1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar \(G = \langle N, \Sigma, T_\alpha, T_\beta, S \rangle \), the trees in \(\mathcal{L}(G) \) are called derived trees. We are interested here in another tree structure, called a derivation tree, for which we propose a formalisation here. Let us assume for simplicity that all the foot nodes of auxiliary trees have the 'na' null adjunction annotation.

For an elementary tree \(\gamma \in T_\alpha \cup T_\beta \), we define its contents \(c(\gamma) \) to be a finite sequence over the alphabet \(Q \) defined as \(\{ q_A \mid A \in N \cup N_\downarrow \} \). Formally, we enumerate for this the labels in \(Q \) of its nodes in position order; the nodes labelled by \(\Sigma \cup N_{na} \) are ignored.

Consider for instance the TAG \(G_1 \) with \(N \) defined as \(\{ S, NP, VP \} \), \(\Sigma \) defined as \(\{ VBZ, NNP, NNS, RB \} \), \(T_\alpha \) defined as \(\{ eats, Bill, mushrooms \} \), \(T_\beta \) defined as \(\{ possibly \} \), and \(S \) defined as \(S \), where the elementary trees are shown below:

\[
\begin{array}{cccc}
S & NP & VP & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow \\
NP & VP & NNP \circ & NNS \circ \\
\lor & \lor & \downarrow & \downarrow \\
VBZ \circ & NP \downarrow & & \downarrow \\
(eats) & (Bill) & (mushrooms) & (possibly)
\end{array}
\]

Then \(eats \) has contents \(c(eats) = q_S, q_{NP\downarrow}, q_{VP\downarrow}, q_{NP\downarrow} \), \(c(Bill) = q_{NP} \), \(c(mushrooms) = q_{NP} \), and \(c(possibly) = q_{VP} \).

We now define a finite ranked alphabet \(\mathcal{F} \) defined as \(T_\alpha \cup T_\beta \cup \{ \varepsilon^{(0)} \} \). For an elementary tree \(\gamma \in T_\alpha \cup T_\beta \), its rank is \(r(\gamma) \) defined as the length of its contents. For the symbol \(\varepsilon \), its rank is \(r(\varepsilon) \) defined as 0. For a TAG \(G = \langle N, \Sigma, T_\alpha, T_\beta, S \rangle \), we construct a finite tree automaton \(\mathcal{A}_G \) defined as \(\langle Q, \mathcal{F}, \delta, q_{S\downarrow} \rangle \) where \(Q \) and \(\mathcal{F} \) are defined as above and

\[
\delta \equiv \{(q_A, \alpha^{(r(\alpha))}, c(\alpha)) \mid A \downarrow \in N \downarrow, \alpha \in T_\alpha, rl(\alpha) = A\} \\
\cup \{(q_A, \beta^{(r(\beta))}, c(\beta)) \mid A \in N, \beta \in T_\beta, rl(\beta) = A\} \\
\cup \{(q_A, \varepsilon^{(0)}) \mid A \in N\}
\]

where 'rl' returns the root label of the tree.
1. Give the finite automaton A_{G_1} associated with the example TAG G_1.

Solution:

\[Q = \{ q_{S↓}, q_{NP↓}, q_S, q_{VP}, q_{NP} \}, \]
\[F = \{ \textit{eats}^{(4)}, \textit{Bill}^{(1)}, \textit{mushrooms}^{(1)}, \textit{possibly}^{(1)}, \varepsilon^{(0)} \}, \]
\[\delta = \{ (q_{S↓}, \textit{eats}^{(4)}, q_S, q_{NP↓}, q_{VP}, q_{NP}), \]
\[(q_{NP↓}, \textit{Bill}^{(1)}, q_{NP}), \]
\[(q_{NP↓}, \textit{mushrooms}^{(1)}, q_{NP}), \]
\[(q_{S↓}, \varepsilon^{(0)}), \]
\[(q_{VP}, \textit{possibly}^{(1)}, q_{VP}), \]
\[(q_{VP}, \varepsilon^{(0)}), \]
\[(q_{NP}, \varepsilon^{(0)}) \} \]

