Exam

Duration: 3 hours. All paper documents permitted. The numbers [n] in the margin next to questions are indications of duration and difficulty, not necessarily of the number of points you might earn from them. You must **fully justify** all your answers.

Exercise 1. Let us consider the ranked alphabet $\mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, a^{(0)}\}$, and the language L of trees where every branch is of even length; for instance $f(a, a) \in L$ but $f(a, f(a, a)) \notin L$.

[1] 1. Give a PDL($\downarrow_0, \downarrow_1$) node formula φ over the set of atomic predicates $A \stackrel{\text{def}}{=} \{f, a\}$ s.t. for all $t \in T(\mathcal{F}), t, \varepsilon \models \varphi$ if and only if $t \in L$.

We simply check that there are no leaves at odd depth.

$$\varphi \stackrel{\text{def}}{=} [(\downarrow;\downarrow)^*] \neg \text{leaf} ,$$

where

$$\mathsf{leaf} \stackrel{\text{\tiny def}}{=} [\downarrow] \bot , \qquad \qquad \downarrow \stackrel{\text{\tiny def}}{=} (\downarrow_0 + \downarrow_1) .$$

[2] 2. Give a wMSO($\downarrow_0, \downarrow_1, P_f, P_a$) sentence ψ over $T(\mathcal{F})$ s.t. for all $t \in T(\mathcal{F}), t \models \psi$ if and only if $t \in L$.

One way is to select the even-depth positions using a second-order variable, and to ensure that it contains all the leaves.

$$\begin{split} \psi \stackrel{\mathrm{def}}{=} \exists X . \forall x. \mathsf{root}(x) \Longrightarrow x \not\in X \\ & \land x \in X \Longrightarrow (\forall y . x \downarrow y \Longrightarrow y \not\in X) \\ & \land x \notin X \Longrightarrow (\forall y . x \downarrow y \Longrightarrow y \in X) \\ & \land \mathsf{leaf}(x) \Longrightarrow x \in X \;, \end{split}$$

where

$$x \downarrow y \stackrel{\text{def}}{=} x \downarrow_0 y \lor x \downarrow_1 y , \quad \operatorname{root}(x) \stackrel{\text{def}}{=} \neg \exists z \, . \, z \downarrow x , \quad \operatorname{leaf}(x) \stackrel{\text{def}}{=} \neg \exists z \, . \, x \downarrow z .$$

Alternatively, one could translate the PDL solution:

$$\psi \stackrel{\text{def}}{=} \exists x \, . \, \mathsf{root}(x) \land \forall y \, . \, (x \, [\mathrm{TC}_{u,v} \mathsf{two}(u,v)] \, y) \Longrightarrow \neg \mathsf{leaf}(y) \; ,$$

where

$$\begin{bmatrix} \operatorname{TC}_{u,v}\varphi(u,v) \end{bmatrix} y \stackrel{\text{def}}{=} \forall X. (x \in X \land \forall u \forall v . (u \in X \land \varphi(u,v)) \Longrightarrow v \in X) \Longrightarrow y \in X ,$$
$$\operatorname{two}(x,y) \stackrel{\text{def}}{=} \exists z . x \downarrow z \land z \downarrow y .$$

[2] 3. Give a minimal DFTA \mathcal{A} that recognises L.

 $\mathcal{A} \stackrel{\text{def}}{=} (Q, \mathcal{F}, \Delta, \{q_1\})$ where $Q \stackrel{\text{def}}{=} \{q_0, q_1, q_\perp\}$ and Δ is defined by

$$\Delta \stackrel{\text{def}}{=} \{ (q_{\perp}, f, q_0, q_1), (q_{\perp}, f, q_1, q_0), (q_0, f, q_1, q_1), (q_1, f, q_0, q_0), (q_0, a) \} \\ \cup \{ (q_{\perp}, f, q, q') \mid q = q_{\perp} \text{ or } q' = q_{\perp} \}$$

The automaton \mathcal{A} is deterministic and complete by definition, hence the languages of the states form a partition of $T(\mathcal{F})$: $L(q_0)$ is the set of trees with all branches of odd length, $L(q_1)$ the set of trees with all branches of even length, and $L(q_{\perp})$ the set of tree with a branch of even length and one of odd length. We show this by induction over the trees in $T(\mathcal{F})$.

