
Unambiguous Finite Automata

Home assignment to hand in before or on February 15, 2018.

F
eb

ru
ar

y 1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28

Electronic versions (PDF only) can be sent by email to 〈sylvain.schmitz@lsv.fr〉,
paper versions should be handed in on the 15th or put in my mailbox at LSV, ENS

Cachan. No delays. The numbers in the margins next to exercises are indications

of time and difficulty, not necessarily of the points you might earn answering them.

In a nondeterministic finite automaton, a word w might have several different ac-
cepting runs. The number of these accepting runs is called the ambiguity degree of w. It
turns out that automata with restricted ambiguity degrees have good algorithmic prop-
erties. It is also a domain of formal language theory where a bit of linear algebra comes
in handy.

1 Ambiguity in Automata

Formally, let A = 〈Q,Σ, δ, I, F 〉 be a nondeterministic finite automaton. To simplify
matters, we only work in this assignment with ‘real-time’ automata where δ ⊆ Q×Σ×Q,
i.e. there are no ε-transitions.

Recall that a run on a word w = a1 · · · an ∈ Σ∗ in A is a finite sequence of steps
q0

a1−→ q1 · · · qn−1
a`−→ q` where (qi, ai+1, qi+1) ∈ δ for all 0 ≤ i < `. Such a run is accepting

if q0 ∈ I and q` ∈ F . For a word w, let degA(w) denote the number of accepting runs
on w in A; we call this the ambiguity degree of w.

Exercise 1 (Ambiguity Degree). The ambiguity degree degA of an automaton A is the
function from N to N mapping ` to maxw∈Σ≤` deg(w) where Σ≤` denotes the set of words
of length at most ` over Σ. An automaton A is

unambiguous if degA(`) ≤ 1 for all `,

finitely ambiguous if there exists k ∈ N such that degA(`) ≤ k for all `, and

polynomially ambiguous if there exists p a polynomial function such that degA(`) ≤
p(`) for all `.

mailto:sylvain.schmitz@lsv.fr

L3 2017–2018 Formal Languages February 1, 2018

1. What is the ambiguity degree of the following automata? Is the automaton unam-[1]

biguous, finitely ambiguous, polynomially ambiguous?

(a)
0 1

a

a a

(b)

0

1

2

a

a

a

(c)

0

0

1

1

n− 1

n− 1

n

n

a

a

a

a

a

a

a

a

(d)

0 1

b

a

a

2. What is the maximal ambiguity degree one can obtain with an n-states automaton?[1]

Provide a family of automata that reaches this bound.

Exercise 2 (Weighted Automata). Weighted automata can be defined in general over
any semiring, but for the purposes of this homework assignment, we will only consider
the case of the semiring (N,+, ·, 0, 1). A weighted finite automaton is then a tuple W =
〈Q,Σ,N, δ, I, F 〉 where Q is a finite set of states, Σ a finite alphabet, δ ⊆ Q×Σ×N×Q
is a finite transition relation, and I, F ⊆ Q are sets of initial and final states.

A run over a word w = a1 · · · a` ∈ Σ∗ in W is a finite sequence of steps q0
a1,n1−−−→

q1
a2,n2−−−→ q2 · · · q`−1

a`,n`−−−→ qn where (qi, ai+1, ni+1, qi+1) ∈ δ for all 0 ≤ i < `, and
associates the weight n1 · n2 · · ·n` to w. Such a run is accepting if q0 ∈ I and q` ∈ F .
The weight weightW(w) of a word w in W is defined as the sum of the weights of the
accepting runs over w in W.

2

L3 2017–2018 Formal Languages February 1, 2018

1. Show that, given a nondeterministic finite automaton A, one can construct a[1]

weighted finite automaton of the same size such that degA(w) = weightW(w)
for all w ∈ Σ∗.

2. Show that, given a weighted finite automaton W, one can construct an equivalent[1]

normalised weighted finite automatonW ′ of the same size. Being equivalent means
here that weightW(w) = weightW ′(w) for all w ∈ Σ∗; being normalised means here
that for all q, q′ ∈ Q and a ∈ Σ, δ′ contains exactly one transition (q, a, n, q′) for
some n ∈ N.

3. Normalised weighted automata can also be understood in terms of matrices. We
view I and F as characteristic vectors in NQ with I(q) = 1 if q ∈ I and I(q) = 0
otherwise, and similarly for F . We also define a homomorphism η from Σ∗ to

NQ×Q by letting η(a) be the matrix with η(a)(q, q′)
def
= n whenever (q, a, n, q′) ∈ δ

(since W is normalised there is a unique such n); then η(ε)
def
= IdQ the identity

matrix and η(u · v)
def
= η(u) · η(v) as usual for a homomorphism.

Show that weightW(w) = tI · η(w) · F for all w ∈ Σ∗.[1]

2 Unambiguous Automata

Unambiguous finite automata form an intermediate class between deterministic and
nondeterministic ones. They strike an interesting balance between succinctness, which
we examine in Exercise 3, and tractable algorithms, which we will investigate in Section 3.

Exercise 3 (Succinctness). We compare in this exercise the succinctness of nondeter-
ministic, unambiguous, and deterministic finite automata: how many states are needed
in order to define a given regular language? The techniques employed in this exercise are
rooted in communication complexity, which is a framework for proving lower bounds.

