ?

Automate pour pre(L)

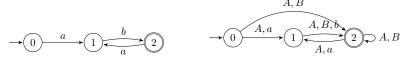
Proposition:

Soit $\mathcal{A} = \langle Q, \Sigma \cup V, \delta, q_0, F \rangle$ un automate reconnaissant L.

Construire ${\mathcal B}$ en ajoutant (itérativement) des transitions selon la règle suivante :

Si
$$\langle A, \beta \rangle \in \to$$
 et $q \xrightarrow{\beta}_{\mathcal{B}} q'$, ajouter $\langle q, A, q' \rangle$ dans \mathcal{B} .

Exemple: $A \rightarrow a \mid BB$, $B \rightarrow AB \mid b$



Preuve (idée): $L(\mathcal{B}) = pre(\mathcal{L}(\mathcal{A}))$

- ► ⊆: récurrence sur nombre de transitions ajoutées
- ▶ ⊇: récurrence sur longueur de dérivation

Arbres de dérivation

Définition:

Soit $G = (\Sigma, V, P, S)$ une grammaire.

Un arbre de dérivation pour G est un arbre t étiqueté dans $V \cup \Sigma \cup \{\varepsilon\}$ tel que chaque nœud interne u est étiqueté par une variable $x \in V$ et si les fils de u portent les étiquettes $\alpha_1, \ldots, \alpha_k$ alors $(x, \alpha_1 \cdots \alpha_k) \in P$.

De plus, si $k \neq 1$, on peut supposer $\alpha_1, \ldots, \alpha_k \neq \varepsilon$.

Exemple:

Arbres de dérivation pour les expressions.

Mise en évidence des priorités ou de l'associativité G ou D.

Définition : Ambigüité

- Une grammaire est ambigüe s'il existe deux arbres de dérivations (distincts) de même racine et de même frontière.
- Un langage algébrique est *non ambigu* s'il existe une grammaire non ambigüe qui l'engendre. Dans le cas contraire, on dit qu'il est *inhéremment ambigu*.

Lemme d'itération

Théorème : Bar-Hillel, Perles, Shamir ou Lemme d'itération

Soit $L \subseteq \Sigma^*$ algébrique. Il existe $N \ge 0$ tel que pour tout $w \in L$, si $|w| \ge N$ alors on peut trouver une factorisation $w = \alpha u \beta v \gamma$ avec |uv| > 0 et $|u\beta v| < N$ et $\alpha u^n \beta v^n \gamma \in L$ pour tout $n \ge 0$.

Exemple:

Le langage $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ n'est pas algébrique.

Corollaire:

Le langages algébriques ne sont pas fermées par intersection ou complémentaire.

Langages déterministes

Définition : Automate à pile déterministe

 $\mathcal{A} = (Q, \Sigma, Z, T, q_0 z_0, F)$ est déterministe si

- $\forall (pz, a) \in QZ \times (\Sigma \cup \{\varepsilon\}), \quad |T(pz, a)| \leq 1,$
- $\forall pz \in QZ, \quad T(pz, \varepsilon) \neq \emptyset \implies \forall a \in \Sigma, \ T(pz, a) = \emptyset$

Un langage $L\subseteq \Sigma^*$ est $d\acute{e}terministe$ s'il existe un automate à pile déterministe qui accepte L par état final.

Exemples:

- 1. Le langage $L_4=\{a^nb^pc^n\mid n,p>0\}\cup\{a^nb^pd^p\mid n,p>0\}$ est déterministe mais pas D+TR.
- 2. $L_5=\{a^nba^n\mid n>0\}$ peut être accepté par un automate D+TR mais pas par un automate D+S car il n'est pas fermé par préfixe.

Acceptation par pile vide

Exemples:

- 1. Le langage $L_5=\{a^nba^n\mid n\geq 0\}$ peut être accepté par *pile vide* par un automate D+TR+S.
- 2. Le langage $L_4=\{a^nb^pc^n\mid n,p>0\}\cup\{a^nb^pd^p\mid n,p>0\}$ peut être accepté par pile vide par un automate D.