- **Base case** a: a leaf a is a tree with all its branches of odd length and is indeed recognised by q_0 .
- Inductive step $f(t_1, t_2)$: If both t_1 and t_2 have all their branches of even length, then by induction hypothesis, $t_i \to_{\mathcal{A}}^* q_1$ for $i \in \{1, 2\}$ and then $f(t_1, t_2) \to_{\mathcal{A}}^* f(q_1, q_1) \to q_0$ as desired. If t_1 and t_2 have all their branches of odd length, then by induction hypothesis $t_i \to_{\mathcal{A}}^* q_0$ for $i \in \{1, 2\}$ and then $f(t_1, t_2) \to_{\mathcal{A}}^* f(q_0, q_0) \to q_1$ as desired. If t_1 has a branch of even length and one of odd length, then by induction hypothesis $t_1 \to_{\mathcal{A}}^* q_{\perp}$ and then $f(t_1, t_2) \to_{\mathcal{A}}^* q_{\perp}$ and the same if $t_2 \in L(q_{\perp})$. Finally, if $t_1 \to_{\mathcal{A}}^* q_0$ and $t_2 \to_{\mathcal{A}}^* q_1$ or vice-versa, then $f(t_1, t_2) \to_{\mathcal{A}}^* q_{\perp}$.

As $L(q_0)$, $L(q_1)$, and $L(q_{\perp})$ form a partition of $T(\mathcal{F})$, the automaton is minimal.

One could also show that for all $q \neq q'$ in Q, there are contexts $C_{q,q'}$ distinguishing some trees $t \in L(q)$ from $t' \in L(q')$, i.e. with $C_{q,q'}[t] \in L$ and $C_{q,q'}[t'] \in T(\mathcal{F}) \setminus L$. The empty context \Box can be used as both C_{q_1,q_0} and $C_{q_1,q_{\perp}}$: it distinguishes any tree $t \in L(q_1) = L$ from any tree $t' \notin L$. The context $C_{q_0,q_{\perp}} \stackrel{\text{def}}{=} f(\Box, a)$ distinguishes $a \in L(q_0)$ from $f(f(a, a), a) \in L(q_{\perp})$.

Inspired by TATA Ex. 2.5 Exercise 2 (Local Unranked Tree Languages). We work throughout this exercise with unranked trees over some finite alphabet Σ . For a tree $a(t_1 \cdots t_n) \in T(\Sigma)$, its root label is $\operatorname{root}(a(t_1 \cdots t_n)) \stackrel{\text{def}}{=} a$; we lift this to tree languages by $\operatorname{root}(L) \stackrel{\text{def}}{=} \bigcup_{t \in L} \operatorname{root}(t)$. For a letter $a \in \Sigma$ and a tree $t \in T(\Sigma)$, the horizontal set for a in t is defined by induction over t by

$$hs_a(b(t_0\cdots t_{n-1})) \stackrel{\text{def}}{=} \begin{cases} \{root(t_0)\cdots root(t_{n-1})\} \cup \bigcup_{0 \le i < n} hs_a(t_i) & \text{if } b = a \\ \bigcup_{0 \le i < n} hs_a(t_i) & \text{if } b \ne a \end{cases}$$

We can also define this set by

$$hs_a(t) \stackrel{\text{\tiny det}}{=} \{ root(t_0) \cdots root(t_{n-1}) \mid \exists C \in \mathcal{C}(\Sigma) \, . \, t = C[a(t_0 \cdots t_{n-1})] \}$$

where $\mathcal{C}(\Sigma)$ denotes the set of contexts over Σ . For instance, $\operatorname{hs}_a(b(a(ab)a(b))) = \{\varepsilon, b, ab\}$ and $\operatorname{hs}_b(b(a(ab)a(b))) = \{\varepsilon, aa\}$. For a tree language $L \subseteq T(\Sigma)$, $\operatorname{hs}_a(L) \stackrel{\text{def}}{=} \bigcup_{t \in L} \operatorname{hs}_a(t)$.

