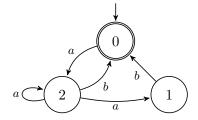
Partiel

Durée : 2 heures. Tous les documents sur support papier sont autorisés. Les nombres [n] en marge sont des indications de durée ou de difficulté, pas nécessairement du nombre de points associés à chaque question. Toutes les réponses doivent être justifiées.

Exercice 1 (Automates). On considère l'automate fini suivant :



- [1] 1. Calculer une expression rationnelle équivalente en utilisant un algorithme par élimination d'états (Brzozowski-McCluskey ou McNaughton-Yamada).
- [1] 2. Construire l'automate minimal canonique équivalent.

Exercice 2 (Expressions étendues). On considère des expressions rationnelles étendues sur un alphabet Σ , définies par la syntaxe abstraite :

$$E ::= \emptyset \mid a \mid E + E \mid E \cdot E \mid E^* \mid E \cap E \mid -E$$

où $a \in \Sigma$. La sémantique dénotationnelle est étendue par $L(E \cap F) \stackrel{\text{def}}{=} L(E) \cap L(F)$ et $L(-E) \stackrel{\text{def}}{=} \Sigma^* \setminus E$.

- 1. Montrer que l'on sait décider le problème du vide des expressions étendues, c'està-dire pour une expression E donnée en entrée, déterminer si $L(E)=\emptyset$. Quelle complexité obtenez-vous?
- 2. Montrer que l'on sait décider en temps polynomial le problème du mot des expressions étendues, c'est-à-dire pour une expression E et un mot $w \in \Sigma^*$ données en entrée, déterminer si $w \in L(E)$.

Exercice 3 (Taille des automates et des grammaires). Soient k > 0 et $\Sigma \stackrel{\text{def}}{=} \{a, b\}$. On considère le langage $L_k \stackrel{\text{def}}{=} \{uv\$v'u^R \mid u \in \Sigma^k, v, v' \in \Sigma^*\}$ où u^R dénote le miroir de u.

- [3] 1. Montrer que tout automate fini non déterministe reconnaissant L_k a au moins 2^k états.
- [1] 2. Donner pour tout k une grammaire algébrique de taille O(k) qui génère L_k .

Exercice 4 (Langages algébriques).

- [2] 1. Montrer que le langage $L \stackrel{\text{def}}{=} \{ww^R w \mid w \in \{a,b\}^*\}$ n'est pas algébrique, où w^R dénote le mot miroir de w.
- [3] 2. Montrer que $\{a, b\}^* \setminus L$ est algébrique.
- [3] 3. Montrer que le problème, étant donné en entrée un langage algébrique sur $\{a,b\}^*$, de savoir s'il contient un palindrome pair, est indécidable. *Indice : réduire depuis le problème de correspondance de* POST.

Exercice 5 (Grammaires (fortement) LL).

1. Soit la grammaire algébrique

$$S \to aA \mid bAb$$
$$A \to ab \mid a$$

- [2] (a) Est-elle LL(k) pour un certain k? Est-elle fortement LL(k) pour un certain k?
- [1] (b) Existe-t'il une grammaire LL(1) équivalente? Une grammaire LL(0) équivalente?
- 2. Montrer que si une grammaire \mathcal{G} est $\mathrm{LL}(k)$, alors on peut construire une grammaire fortement $\mathrm{LL}(k)$ \mathcal{G}' équivalente, qui utilise des non-terminaux de la forme (A,F) où $F\subseteq \mathrm{Suiv}_k(A)$. Indice: Les dérivations gauches de \mathcal{G}' doivent être telles que, $\mathrm{si}(S,\{\varepsilon\})\Rightarrow_{\mathrm{lm},\mathcal{G}'}^*u(A,F)\delta$ pour $u\in\Sigma^*$ et $\delta\in(N\cup\Sigma)^*$, alors $F=\mathrm{Prem}_k(\delta)$; c'est à démontrer dans votre réponse.