Exercices:

- 1. Montrer qu'un langage L est déterministe et préfixe $(L \cap L\Sigma^+ = \emptyset)$ ssi il existe un automate déterministe qui accepte L par pile vide.
- 2. Montrer que pour les automates à pile déterministes, l'acceptation par pile vide est équivalente à l'acceptation par pile vide ET état final.

Exercice:

Montrer que D_n^* peut être accepté par sommet de pile par un automate D+TR+S.

Complémentaire

Théorème : Les déterministes sont fermés par complémentaire.

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^*\setminus\mathcal{L}(\mathcal{A})$.

Il y a deux difficultés principales :

- 1. Un automate déterministe peut se bloquer (deadlock) ou entrer dans un ε -calcul infini (livelock). Dans ce cas il y a des mots qui n'admettent aucun calcul dans l'automate.
- 2. Même avec un automate déterministe, un mot peut avoir plusieurs calculs $(\varepsilon$ -transitions à la fin) certains réussis et d'autres non.

Blocage

Définition : Blocage

Un automate à pile $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0)$ est sans blocage si pour toute configuration accessible $p\alpha$ et pour toute lettre $a\in\Sigma$ il existe un calcul $p\alpha\xrightarrow{\varepsilon} \stackrel{a}{\longrightarrow} .$

Proposition : Critère d'absence de blocage

Un automate déterministe est sans blocage si et seulement si pour toute configuration accessible $p\alpha$ on a

- 1. $\alpha \neq \varepsilon$, et donc on peut écrire $\alpha = x\beta$ avec $x \in Z$,
- 2. $px \xrightarrow{\varepsilon} \text{ou } \forall a \in \Sigma, \ px \xrightarrow{a}$,
- 3. $px \xrightarrow{\varepsilon}$.

De plus, ce critère est décidable.

Remarque :

Si \mathcal{A} est sans blocage alors chaque mot $w \in \Sigma^*$ a un unique calcul maximal (et fini) $q_0 z_0 \xrightarrow[*]{w} p\alpha \xrightarrow{\tilde{\beta}} \text{dans } \mathcal{A} \text{ (avec } \alpha \neq \varepsilon \text{)}.$

Blocage

Proposition : Suppression des blocages

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe sans blocage $\mathcal{A}'=(Q',\Sigma,Z',T',q_0'z_0',F')$ qui reconnaît le même langage.

Preuve

 $Q'=Q\uplus\{q_0',d,f\},\ F'=F\uplus\{f\},\ Z'=Z\uplus\{\bot\},\ z_0'=\bot\text{ et pour }p\in Q,\ a\in\Sigma\text{ et }x\in Z$

- 1. $q_0' \perp \xrightarrow{\varepsilon} q_0 z_0 \perp$,
- 2. Si $px \xrightarrow{a} q\alpha \in T$ alors $px \xrightarrow{a} q\alpha \in T'$,
- 3. Si $px \not\xrightarrow{q}$ et $px \not\xrightarrow{s}$ dans \mathcal{A} alors $px \xrightarrow{a} dx \in T'$,
- 4. Si $px \xrightarrow{\varepsilon} \text{dans } \mathcal{A} \text{ et } px \xrightarrow{\varepsilon} q\alpha \in T \text{ alors } px \xrightarrow{\varepsilon} q\alpha \in T'$,
- 5. Si $px \xrightarrow{\varepsilon} \operatorname{dans} \mathcal{A}$ et $\exists px \xrightarrow{\varepsilon} q\alpha$ avec $q \in F$ alors $px \xrightarrow{\varepsilon} fx \in T'$,
- 6. Si $px \xrightarrow{\varepsilon} \text{dans } \mathcal{A} \text{ et } \forall \ px \xrightarrow{\varepsilon} q\alpha \text{ on a } q \notin F \text{ alors } px \xrightarrow{\varepsilon} dx \in T'$,
- 7. $p \perp \xrightarrow{\varepsilon} d \perp$, $d \perp \xrightarrow{a} d \perp$, $dx \xrightarrow{a} dx$ et $fx \xrightarrow{a} dx$.

Cette construction est effective.

Blocage

Preuve : $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

Soit $q_0 z_0 \xrightarrow{w} q\beta$ un calcul acceptant de $\mathcal A$ pour $w \in \Sigma^*$.