- [1] 1. Consider the tree language $L_1 \stackrel{\text{def}}{=} L(\mathcal{A}_1)$ for the NFHA $\mathcal{A}_1 \stackrel{\text{def}}{=} (Q_1, \{a, b\}, \Delta_1, I_1)$ where $Q_1 \stackrel{\text{def}}{=} \{q, q'\}, \Delta_1 \stackrel{\text{def}}{=} \{a((qq')^*) \to q, b(Q_1^*q'Q_1^*) \to q'\}$, and $I_1 \stackrel{\text{def}}{=} \{q\}$. Give $hs_a(L_1)$ and $hs_b(L_1)$. Hint: Don't be surprised by the answer. We have $hs_a(L_1) = \{\varepsilon\}$ and $hs_b(L_1) = \emptyset$. Indeed, $L_1 = \{a()\}$.
- [1] 2. Consider the tree language $L_2 \stackrel{\text{def}}{=} L(\mathcal{A}_2)$ for the NFHA $\mathcal{A}_2 \stackrel{\text{def}}{=} (Q_2, \{a\}, \Delta_2, I_2)$ where $Q_2 \stackrel{\text{def}}{=} \{q_0, q_1\}, \ \Delta_2 \stackrel{\text{def}}{=} \{a(q_0^*) \rightarrow q_1, a(q_1^+) \rightarrow q_0\}$, and $I_2 \stackrel{\text{def}}{=} \{q_0\}$. Give $hs_a(L_2)$.

We have $hs_a(L_2) = \{a\}^*$. Indeed, L_2 is the set of trees in $T(\{a\})$ where every branch is of even length. Thus for all $n \in \mathbb{N}$, $a^n \in hs_a(L_2)$: for n = 0 we can consider the tree $a(a) \in L_2$ seen as $a(\Box)[a]$, and for n > 0 we can consider the tree $a(a^n) \in L_2$ seen as $\Box[a(a^n)]$.

[2] 3. Show that, if L is a recognisable tree language, then for all a ∈ Σ, hs_a(L) is a recognisable word language. Hint: You may assume without loss of generality that L = L(A) for a trim NFHA A = (Q, Σ, Δ, I): for all states q ∈ Q, there exist a tree t and a context C such that t →^{*}_A q and C[q] →^{*}_A q_r for some q_r ∈ I.

Recall that if $\sigma: \Sigma \to \operatorname{Rec}(\Gamma^*)$ maps letters from Σ to recognisable word languages over Γ , then it defines a rational substitution, and then $\sigma(R)$ for a recognisable language $R \subseteq \Sigma^*$ is also a recognisable language over Γ .

Let $L = L(\mathcal{A})$ for a trim NFHA $\mathcal{A} = (Q, \Sigma, \Delta, I)$. Let us consider the map $\sigma: Q \to 2^{\Sigma^*}$ where $\sigma(q) \stackrel{\text{def}}{=} \{a \in \Sigma \mid \exists R \neq \emptyset . (q, a, R) \in \Delta\}$; since $\sigma(q)$ is a finite set for all q, it is in particular a recognisable set in $\text{Rec}(\Sigma^*)$. Therefore σ defines a rational substitution.

Let us show that, for all $a \in \Sigma$, $hs_a(L) = \bigcup_{(q,a,R) \in \Delta} \sigma(R)$. This will imply the result, since the right-hand expression is a finite union of rational substitutions applied to recognisable word languages, and is therefore a recognisable word language.

- $\subseteq: \text{ Let } a_0 \cdots a_{n-1} \in \text{hs}_a(L). \text{ Then there exists a tree } C[a(t_0 \cdots t_{n-1})] \in L \text{ for some } \\ \text{ context } C \text{ and trees } t_0, \cdots, t_{n-1} \text{ such that } \text{ root}(t_i) = a_i \text{ for all } 0 \leq i < n. \\ \text{ Since } C[a(t_0 \cdots t_{n-1})] \in L \text{ there exist states } q, q_0, \ldots, q_{n-1} \text{ and a transition } \\ (q, a, R) \in \Delta \text{ such that } t_i \to_{\mathcal{A}}^{\mathcal{A}} q_i \text{ for all } 0 \leq i < n \text{ and } q_0 \cdots q_{n-1} \in R. \\ \text{ Furthermore, for all } 0 \leq i < n, \text{ since root}(t_i) = a_i \text{ and } t_i \to_{\mathcal{A}}^{\mathcal{A}} q_i, \text{ there exists } \\ (q_i, a_i, R_i) \in \Delta \text{ with } R_i \neq \emptyset \text{ that allows to recognise } t_i. \text{ Thus for all } 0 \leq i < n, \\ a_i \in \sigma(q_i), \text{ hence } a_0 \cdots a_{n-1} \in \sigma(R). \end{aligned}$
- ⊇: Let $a_0 \cdots a_{n-1} \in \sigma(R)$ for some $(q, a, R) \in \Delta$. By definition of σ , for all $0 \leq i < n$, there exists $q_i \in Q$ such that $(q_i, a_i, R_i) \in \Delta$ with $R_i \neq \emptyset$, and such that overall $q_0 \cdots q_{n-1} \in R$. For all $0 \leq i < n$, since $R_i \neq \emptyset$ it contains some sequence $q_{i,0} \cdots q_{i,n_i-1}$ for some n_i . Since \mathcal{A} was assumed to be trim, there exists a context C such that $C[q] \rightarrow^*_{\mathcal{A}} q_r$ for some $q_r \in I$ and there exist trees $t_{i,j}$ such that $t_{i,j} \rightarrow^*_{\mathcal{A}} q_{i,j}$ for all $0 \leq i < n$ and $0 \leq j < n_i$. Let $t_i \stackrel{\text{def}}{=}$