2. Modify your automaton in order to also handle the trees \textit{real}, \textit{fake}, \textit{wants_to0}, \textit{wants_to1} $\in T_\beta$ shown below, where $TO\circ, JJ\circ \in \Sigma$:

\[
\begin{array}{lcc}
\text{NP} & \text{VP} & \text{VP} \\
JJ\circ & \text{NP}^{na} & \text{VP}^{na} & \text{VP}^{na} \\
\text{NP}^{na} & \text{VP}^{na} & \text{VP}^{na} & \text{VP}^{na} \\
\end{array}
\]

(\textit{real}) (\textit{fake}) (\textit{wants_to0}) (\textit{wants_to1})

We call the resulting tree adjoining grammar G_2.

Solution: Add \textit{someone}^{(1)}, \textit{real}^{(1)}, \textit{fake}^{(1)}, and \textit{wants_to}^{(3)} to F and the rules

\[
(q_{NP}, \textit{real}^{(1)}, q_{NP})
\]
\[
(q_{NP}, \textit{fake}^{(1)}, q_{NP})
\]
\[
(q_{VP}, \textit{wants_to0}^{(1)}, q_{VP})
\]
\[
(q_{NP}, \textit{wants_to1}^{(2)}, q_{VP}, q_{NP↓})
\]

to δ.

3. The intention that our finite automaton generates the derivation language $L_D(G) \overset{\text{def}}{=} L(A_G)$ of G. Can you figure out what should be the derivation tree of ‘Bill possibly wants to eat mushrooms’?
Solution:

\[
\begin{array}{c}
\varepsilon & \text{eats} & \text{Bill} \\
\varepsilon & \text{wants} & \text{mushrooms} \\
\varepsilon & \text{possibly} & \varepsilon
\end{array}
\]

[2] 4. Give a PDL node formula \(\varphi_2 \) such that \(L(\mathcal{A}_{g_2}) = \{ t \in T(\mathcal{F}) \mid t, \text{root} \models \varphi_2 \} \).

Solution:

\[
\varphi_1 \overset{\text{def}}{=} \varphi_{SL} \land [_1^*](
\begin{array}{c}
eats \implies (\downarrow; \text{first}?, \varphi_S?; \rightarrow; \varphi_{NP}?; \rightarrow; \varphi_{VP}?; \rightarrow; \varphi_{NP}?))_{\text{last}} \\
wants_{to0} \implies (\downarrow; \text{first}?, \varphi_{VP}?)_{\text{last}} \\
wants_{to1} \implies (\downarrow; \text{first}?, \varphi_{VP}?; \rightarrow; \varphi_{NP}?))_{\text{last}} \\
\text{Bill} \implies (\downarrow; \text{first}?, \varphi_{NP}?))_{\text{last}} \\
\text{real} \implies (\downarrow; \text{first}?, \varphi_{NP}?))_{\text{last}} \\
\text{fake} \implies (\downarrow; \text{first}?, \varphi_{NP}?))_{\text{last}} \\
\text{mushrooms} \implies (\downarrow; \text{first}?, \varphi_{NP}?))_{\text{last}} \\
\text{possibly} \implies (\downarrow; \text{first}?, \varphi_{VP}?)_{\text{last}} \\
\varepsilon \implies \text{leaf}
\end{array}
\)

where

\[
\begin{align*}
\varphi_{SL} & \overset{\text{def}}{=} \text{eats} \\
\varphi_{NP} & \overset{\text{def}}{=} \text{Bill} \lor \text{mushrooms} \\
\varphi_S & \overset{\text{def}}{=} \varepsilon \\
\varphi_{VP} & \overset{\text{def}}{=} \text{possibly} \lor \text{wants}_{to0} \lor \text{wants}_{to1} \lor \varepsilon \\
\varphi_{NP} & \overset{\text{def}}{=} \text{real} \lor \text{fake} \lor \varepsilon
\end{align*}
\]

1.1 Macro Tree Transducers

Let \(\mathcal{X} \) be a countable set of variables and \(\mathcal{Y} \) a countable set of parameters; we assume \(\mathcal{X} \) and \(\mathcal{Y} \) to be disjoint. For \(Q \) a ranked alphabet with arities greater than zero, we abuse notations and write \(Q(\mathcal{X}) \) for the alphabet of pairs \((q, x) \in Q \times \mathcal{X} \) with \(\text{arity}(q, x) \overset{\text{def}}{=} \text{arity}(q) - 1 \). This is just for convenience, and \((q, x)(t_1, \ldots, t_n)\) is really the term \(q(x, t_1, \ldots, t_n) \).