Si le calcul ne passe pas par une configuration $px\alpha$ avec $px \xrightarrow{\varepsilon} ((p,x) \in V')$ alors $q'_0 \perp \xrightarrow{\varepsilon} q_0 z_0 \perp \xrightarrow{w} q\beta \perp$ est un calcul acceptant de \mathcal{A}' .

Sinon, le calcul s'écrit
$$q_0z_0 \xrightarrow{w} px\gamma \xrightarrow{\varepsilon} q\beta$$
 avec $px \xrightarrow{\varepsilon} \omega$

Donc
$$\beta = \alpha \gamma$$
 avec $px \xrightarrow{\varepsilon} q\alpha$ et $q \in F$. On obtient un calcul acceptant dans \mathcal{A}' :

Preuve :
$$\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$$

Un calcul acceptant de \mathcal{A}' ne peut pas atteindre l'état puits d. Deux possibilités:

 $q_0' \perp \xrightarrow{\varepsilon} q_0 z_0 \perp \xrightarrow{w} px\gamma \perp \xrightarrow{\varepsilon} fx\gamma \perp$

Si le calcul accepte grâce à l'état
$$f$$
, il s'écrit:

$$q_0' \bot \xrightarrow{\varepsilon} q_0 z_0 \bot \xrightarrow{w} px\gamma \bot \xrightarrow{\varepsilon} fx\gamma \bot$$
 On en déduit $q_0 z_0 \xrightarrow{w} px\gamma$ dans $\mathcal A$ et il existe $px \xrightarrow{\varepsilon} q\alpha$ dans $\mathcal A$ avec $q \in F$.

Donc w est accepté par le calcul $q_0z_0 \xrightarrow{w} px\gamma \xrightarrow{\varepsilon} q\alpha\gamma$ de \mathcal{A} . Sinon, le calcul de \mathcal{A}' s'écrit $q_0' \perp \xrightarrow{\varepsilon} q_0z_0 \perp \xrightarrow{w} q\beta \perp$ avec $q \in F$

et on obtient le calcul acceptant $q_0z_0 \xrightarrow{w} q\beta \stackrel{(z_1,z_2)}{\mathsf{dans}} \mathcal{A}$ pour w.

Complémentaire

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe \mathcal{A}' qui reconnaît $\Sigma^*\setminus\mathcal{L}(\mathcal{A})$.

Proposition:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,F)$ un automate à pile déterministe, on peut effectivement construire un automate à pile déterministe équivalent \mathcal{A}' tel qu'on ne puisse pas faire d' ε -transition à partir d'un état final de \mathcal{A}' .

Exercice:

Montrer que tout langage déterministe est non ambigu.

Complémentaire

Preuve : Complémentaire

On suppose \mathcal{A} déterministe et sans blocage. On pose $Q'=Q\times\{1,2,3,4\}$. L'état initial est $q_0'=(q_0,1)$ si $q_0\notin F$ et $q_0'=(q_0,2)$ sinon.

$$\begin{array}{c} \text{1. Si } px \xrightarrow{\varepsilon} q\alpha \in T \text{ et } i \in \{1,2\} \text{ alors} \\ (p,i)x \xrightarrow{\varepsilon} (q,j)\alpha \in T' \text{ avec } j = \begin{cases} 1 & \text{si } i=1 \wedge q \notin F \\ 2 & \text{sinon.} \end{cases} \end{array}$$

2. Si
$$px \xrightarrow{a} q\alpha \in T$$
 et $i \in \{1,2\}$ alors $(p,i)x \xrightarrow{\varepsilon} (p,i+2)x \in T'$ et
$$(p,i+2)x \xrightarrow{a} (q,j)\alpha \in T' \text{ avec } j = \begin{cases} 1 & \text{si } q \notin F \\ 2 & \text{sinon.} \end{cases}$$

L'automate \mathcal{A}' est déterministe et sans blocage.

Soit $w \in \Sigma^*$ et $q_0 z_0 \xrightarrow{w} p \alpha$ l'unique calcul \max de \mathcal{A} sur w. On a $p \alpha \xrightarrow{\tilde{S}}$. L'unique calcul \max maximal de \mathcal{A}' sur w s'écrit $q_0' z_0 \xrightarrow{w} (p,j) \alpha$ avec j=3 si le calcul de \mathcal{A} n'a pas visité F depuis la dernière transition visible $(\neq \varepsilon)$, et j=4 sinon.