 $a_i(t_{i,0}\cdots t_{i,n_i-1})$ for all $0 \leq i < n$: then $t_i \to_{\mathcal{A}}^* q_i$, thus $a(t_0\cdots t_{n-1}) \to_{\mathcal{A}}^* q_i$, and $C[q] \to_{\mathcal{A}}^* q_r$ for some $q_r \in I$. Thus $\operatorname{root}(t_i) = a_i$ and $C[a(t_0\cdots t_{n-1})] \in L$: this shows $a_0\cdots a_{n-1} \in \operatorname{hs}_a(L)$.

 Δ The condition $R \neq \emptyset$ in the definition of σ is really needed. Consider for instance the trim NFHA $\mathcal{A} \stackrel{\text{def}}{=} (\{q\}, \{a, b\}, \{a(q^*) \rightarrow q, b(\emptyset) \rightarrow q\}, \{q\})$. Then $L(\mathcal{A}) = T(\{a\})$ the set of unranked trees with only *a* labels, and $hs_a(L(\mathcal{A})) = \{a\}^*$ and $hs_b(L(\mathcal{A})) = \emptyset$. However, if one defines $\sigma'(q) = \{c \in \Sigma \mid (q, c, R) \in \Delta\}$, then $\sigma'(q) = \{a, b\}$, and then $\bigcup_{(q,a,R)\in\Delta} \sigma'(R) = \sigma'(\{q\}^*) = \{a, b\}^* \neq hs_a(L(\mathcal{A}))$.

4. Given a set $S \subseteq \Sigma$ and a collection $(R_a)_{a \in \Sigma}$ of word languages $R_a \subseteq \Sigma^*$, we define the tree language

 $\mathscr{L}(S, (R_a)_{a \in \Sigma}) \stackrel{\text{def}}{=} \{ t \in T(\Sigma) \mid \operatorname{root}(t) \in S \text{ and } \forall a \in \Sigma . hs_a(t) \subseteq R_a \} .$

Show that, for all $L \subseteq T(\Sigma)$, $L \subseteq \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_a)$.

Let $t \in L$. Then $\operatorname{root}(t) \in \operatorname{root}(L)$ and for all $a \in \Sigma$, $\operatorname{hs}_a(t) \subseteq \operatorname{hs}_a(L)$, thus $t \in \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_a)$.

5. A language L is called *local* if there exist $S \subseteq \Sigma$ and $(R_a)_{a \in \Sigma}$ where each $R_a \in \text{Rec}(\Sigma^*)$ is a recognisable word language such that $L = \mathscr{L}(S, (R_a)_{a \in \Sigma})$.

Show that a recognisable tree language $L \subseteq T(\Sigma)$ is local if and only if $L = \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_a).$

If L is local then there exist S and $(R_a)_{a\in\Sigma}$ such that $L = \mathscr{L}(S, (R_a)_{a\in\Sigma})$. Then root $(L) \subseteq S$ and for all $a \in \Sigma$, $hs_a(L) \subseteq R_a$. Since the \mathscr{L} operator is monotone, this entails $\mathscr{L}(S, (hs_a(L))_{a\in\Sigma}) \subseteq L$. The converse inclusion holds by Question 4, thus $L = \mathscr{L}(s, (hs_a(L))_a)$.

Conversely, if $L = \mathscr{L}(\operatorname{root}(S), (\operatorname{hs}_a(L))_a)$, then since L is recognisable, by Question 3, $\operatorname{hs}_a(L)$ is a recognisable word language for every $a \in \Sigma$, thus L is local.

[1] 6. Show that <u>not</u> all recognisable tree languages are local.

 L_2 is recognisable but not local: root $(L_2) = \{a\}$ and as seen earlier $hs_a(L_2) = \{a\}^*$, thus $\mathscr{L}(root(L_2), (hs_a(L_2))_{a \in \Sigma}) = T(\{a\}) \supseteq L_2$.