Syntax. A macro tree transducer (NMTT) is a tuple \(\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I) \) where \(Q \) is a finite set of states, all of arity \(\geq 1 \), \(\mathcal{F} \) and \(\mathcal{F}' \) are finite ranked alphabets, \(I \subseteq Q_1 \) is a set of root states of arity one, and \(\Delta \) is a finite set of term rewriting rules of the form \(q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e \) where \(q \in Q_{1+p} \) for some \(p \geq 0 \), \(f \in \mathcal{F}_n \) for some \(n \in \mathbb{N} \),
and \(e \in T(\mathcal{F}^t \cup Q(\mathcal{X}_n), \mathcal{Y}_p)\). Note that this imposes that any occurrence in \(e\) of a variable \(x \in \mathcal{X}\) must be as the first argument of a state \(q \in Q\).

Inside-Out Semantics. Given a NMTT, the *inside-out* rewriting relation over trees in \(T(\mathcal{F} \cup \mathcal{F}' \cup Q)\) is defined by: \(t \xrightarrow{\Delta} t'\) if there exist a rule \(q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e\) in \(\Delta\), a context \(C \in C(\mathcal{F} \cup \mathcal{F}' \cup Q)\), and two substitutions \(\sigma: \mathcal{X} \rightarrow T(\mathcal{F})\) and \(\rho: \mathcal{Y} \rightarrow T(\mathcal{F}')\) such that \(t = C[q(f(x_1, \ldots, x_n), y_1, \ldots, y_p)\sigma\rho]\) and \(t' = C[q\sigma\rho]\). In other words, in inside-out rewriting, when applying a rewriting rule \(q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e\), the parameters \(y_1, \ldots, y_p\) must be mapped to trees in \(T(\mathcal{F}')\), with no remaining states from \(Q\).

Similarly to context-free tree grammars, the *inside-out* transduction \([\mathcal{M}]_{IO}\) realised by \(\mathcal{M}\) is defined through inside-out rewriting semantics:

\[
[\mathcal{M}]_{IO} \overset{\text{def}}{=} \{(t, t') \in T(\mathcal{F}) \times T(\mathcal{F'}) \mid \exists q \in I, q(t) \xrightarrow{\Delta}^* t'\}.
\]

Example 1. Let \(\mathcal{F} \overset{\text{def}}{=} \{a(1), s(0)\}\) and \(\mathcal{F'} \overset{\text{def}}{=} \{f(3), a(1), b(1), s(0)\}\). Consider the NMTT \(\mathcal{M} = \{q(1), q(3)\}, \mathcal{F}, \mathcal{F}', \Delta, \{q\}\) with \(\Delta\) the set of rules

\[
\begin{align*}
q(a(x_1)) & \rightarrow q'(x_1, s, s) \\
q'(a(x_1), y_2) & \rightarrow q'(x_1, y_2, a(y_2)) \\
q'(a(x_1), y_2) & \rightarrow q'(x_1, b(y_1), a(y_2))
\end{align*}
\]

Then we have for instance the following derivation:

\[
q(a(a(s))) \xrightarrow{\Delta} q'(a(a(s)), s, s) \xrightarrow{\Delta} q'(a(s), b(s), b(s)) \xrightarrow{\Delta} q'(s, a(b(s)), b(b(s))) \xrightarrow{\Delta} f(a(b(s)), a(b(s)), b(b(s)))
\]

showing that \((a(a(s))), f(a(b(s)), a(b(s)), b(b(s))) \in \mathcal{M}\).

Exercise 2 (Monadic trees). An NMTT \(\mathcal{M}\) is called *linear* and *non-deleting* if, in every rule \(q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e\) in \(\Delta\), the term \(e\) is linear in \(\{x_1, \ldots, x_n\}\) and \(\{y_1, \ldots, y_p\}\), i.e. each variable and each parameter occurs exactly once in the term \(e\).