Avec
$$F' = Q \times \{3\}$$
 on obtient $\mathcal{L}(\mathcal{A}') = \overline{\mathcal{L}(\mathcal{A})}$.

Avec
$$F'=Q\times\{4\}$$
 on obtient $\mathcal{L}(\mathcal{A}')=\mathcal{L}(\mathcal{A}).$

Dans les deux cas, à partir d'un état de F' il n'y a pas d' ε -transition.

De plus, chaque mot $w \in \mathcal{L}(\mathcal{A}')$ a un unique calcul acceptant dans \mathcal{A}' .

Langages déterministes

Exercice:

Soit $\mathcal{A}=(Q,\Sigma,Z,T,q_0z_0,K)$ un automate à pile déterministe avec acceptation généralisée par le langage rationnel $K\subseteq QZ^*$.

Montrer qu'on peut effectivement construire un automate à pile déterministe équivalent reconnaissant par état final.

Exercice:

Soit $\mathcal A$ un automate à pile déterministe. Montrer qu'on peut effectivement construire un automate à pile déterministe qui reconnaît le même langage et dont les ε -transitions sont uniquement effaçantes : $px \stackrel{\varepsilon}{\to} q$.

Lemme d'itération pour les déterministes

Lemme: Itération

Soit $L \subseteq \Sigma^*$ un langage déterministe. Il existe un entier $N \in \mathbb{N}$ tel que tout mot $w \in L$ contenant au moins N lettres distinguées se factorise en $w = \alpha u \beta v \gamma$ avec

- 1. $\forall p \geq 0 : w = \alpha u^p \beta v^p \gamma \in \mathcal{L}(\mathcal{A}),$
- 2. $u\beta v$ contient moins de N lettres distinguées,
- 3. soit α, u, β soit β, v, γ contiennent des lettres distiguées,
- 4. pour tout $\gamma' \in \Sigma^*$,

$$\exists p : \alpha u^p \beta v^p \gamma' \in L \quad \Longrightarrow \quad \forall p : \alpha u^p \beta v^p \gamma' \in L$$

Preuve Admis. Voir [?]

Rappels: Propriétés de clôture

Proposition:

Les langages algébriques :

- sont clôturés par union ;
- ne sont pas clôturés par complément (voir $\{ww \mid w \in \Sigma^*\}$) ni intersection.

Proposition:

Les langages déterministes :

- sont clôturés par complément ;
- ne sont pas clôturés par intersection (voir $\{a^nb^pc^n\mid n,p\geq 1\}$, $\{a^nb^nc^p\mid n,p\geq 1\}$) ni intersection ;
- sont strictement moins expressif que les algébriques en général.

Problèmes indécidables

Proposition:

Soient L,L' deux langages algébriques et R un langage rationnel. Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset$?
- $L = \Sigma^*$?
- L = L'?
- $L \subseteq L'$?
- $ightharpoonup R \subseteq L$?
- ► L est-il rationnel ?
- L est-il déterministe ?
- ightharpoonup L est-il ambigu ?
- lacksquare \overline{L} est-il algébrique ?
- $L \cap L'$ est-il algébrique ?

Langages déterministes

Proposition : Décidabilité et indécidabilité

On ne peut pas décider si un langage algébrique est déterministe.

Soient L, L' deux langages déterministes et R un langage rationnel.

Les problèmes suivants sont décidables :

$$ightharpoonup R \subseteq L$$
?

$$R \subseteq L \Longleftrightarrow R \cap \overline{L} = \emptyset$$

$$L = R$$
?

$$R=L\Longleftrightarrow R\cap \overline{L}=\emptyset=\overline{R}\cap L$$

$$L = L'$$
?

Géraud Sénizergues, prix Gödel 2002

Les problèmes suivants sont indécidables :

- $L \cap L' = \emptyset$?
- $L \subseteq L'$?
- $L \cap L'$ est-il algébrique ?
- $L \cap L'$ est-il déterministe ?
- L \cup L' est-il déterministe ?