Inspired by TATA Sec. 8.7.1; DTDs normally only allow a single start symbol

Exercise 3 (Document Type Definitions). A document type definition (DTD) is a tuple $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I)$ with Σ a finite alphabet, $R_a \in \operatorname{Rec}(\Sigma^*)$ for all $a \in \Sigma$, and $I \subseteq \Sigma$ a set of start symbols.

Its language $L(\mathcal{D}) \subseteq T(\Sigma)$ is defined as the language of the NFHA $\mathcal{A}_{\mathcal{D}} \stackrel{\text{def}}{=} (Q, \Sigma, \Delta, I)$ with states $Q \stackrel{\text{def}}{=} \Sigma$ (thus the symbols from Σ serve both as states and as tree labels) and transition rules $\Delta \stackrel{\text{def}}{=} \{a(R_a) \to a \mid a \in \Sigma\}$ (the left 'a' is seen as a letter from Σ , the right one is seen as a state from Q).

[0]

[1]

[0] 1. Give a DTD for the set of unranked trees over the alphabet $\{a, b\}$ where every 'b'-labelled node is the child of an 'a'-labelled node.

$$\mathcal{D} = (\{a, b\}, (R_a = \{a, b\}^*, R_b = \{a\}^*)), \{a\}.$$

- [3] 2. Show that a recognisable tree language is local if and only if it is the language of a DTD.
 - (a) First show that, for any DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I)$, for all trees $t \in T(\Sigma)$ and $a \in \Sigma, t \to_{\mathcal{A}_{\mathcal{D}}}^{*} a$ implies $\operatorname{root}(t) = a$.

The tree t can be written as $t = b(t_0 \cdots t_{n-1})$ where $b = \operatorname{root}(t)$ for some subtrees t_0, \ldots, t_{n-1} . Since $t \to_{\mathcal{A}_{\mathcal{D}}}^* a$, there exist $(b(R_b) \to a) \in \Delta$ and a sequence of states $a_0 \cdots a_{n-1} \in R_b$ such that $t_i \to_{\mathcal{A}_{\mathcal{D}}}^* a_i$ for all $0 \leq i < n$. By definition of Δ , $b = \operatorname{root}(t) = a$.

(b) Show that, for any DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I)$, $\operatorname{root}(L(\mathcal{D})) \subseteq I$ and for all $a \in \Sigma$, $\operatorname{hs}_a(L(\mathcal{D})) \subseteq R_a$.

Let $L \stackrel{\text{def}}{=} L(\mathcal{D}).$

- $\operatorname{root}(L) \subseteq I$: For all trees $t \in L, t \to_{\mathcal{A}_{\mathcal{D}}}^{*} s \in I$, thus $\operatorname{root}(t) \in I$ by Question 2a.
- $\forall a \in \Sigma \cdot hs_a(L) \subseteq R_a: \text{ Consider a tree } C[a(t_0 \cdots t_{n-1})] \in L \text{ for some context } C \text{ and trees } t_0, \ldots, t_{n-1}. \text{ Then there exist a transition rule } (a(R_a) \rightarrow a) \in \Delta \text{ and states } a_0, \ldots, a_{n-1} \in Q \text{ such that } C[a] \rightarrow^*_{\mathcal{A}_{\mathcal{D}}} s, t_i \rightarrow^*_{\mathcal{A}_{\mathcal{D}}} a_i \text{ for all } 0 \leq i < n, \text{ and } a_0 \cdots a_{n-1} \in R_a. \text{ By Question 2a, root}(t_i) = a_i \text{ for all } 0 \leq i < n. \text{ Thus root}(t_0) \cdots \text{root}(t_{n-1}) \in R_a.$
- (c) Show that, for any DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I), \mathscr{L}(I, (R_a)_{a \in \Sigma}) \subseteq L(\mathcal{D}).$

Let $L \stackrel{\text{def}}{=} L(\mathcal{D})$. We show more generally by induction over $t \in T(\Sigma)$ that, for all $a \in \Sigma$, if $t \in \mathscr{L}(\Sigma, (R_a)_{a \in \Sigma})$, then $t \to_{\mathcal{A}_{\mathcal{D}}}^* \operatorname{root}(a)$. This entails the result since $t \in \mathscr{L}(I, (R_a)_{a \in \Sigma})$ implies $\operatorname{root}(t) \in I$ and $t \in \mathscr{L}(\Sigma, (R_a)_{a \in \Sigma})$.