Let \(\mathcal{F} \overset{\text{def}}{=} \{a(1), b(1), s(0)\}\). Observe that trees in \(T(\mathcal{F}')\) are in bijection with contexts in \(C(\mathcal{F}')\) and words over \(\{a, b\}^*\). For a context \(C\) from \(C(\mathcal{F}')\), we write \(C^R\) for its *mirror context*, read from the leaf to the root. For instance, if \(C = a(b(a(\square))))\), then \(C^R = a(a(b(a(\square))))\). Formally, let \(n \in \mathbb{N}\) be such that \(\text{dom } C = \{0^m \mid m \leq n\}\); then \(C(0^n) = \square\) and \(C(0^m) \in \{a, b\}\) for \(m < n\). Then \(C^R\) is defined by \(\text{dom } C^R \overset{\text{def}}{=} \text{dom } C\), \(C^R(0^n) \overset{\text{def}}{=} \square\), and \(C^R(0^m) \overset{\text{def}}{=} C^R(0^{n-m})\) for all \(m < n\).
1. Give a linear and non-deleting NMTT \(\mathcal{M} \) from \(\mathcal{F}' \) to \(\mathcal{F}' \) such that \(\mathcal{M}_{10} = \{(C[\$], C[C^R[\$]]) \mid C \in C(\mathcal{F}')\} \). In terms of words over \(\{a, b\}^* \), this transducer maps \(w \) to the palindrome \(ww^R \). Is \(\mathcal{M}_{10}(T(\mathcal{F})) \) a recognisable tree language?

Solution: Let \(\mathcal{M} = (Q, \mathcal{F}', \mathcal{F}', \Delta, I) \) where \(Q = \{q_1, q_2\} \), \(I = \{q_1\} \), and \(\Delta \) is the set of rules

\[
q_1(\$) \rightarrow \$ \quad q_2(a(x)) \rightarrow a(q_1, a(\$)) \quad q_2(b(x)) \rightarrow b(q_1, b(\$)) \quad q_2(\$, y_1) \rightarrow y_1 \quad q_2(a(x), y_1) \rightarrow a(q_1, a(y_1)) \quad q_2(b(x), y_1) \rightarrow b(q_1, b(y_1)).
\]

We leave the proof of correctness to the reader.

This macro tree transducer is deterministic, and complete. Because a monadic tree language over \(\mathcal{F}' \) is recognisable if and only if the corresponding word language over \(\{a, b\} \) is recognisable, \(\mathcal{M}_{10}(T(\mathcal{F})) \) is not a recognisable tree language. In turn, this shows that recognisable tree languages are not closed under linear non-deleting macro transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar \(\mathcal{G}_2 \) from Exercise 1.

1. Give a linear non-deleting NMTT \(\mathcal{M}_2 \) that maps the derivation trees of \(\mathcal{G}_2 \) to its derived trees. Formally, we want \(\text{dom}(\mathcal{M}_2) = L_D(\mathcal{G}_2) \) and \(\mathcal{M}_2_{10}(T(\mathcal{F})) = L_T(\mathcal{G}_2) \).

Solution: We set \(\mathcal{F}' = N \uplus \Sigma, Q = \{q_S^{(1)}, q_S^{(2)}, q_{NP}^{(1)}, q_{NP}^{(2)}, q_{VP}^{(2)}\}, I = \{q_S^{(1)}\} \), and \(\Delta \):

\[
q_S^{(1)}(\text{eats}(x_1, x_2, x_3, x_4)) \rightarrow q_S^{(2)}.
\]
Exercise 4 (Context-free tree grammar). Let $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ be an NMTT and $\mathcal{A} = (Q', \mathcal{F}, \delta, I')$ be an NFTA.

1. Show that $L \overset{\text{def}}{=} [\mathcal{M}]_{IO}(L(\mathcal{A})) = \{ t' \in T(\mathcal{F}') \mid \exists t \in L(\mathcal{A}). (t, t') \in [\mathcal{M}]_{IO} \}$ is an inside-out context-free tree language, i.e., show how to construct a CFTG $\mathcal{G} = (N, \mathcal{F}', S, R)$ such that $L_{IO}(\mathcal{G}) = L$.