1. Provide a family of unambiguous finite automata An with n + 1 states such that[1]

no deterministic finite automaton for L(An) has fewer than 2n states. Hint: Use
a family described in class; in that case it is not required to prove the lower bound
on the number of states of the corresponding deterministic automata.

2. Let L ⊆ Σ∗ be a language over Σ and C(L)
def
= {(u, v) ∈ Σ∗ × Σ∗ | u · v ∈ L} the

set of pairs that build up words of L.

A rectangular decomposition of L is a finite collection D = (Pk, Sk)1≤k≤C of pairs
of languages Pk, Sk ⊆ Σ∗ such that C(L) =

⋃
1≤k≤C Pk × Sk. The number of

pairs C ∈ N is called the complexity of the decomposition D. A rectangular
decomposition is disjoint if for all k 6= k′, (Pk × Sk) ∩ (Pk′ × Sk′) = ∅.
Show that, if A is an unambiguous finite automaton with n states, then there[2]

exists a disjoint rectangular decomposition of L(A) with complexity at most n.

3

L3 2017–2018 Formal Languages February 1, 2018

3. Let L ⊆ Σ∗ be a language over Σ∗ with a disjoint rectangular decomposition
D = (Pk, Sk)1≤k≤C of complexity C.

Let ~u = (ui)1≤i≤m and ~v = (vj)1≤j≤m be two collections of m finite words in Σ∗.
Consider the matrix ML

~u,~v in Zm×m where entry (i, j) holds 1 if uivj ∈ L and 0
otherwise.

Show that this matrix has rank rk(ML
~u,~v) ≤ C. Hint: Use the fact that matrix rank[2]

is subadditive.

4. Consider the family of matrices Mn in Z2n×2n defined inductively for all n ∈ N by

M0
def
=
[
0
]

Mn+1
def
=

[
Mn Mn

1 Mn

]
where ‘1’ denotes the matrix with all entries equal to 1.

Show that rk(Mn) = 2n − 1. Hint: You might want to consider the matrices Nn[1]

defined by

N0
def
=
[
1
]

Nn+1
def
=

[
Nn Nn

0 Nn

]
where ‘0’ denotes the matrix with all entries equal to 0.

5. Recall the family of nondeterministic finite automata An
def
= 〈Qn, {a, b}, δn, Qn, Qn〉

seen in class, where

Qn
def
= {0, . . . , n− 1} and δn

def
= {(i, a, i+ 1 mod n) | i < n} ∪ {(i, b, i) | 0 < i < n}

and all the states are both initial and final. This is depicted in Figure 1 on the
next page.

For a subset K ⊆ Qn, let wK
def
= wK,0 · · ·wK,n−1 be the word defined by wK,i

def
=

an−ibai if i ∈ K and wK,i
def
= an otherwise.

(a) Show that, for K,K ′ two subsets of Qn, wKwK′ ∈ L(An) if and only if[2]

K ∪K ′ (Qn.

(b) Provide for each n two families ~u = (um)0≤m<2n and ~v = (vm)0≤m<2n of 2n[2]

words such that rk(M
L(An)
~u,~v) = 2n − 1.

(c) Conclude that any unambiguous finite automaton for L(An) has at least 2n−1[0]

states.

3 Decision Problems

Decision problems on unambiguous finite automata are typically simpler than on non-
deterministic ones: universality, inclusion, and equivalence are in P instead of PSPACE in
the general case. We are going to show this in the case of universality in Exercise 5, but
first we show that we can efficiently decide whether a finite automaton is unambiguous.

4

L3 2017–2018 Formal Languages February 1, 2018

0

1

2

3

4

5

n−1

a

a

b

a

b

a

b

a

b

b

a

b

Figure 1: The automaton An.

Exercise 4 (Ambiguity). We consider the following decision problem:

instance a nondeterministic finite automaton A

question is A unambiguous?

Since ambiguity is a semantic property of the runs of A, the fact that this is decidable
at all is not immediate.

Show that this can be solved in deterministic time O(|A|2).[3]

Exercise 5 (Universality). We consider the following decision problem:

instance an unambiguous finite automaton A over an alphabet Σ

question is A universal, i.e. does L(A) = Σ∗?

Recall from your complexity course that the same problem on nondeterministic finite
automata is PSPACE-complete. But restricting our attention to unambiguous automata
allows to derive an algorithm in P, as we are going to see now. Interestingly, we are going
to leverage the lower bounds of Exercise 3 to obtain good algorithmic upper bounds.

1. Show that, if A has n states and is not universal, then there is a word w 6∈ L(A)[2]

of length at most n. Hint: Apply Exercise 3 Question 3.

2. We consider the weighted automaton W associated with A and its matrix repre-
sentation as in Exercise 2. Let

E(n)
def
=
∑
w∈Σn

η(w) E′(n)
def
=

∑
w∈Σ≤n

η(w)

5

L3 2017–2018 Formal Languages February 1, 2018

(a) Show that E(n) and E′(n) can be computed by induction on n in deterministic[2]

time polynomial in n and |A|. Deduce that degA(n) can be computed in
deterministic time polynomial in n and |A|.

(b) Deduce that the universality problem for unambiguous finite automata can[1]

be solved in P.

6

	Ambiguity in Automata
	Unambiguous Automata
	Decision Problems