Consider any $t \in \mathscr{L}(I, (R_a)_{a \in \Sigma})$. Let $a \stackrel{\text{def}}{=} \operatorname{root}(t)$; then $t = a(t_0 \cdots t_{n-1})$ for some trees t_0, \ldots, t_{n-1} . For all $0 \leq i < n$, let us set $a_i \stackrel{\text{def}}{=} \operatorname{root}(t_i)$; then $t_i \in \mathscr{L}(\Sigma, (R_a)_{a \in \Sigma})$ and by induction hypothesis $t_i \to_{\mathcal{A}_D}^* a_i$. Since $t \in \mathscr{L}(\Sigma, (R_a)_{a \in \Sigma}), a_0 \cdots a_{n-1} \in R_a$, thus we have $t = a(t_0 \cdots t_{n-1}) \to_{\mathcal{A}_D}^* a(a_0 \cdots a_{n-1}) \to_{\mathcal{A}_D} a = \operatorname{root}(t)$.

(d) Deduce that, for any DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I), \mathscr{L}(\operatorname{root}(L(\mathcal{D})), (\operatorname{hs}_a(L(\mathcal{D})))_{a \in \Sigma}) = \mathscr{L}(I, (R_a)_{a \in \Sigma}) = L(\mathcal{D}).$

Let $L \stackrel{\text{def}}{=} L(\mathcal{D})$. By Question 2b and monotonicity of \mathscr{L} , Question 2c, and Question 4 of Exercise 2,

$$\mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_{a \in \Sigma}) \subseteq \mathscr{L}(I, (R_a)_{a \in \Sigma}) \subseteq L \subseteq \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_{a \in \Sigma}).$$

(e) Conclude.

First assume that $L = L(\mathcal{D})$ for a DTD \mathcal{D} . Then $L = \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_{a \in \Sigma})$ by Question 2d, thus L is local by Question 5 of Exercise 2. Since $L = L(\mathcal{A}_{\mathcal{D}})$, it is also recognisable.

Conversely, let L be a recognisable local tree language. Then by questions 3 and 5 of Exercise 2, $L = \mathscr{L}(\operatorname{root}(L), (\operatorname{hs}_a(L))_{a \in \Sigma})$ where each $\operatorname{hs}_a(L)$ is recognisable. Let us define the DTD $\mathcal{D} \stackrel{\text{def}}{=} (\Sigma, (\operatorname{hs}_a(L))_{a \in \Sigma}, \operatorname{root}(L))$. By Question 2d, $L = L(\mathcal{D})$.

- 3. A projection is a mapping $h: \Sigma \to \Sigma'$ for Σ, Σ' two alphabets, which can be lifted to a function $h: T(\Sigma) \to T(\Sigma')$ by $h(a(t_0 \cdots t_{n-1})) \stackrel{\text{def}}{=} h(a)(h(t_0) \cdots h(t_{n-1}))$. Recognisable tree languages are closed under projections [TATA Thm. 8.3.9].
- Show that $L \subseteq T(\Sigma)$ is recognisable if and only if there exist a finite alphabet Σ' , a projection $h: \Sigma' \to \Sigma$, and a recognisable local tree language $L' \subseteq T(\Sigma')$ such that L = h(L').
 - \Leftarrow : Since L' is assumed to be recognisable and recognisable tree languages are closed under projections, h(L') is recognisable.
 - $\implies: \text{Let } \mathcal{A} = (Q, \Sigma, \Delta, I) \text{ be an NFHA such that } L = L(\mathcal{A}). \text{ Define } \sigma: Q \to \text{Rec}(\Delta^*) \text{ by } \sigma(q) \stackrel{\text{def}}{=} \{\delta \in \Delta \mid \exists R \exists a . \delta = (a(R) \to q)\}. \text{ We construct a DTD} \mathcal{D} \stackrel{\text{def}}{=} (\Delta, (R_{\delta})_{\delta}, \sigma(I)) \text{ where } R_{\delta} \stackrel{\text{def}}{=} \bigcup_{(a(R) \to q) \in \Delta} \sigma(R). \text{ Then by Question 2,} L' \stackrel{\text{def}}{=} L(\mathcal{D}) \text{ is recognisable and local. Finally, define two projections } h: \Delta \to \Sigma \text{ by } h(a(R) \to q) \stackrel{\text{def}}{=} a \text{ and } g: \Delta \to Q \text{ by } g(a(R) \to q) \stackrel{\text{def}}{=} q.$

It remains to show that L = h(L') in order to conclude. We show by induction over $t \in T(\Sigma)$ that $t \to_{\mathcal{A}}^* q$ if and only if there exist $t' \in T(\Delta)$ and $\delta \in \Delta$ such that h(t') = t, $g(\delta) = q$, and $t' \to_{\mathcal{A}_{\mathcal{D}}}^* \delta$.