Solution: Let

$N \overset{\text{def}}{=} (Q \times Q') \cup \{ S \}$

where each pair $(q^{(1+p)}, q')$ from $Q \times Q'$ has arity p, and

$R \overset{\text{def}}{=} \{ S \to (q, q')^{(0)} \mid q \in I, q' \in I' \}$

$\cup \{ (q, q')^{(p)}(y_1, \ldots, y_p) \to e[q_i/x_i] \mid \exists n. \exists f \in \mathcal{F}_n. q^{(1+p)}(f(x_1, \ldots, x_n), y_1, \ldots, y_n) \to e \in \Delta$ and $(q', f, q'_1, \ldots, q'_n) \in \delta \}$

where we abuse notation as indicated at the beginning of the section. For a tree $e \in T(N \cup \mathcal{F}')$, we let $N(e) = \{(q_1, q'_1), \ldots, (q_n, q'_n)\}$ be the set of symbols from N occurring inside e.

Let us show that, for all $k \in \mathbb{N}$, for all $e \in T(N \cup \mathcal{F}')$ with $N(e) = \{(q_1, q'_1), \ldots, (q_n, q'_n)\}$ and for all $t' \in T(\mathcal{F}')$, $e \overset{IO^k}{\Rightarrow} G t'$ if and only if $\exists t_1, \ldots, t_n \in T(\mathcal{F})$ such that $e[t_i/q'_i]_{1 \leq i \leq n} \overset{IO^k}{\Rightarrow} M t'$ and for all $1 \leq i \leq n, t_i \overset{\delta^*}{\Rightarrow} A q'_i$.

We prove the statement by induction, first over k the number of rewriting steps in \mathcal{G} and \mathcal{M}, and second over the term e. We only prove the ‘if’ direction, as the ‘only if’ one is similar.

If Assume $e \overset{IO^k}{\Rightarrow} G t'$.

If $e = f(e_1, \ldots, e_m)$ for some $m \in \mathbb{N}$ and $f \in \mathcal{F}'_m$, then this rewrite can be decomposed as

$$e = f(e_1, \ldots, e_m) \overset{IO^k}{\Rightarrow} G f(t'_1, \ldots, t'_m) = t'$$

where for all $1 \leq j \leq m, t'_j \in T(\mathcal{F}')$ is such that

$$e_j \overset{IO^{k_j}}{\Rightarrow} G t'_j$$

and

$$k = \sum_{1 \leq j \leq m} k_j$$
Let $N(e_j) = \{(q_{j,1}, q'_{j,1}), \ldots, (q_{j,n_j}, q'_{j,n_j})\}$; then $N(e) = \bigcup_{1 \leq j \leq m} N(e_j)$.

For each $1 \leq j \leq m$, by induction hypothesis on the subterms e_j since $k_j \leq k$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(F)$ such that

$$e_j[t_{j,i}/q'_{j,i}]_{1 \leq i \leq n_j} \xrightarrow{\text{IO}_{k_j}} t'_j$$

and

$$t_{j,i} \xrightarrow{\delta_{h^*}} q'_{j,i}$$

for all $1 \leq i \leq n_j$. Thus

$$f(e_1, \ldots, e_m)[t_{j,i}/q'_{j,i}]_{1 \leq j \leq m, 1 \leq i \leq n_j} \xrightarrow{\text{IO}_{k}} f(t'_1, \ldots, t'_m) = t'$$

as desired.