- $\implies: \text{If } t' \to_{\mathcal{A}_{\mathcal{D}}}^* \delta = (a(R) \to q), \text{ by Question 2a, } t' = \delta(t'_0 \cdots t'_{n-1}) \text{ for some} \\ t'_0, \ldots, t'_{n-1} \in T(\Delta), \text{ thus there exist a rule } \delta(\sigma(R)) \to \delta \text{ of } \mathcal{A}_{\mathcal{D}} \text{ and} \\ \text{a sequence } \delta_0 \cdots \delta_{n-1} \in \sigma(R) \text{ such that } t'_i \to_{\mathcal{A}_{\mathcal{D}}}^* \delta_i \text{ for all } 0 \leq i < n. \\ \text{By induction hypothesis, } h(t'_i) \to^* g(\delta_i) \text{ for all } 0 \leq i < n. \\ \text{Since } \delta_0 \cdots \delta_{n-1} \in \sigma(R), \ g(\delta_0) \cdots g(\delta_{n-1}) \in R, \text{ hence there is a derivation} \\ h(t') = a(h(t'_0) \cdots h(t'_{n-1})) \to_{\mathcal{A}}^* a(g(\delta_0) \cdots g(\delta_{n-1})) \to_{\mathcal{A}} q = g(\delta). \end{aligned}$

Thus $t \in L$ if and only if there exist $t' \in T(\Delta)$ and $\delta \in \Delta$ such that h(t') = t, $g(\delta) \in I$, and $t' \to_{\mathcal{A}_{\mathcal{D}}}^* \delta$, which is if and only if there exists $t' \in L'$ since

[2]

 $g(\delta) \in I$ if and only if $\delta \in \sigma(I)$.

- [4] 4. Show that, from a DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I)$, we can construct a PDL $(\downarrow, \rightarrow)$ state formula $\varphi_{\mathcal{D}}$ with atomic propositions in Σ that defines the same tree language: for all trees $t \in T(\Sigma)$, $t, \varepsilon \models \varphi_{\mathcal{D}}$ iff $t \in L(\mathcal{D})$.
 - (a) First show that, for any rational expression E defined by the abstract syntax

$$E ::= \varepsilon \mid a \mid E + E \mid E \cdot E \mid E^* \tag{(\dagger)}$$

where a ranges over Σ , one can construct a PDL(\rightarrow) path formula π_E with atomic propositions in Σ such that, for all $t \in T(\Sigma)$, $p \in \mathbb{N}^*$ and $i \in \mathbb{N}$ such that $p \cdot i \in \text{dom } t$, and $w \in \text{dom } t$,

$$t, p \cdot i, w \models \pi_E \iff \exists j \ge i \cdot w = p \cdot j \text{ and } t(p \cdot (i+1)) \cdots t(p \cdot j) \in L(E)$$
. (‡)

We define π_E by induction over E.

$$\pi_{\varepsilon} \stackrel{\text{def}}{=} \top ? \qquad \pi_{a} \stackrel{\text{def}}{=} \rightarrow ; a ?$$

$$\pi_{E+F} \stackrel{\text{def}}{=} \pi_{E} + \pi_{F} \qquad \pi_{E\cdot F} \stackrel{\text{def}}{=} \pi_{E} ; \pi_{F}$$

$$\pi_{E^{*}} \stackrel{\text{def}}{=} (\pi_{E})^{*}$$

It remains to prove (\ddagger) by induction over E.

 ε : $t, p \cdot i, w \models \top$? iff $w = p \cdot i$.

- a: $t, p \cdot i, w \models \rightarrow; a$? iff there $w = p \cdot (i+1)$ and $t, p \cdot (i+1) \models a$, i.e. $t(p \cdot (i+1)) = a$.
- E + F: $t, p \cdot i, w \models \pi_E + \pi_F$ iff $t, p \cdot i, w \models \pi_E$ and $t, p \cdot i, w \models \pi_F$, which by ind. hyp. is iff there exists $j \ge i$ such that $w = p \cdot j, t(p \cdot (i+1)) \cdots t(p \cdot j) \in L(E)$ and $t(p \cdot (i+1)) \cdots t(p \cdot j) \in L(F)$ and the latter two conditions are iff $t(p \cdot (i+1)) \cdots t(p \cdot j) \in L(E+F)$.
- $E \cdot F$: $t, p \cdot i, w \models \pi_E; \pi_F$ iff there exist $w' \in \text{dom } t, t, p \cdot i, w' \models \pi_E$ and $t, w', w \models \pi_F$. By ind. hyp., the first one is iff there exists $j \ge i$ such that $w' = p \cdot j$ and $t(p \cdot (i+1)) \cdots t(p \cdot j) \in L(E)$. The second one is thus iff there exists $k \ge j$ such that $w = p \cdot k$ and $t(p \cdot (j+1)) \cdots t(p \cdot k) \in L(F)$. The language conditions are iff $t(p \cdot (i+1)) \cdots t(p \cdot k) \in L(E \cdot F)$.
- E^* : $t, p \cdot i, w \models (\pi_E)^*$ iff there exist $n \in \mathbb{N}$ and $w_0, \ldots, w_n \in \text{dom } t$ such that $w_0 = p \cdot i, w_n = w$, and $t, w_k, w_{k+1} \models \pi_E$ for all $0 \leq k < n$. Using the ind. hyp. this is iff either n = 0 and then $w = p \cdot i$ or there exist $i = i_0 \leq i_1 \leq \cdots \leq i_n$ s.t. $w_k = p \cdot i_k$ for all $0 \leq k \leq n$ and $t(p \cdot i_k + 1) \cdots t(p \cdot i_{k+1}) \in L(E)$ for all k < n. The language conditions are iff $t(p \cdot i + 1) \cdots t(p \cdot i_n) \in L(E^*)$.

(b) Conclude, assuming that R_a is given as a rational expression for each a ∈ Σ. Hint: You may use the fact (due to Antimirov) that, for any rational expression E and a ∈ Σ, we can construct a finite set ∂_aE of rational expressions over the syntax (†) such that L(E) = λ(E) ∪ ∪_{a∈Σ}({a} · ∪_{F∈∂aE} L(F)) where λ(E) = {ε} if ε ∈ L(E) and λ(E) = Ø otherwise.

For a rational expression E with $L(E) = \lambda(E) \cup \bigcup_{a \in \Sigma} (\{a\} \cdot \bigcup_{F \in \partial_a E} L(F))$, we define a node formula

$$\varphi_E \stackrel{\text{def}}{=} \varphi_{\lambda(E)} \lor \bigvee_{a \in \Sigma} \langle \downarrow \rangle \big(\text{first} \land a \land \bigvee_{F \in \partial_a E} \langle \pi_F \rangle \text{last} \big)$$

where $\varphi_{\{\varepsilon\}} \stackrel{\text{def}}{=} \mathsf{leaf}$ and $\varphi_{\emptyset} \stackrel{\text{def}}{=} \bot$. Then $t, w \models \varphi_E$ if and only if the sequence of child positions of w in t is labelled by a word in L(E). For example, if $E = (ab)^*$, then $\lambda(E) = \{\varepsilon\}$, $\partial_a E = \{b \cdot (ab)^*\}$, and $\partial_b E = \emptyset$, and we obtain the formula

$$\varphi_{(ab)^*} = \mathsf{leaf} \lor \langle \downarrow \rangle (\mathsf{first} \land a \land \langle \rightarrow; b?; (\rightarrow; a?; \rightarrow; b?)^* \rangle \mathsf{last}) \lor \langle \downarrow \rangle (\mathsf{first} \land b \land \bot) ,$$

which is equivalent to:

$$\mathsf{leaf} \lor \langle \downarrow \rangle (\mathsf{first} \land a \land \langle \rightarrow; b?; (\rightarrow; a?; \rightarrow; b?)^* \rangle \mathsf{last}) .$$

Finally, given a DTD $\mathcal{D} = (\Sigma, (R_a)_{a \in \Sigma}, I)$ where for all $a \in \Sigma$, $R_a = L(E_a)$ for a rational expression E_a , we define

$$\varphi_{\mathcal{D}} \stackrel{\text{def}}{=} \big(\bigvee_{a \in I} a\big) \wedge [\downarrow^*] \big(\bigwedge_{a \in \Sigma} a \Longrightarrow \varphi_{E_a}\big) \ .$$