If $e = (q, q')(p)(e_1, \ldots, e_p)$ for some $p \in \mathbb{N}$ and $(q, q')(p) \in Q \times Q'$, then this rewrite can be decomposed as

$$e = (q, q')(p)(e_1, \ldots, e_p) \xrightarrow{\text{IO}_{k'}} (q, q')(p)(t'_1, \ldots, t'_p)$$

$$\xrightarrow{\text{IO}_G} e'[q'_i/x_i]_{1 \leq i \leq m}[t'_j/y_j]_{1 \leq j \leq p}$$

$$\xrightarrow{\text{IO}_{k''}} t'$$

where for all $1 \leq j \leq m$, $t'_j \in T(F')$ is such that

$$e_j \xrightarrow{\text{IO}_{k_j}} t'_j$$

and $k' = \sum_{1 \leq j \leq m} k_j$ and $k = 1 + k' + k''$; also $N(e) = \{(q, q')\} \bigcup \bigcup_{1 \leq j \leq p} N(e_j)$ where $N(e_j) = \{(q_{j,1}, q'_{j,1}), \ldots, (q_{j,n_j}, q'_{j,n_j})\}$. Such a rule application relies on the existence of $m \in \mathbb{N}$ and $f \in F_m$ such that there are rules $q^{(1+p)}(f(x_1, \ldots, x_m), y_1, \ldots, y_p) \rightarrow e' \in \Delta$ and $(q', f, q'_{1,p}, \ldots, q'_{m,p}) \in \delta$.

By induction hypothesis on $k_j < k$ for each $1 \leq j \leq p$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(F)$ such that

$$e_j[t_{j,i}/q'_{j,i}]_{1 \leq i \leq n_j} \xrightarrow{\text{IO}_{k_j}} t'_j$$

and

$$t_{j,i} \xrightarrow{\delta_{h^*}} q'_{j,i}$$

for all $1 \leq i \leq n_j$.
Furthermore, \(N(e'[t'_j/y_j]_{1 \leq j \leq p}[q'_i/x_i]_{1 \leq i \leq m}) = \{ (q_1, q'_1), \ldots, (q_m, q'_m) \} \) and by induction hypothesis over \(k'' < k \), there exist \(t_1, \ldots, t_m \in T(\mathcal{F}) \) such that
\[
e'[t'_j/y_j]_{1 \leq j \leq p}[t_i/x_i]_{1 \leq i \leq m} \overset{k''}{\Rightarrow}_M t'
\]
and
\[
t_i \overset{\delta_B^*}{\Rightarrow}_A q'_i
\]
for all \(1 \leq i \leq m \). Note that, because \((q', f, q'_1, \ldots, q'_m) \in \delta \), the latter imply
\[
f(t_1, \ldots, t_m) \overset{\delta_B^*}{\Rightarrow}_A f(q'_1, \ldots, q'_m) \overset{\delta_B}{\Rightarrow}_A q'.
\]
Thus, in \(M \), we have the rewrite
\[
e[f(t_1, \ldots, t_m)/q][t'_j, i/q'_j, i]_{1 \leq j \leq m, 1 \leq i \leq n_i}
\]
\[
= q^{(1+p)}(f(t_1, \ldots, t_m), e_1[t'_{1, i}/q'_1, i]_{1 \leq i \leq n_1}, \ldots, e_m[t'_{m, i}/q'_m, i]_{1 \leq i \leq n_m})
\]
\[
= q^{(1+p)}(f(x_1, \ldots, x_m), e_1[t'_{1, i}/q'_1, i]_{1 \leq i \leq n_1}, \ldots, e_m[t'_{m, i}/q'_m, i]_{1 \leq i \leq n_m})[t_1/x_1, \ldots, t_m/x_m]
\]
\[
\overset{10}{\Rightarrow}_{\mathcal{M}} q^{(1+p)}(f(x_1, \ldots, x_m), t'_1, \ldots, t'_p)[t_1/x_1, \ldots, t_m/x_m]
\]
\[
\overset{10}{\Rightarrow}_{\mathcal{M}} e'[t'_i/x_i]_{1 \leq i \leq m}[t'_j/y_j]_{1 \leq j \leq p}
\]
\[
\overset{10}{\Rightarrow}_{\mathcal{M}} t'
\]
as desired.

2 Scope Ambiguities and Propositional Attitudes

Exercise 5. One considers the two following signatures:

\[
(\Sigma_{\text{ABS}}) \quad \text{SUZY} : NP \\
\text{BILL} : NP \\
\text{MUSHROOM} : N \\
\quad \text{A} : N \rightarrow (NP \rightarrow S) \rightarrow S \\
\quad \text{A}_{\text{inf}} : N \rightarrow (NP \rightarrow S_{\text{inf}}) \rightarrow S_{\text{inf}} \\
\quad \text{EAT} : NP \rightarrow NP \rightarrow S_{\text{inf}} \\
\quad \text{TO} : (NP \rightarrow S_{\text{inf}}) \rightarrow VP \\
\quad \text{WANT} : VP \rightarrow NP \rightarrow S
\]
(Σ_{S-FORM})

\begin{align*}
\textbf{Suzy} & : \text{string} \\
\textbf{Bill} & : \text{string} \\
\textit{mushroom} & : \text{string} \\
\textit{a} & : \text{string} \\
\textit{eat} & : \text{string} \\
\textit{to} & : \text{string} \\
\textbf{wants} & : \text{string}
\end{align*}

where, as usual, \textit{string} is defined to be \(o \rightarrow o \) for some atomic type \(o \).

One then defines a morphism \((\mathcal{L} \text{_{SYNT}} : \Sigma_{\text{ABS}} \rightarrow \Sigma_{S\text{-FORM}})\) as follows:

\begin{align*}
\mathcal{L} \text{_{SYNT}}(NP) & := \text{string} \\
\mathcal{L} \text{_{SYNT}}(N) & := \text{string} \\
\mathcal{L} \text{_{SYNT}}(S) & := \text{string} \\
\mathcal{L} \text{_{SYNT}}(S_{\text{inf}}) & := \text{string} \\
\mathcal{L} \text{_{SYNT}}(VP) & := \text{string} \\
\mathcal{L} \text{_{SYNT}}(\text{SUZY}) & := \textbf{Suzy} \\
\mathcal{L} \text{_{SYNT}}(\text{BILL}) & := \textbf{Bill} \\
\mathcal{L} \text{_{SYNT}}(\text{MUSHROOM}) & := \textit{mushroom} \\
\mathcal{L} \text{_{SYNT}}(A) & := \lambda xy. y (a + x) \\
\mathcal{L} \text{_{SYNT}}(A_{\text{inf}}) & := \lambda xy. y (a + x) \\
\mathcal{L} \text{_{SYNT}}(\text{EAT}) & := \lambda xy. y + \text{eat} + x \\
\mathcal{L} \text{_{SYNT}}(\text{TO}) & := \lambda x. \text{to} + (x \epsilon) \\
\mathcal{L} \text{_{SYNT}}(\text{WANT}) & := \lambda xy. y + \textbf{wants} + x
\end{align*}

where, as usual, the concatenation operator (+) is defined as functional composition, and the empty word (\(\epsilon \)) as the identity function.

1. Give two different terms, say \(t_0 \) and \(t_1 \), such that:

\[\mathcal{L} \text{_{SYNT}}(t_0) = \mathcal{L} \text{_{SYNT}}(t_1) = \textbf{Bill} + \textbf{wants} + \textit{to} + \textit{eat} + \textit{a} + \textit{mushroom} \]

\textbf{Solution:}

\[t_0 = \text{WANT} \left(\text{TO} \left(\lambda x. A_{\text{inf}} \text{MUSHROOM} (\lambda y. \text{EAT} y x) \right) \right) \text{BILL} \]
\[t_1 = \text{A MUSHROOM} (\lambda y. \text{WANT} (\text{TO} (\lambda x. \text{EAT} y x)) \text{BILL}) \]

\textbf{Exercise 6.} One considers a third signature :
suzy : ind
bill : ind
mushroom : ind → prop
eat : ind → ind → prop
want : ind → prop → prop

One then defines a morphism \(\mathcal{L}_{\text{SEM}} : \Sigma_{\text{ABS}} \rightarrow \Sigma_{\text{L-FORM}} \) as follows:

\[
\begin{align*}
NP & := \text{ind} \\
N & := \text{ind} \rightarrow \text{prop} \\
S & := \text{prop} \\
S_{\text{inf}} & := \text{prop} \\
VP & := \text{ind} \rightarrow \text{prop} \\
SUZY & := \text{suzy} \\
BILL & := \text{bill} \\
MUSHROOM & := \text{mushroom} \\
A & := \lambda xy. \exists z. (xz) \land (yz) \\
A_{\text{inf}} & := \lambda xy. \exists z. (xz) \land (yz) \\
EAT & := \lambda xy. \text{eat} \; yx \\
TO & := \lambda x. x \\
WANT & := \lambda xy. \text{want} \; y \; (xx)
\end{align*}
\]

1. Compute the different semantic interpretations of the sentence Bill wants to eat a mushroom, i.e., compute \(\mathcal{L}_{\text{SEM}}(t_0) \) and \(\mathcal{L}_{\text{SEM}}(t_1) \).

Solution:

\[
\begin{align*}
\mathcal{L}_{\text{SEM}}(t_0) & = \text{want} \; \text{bill} \; (\exists z. (\text{mushroom} \; z) \land (\text{eat} \; \text{bill} \; z)) \\
\mathcal{L}_{\text{SEM}}(t_1) & = \exists z. (\text{mushroom} \; z) \land (\text{want} \; \text{bill} \; (\text{eat} \; \text{bill} \; z))
\end{align*}
\]

Exercise 7. One extends \(\Sigma_{\text{ABS}} \) and \(\mathcal{L}_{\text{SYNT}} \), respectively, as follows:

\[
\begin{align*}
(\Sigma_{\text{ABS}}) & \quad \text{WANT2} : \quad NP \rightarrow VP \rightarrow NP \rightarrow S \\
(\mathcal{L}_{\text{SYNT}}) & \quad \text{WANT2} := \lambda yz. z + \text{wants} + x + y
\end{align*}
\]

[1] 1. Extend \(\mathcal{L}_{\text{SEM}} \) accordingly in order to allow for the analysis of a sentence such as Bill wants Suzy to eat a mushroom.
Exercise 8. One extends Σ_{ABS} as follows:

\[\begin{align*}
(\Sigma_{\text{ABS}}) & \quad \text{EVERYONE} : (NP \to S) \to S \\
& \quad \text{THINK} : S \to NP \to S
\end{align*} \]

in order to allow for the analysis of the following sentence:

(1) everyone thinks Bill wants to eat a mushroom.

1. Extend $\Sigma_{\text{S-FORM}}, \mathcal{L}_{\text{SYNT}}, \Sigma_{\text{L-FORM}},$ and \mathcal{L}_{SEM} accordingly.

Solution:

\[\begin{align*}
(\Sigma_{\text{S-FORM}}) & \quad \text{everyone} : \text{string} \\
& \quad \text{thinks} : \text{string} \\
(\mathcal{L}_{\text{SYNT}}) & \quad \text{EVERYONE} := \lambda x. x \text{everyone} \\
& \quad \text{THINK} := \lambda xy. y + \text{thinks} + x \\
(\Sigma_{\text{L-FORM}}) & \quad \text{human} : \text{ind} \to \text{prop} \\
& \quad \text{think} : \text{ind} \to \text{prop} \to \text{prop} \\
(\mathcal{L}_{\text{SEM}}) & \quad \text{EVERYONE} := \lambda x. \forall y. (\text{human} y) \to (x y) \\
& \quad \text{THINK} := \lambda xy. \text{think} y x
\end{align*} \]

2. Give the several λ-terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:

\[\begin{align*}
\text{EVERYONE} (\lambda x. \text{THINK} (\text{WANT} (\text{TO} (\lambda z. \text{INF MUSHROOM} (\lambda y. \text{EAT} y z))) \text{BILL}) x) \\
\text{EVERYONE} (\lambda x. \text{THINK} (\text{A MUSHROOM} (\lambda y. \text{WANT} (\text{TO} (\lambda z. \text{EAT} y z))) \text{BILL})) x) \\
\text{EVERYONE} (\lambda x. \text{A MUSHROOM} (\lambda y. \text{THINK} (\text{WANT} (\text{TO} (\lambda z. \text{EAT} y z))) \text{BILL}) x)) \\
\text{A MUSHROOM} (\lambda y. \text{EVERYONE} (\lambda x. \text{THINK} (\text{WANT} (\text{TO} (\lambda z. \text{EAT} y z))) \text{BILL}) x))
\end{align*} \]