MPRI 2-27-1 November 25th, 2015

MPRI 2-27-1 Exam

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

1 Multiple Context-Free Grammars

Multiple Context-Free Grammars are a mildly context-sensitive formalism defined by Seki,
Matsumura, Fuji, and Kasami in 1991. The purpose of this section is to instantiate the
‘parsing as intersection’ framework in their case.

Exercise 1 (Multiple Context-Free Grammars). Let X be an infinite countable set of
variables. A multiple context-free grammar (MCFG) of rank m and degree d is a tuple
G = (N,X, P,S) where N is a finite alphabet of nonterminals A" with positive ranks
0 <r <m, Y a finite alphabet of terminals, S € N is the start symbol with rank 1, and
P is a finite set of productions p of form

A (g, apy) = B (@, i)y B (21,) (»)

where 0 < k < d is the degree of the production, A, BYI), o B,ir’“) are nonterminals in
N, zy1,...,2,, are distinct variables from X, and the concatenation o - - -, is a linear
string over X W {x11,..., %y, }, i.6. a string where each variable z; ; occurs exactly once.
Note that if £ = 0, this entails a; € X* for all 1 < 5 < ry.

An MCFG G defines a deduction system over judgements of form Fg A" (wy, ... w,)
where A is a nonterminal from N and wy, . . ., w, are finite strings over ¥. This deduction
system has a rule

Fg BV (wig, . wiy) o g BYY (wi, . wi,) (Fg)
Fg Ao (oo, ..., a0) g
for every @ in P and strings w1, ..., W, in X*, where o is the substitution z; ; — w; ;.

The language of a nonterminal A" is the set of r-tuples of strings defined by
Lg(A) < {(wn,. .. w;) € (5 | Fg A (wr, .. w,)}

The language generated by G is accordingly the language of its start symbol S™):

def

L(G) = {we X | kg SY(w)}.

MPRI 2-27-1 November 25th, 2015

Example 1 (Copy Language). The MCFG Gopy = ({SWV, AP} {a, b}, P, S) with produc-
tions

generates the language L(Geopy) = {ww | w € {a,b}*}.

[1] 1. Give a MCFG for the language Leross def {a™b"c"d™ | n,m > 0}.

Solution: This language of cross-serial dependencies—which should remind you of
the Swiss-German example of Shieber—is generated by the productions

§W(x,y) -~ AP(z,y)
AP (az, cy) :i— AV (z,7)
A@(zb,yd) :— AP (z,y)

AP (g, e) -

[2] 2. Show that any context-free language is generated by an MCFG of rank 1.

Solution: Given a CFG G = (N, X, P, S), we define the MCFG G’ = (N, %, P',S)
with a production

A(l)(’qulul ce e uk_lxkuk) — B§1)(l‘1), coog Blgl)(l‘k)
in P’ for each production A — ugBiuy - - - up_1 Bruy in P, where uyg, . . ., uj are strings
in X* and By, ..., By are nonterminals in V.

[1] 3. Show the converse: any MCFG of rank 1 generates a context-free language.

Solution: Simply observe that a production in an MCFG of rank 1 is of form

1 1
AW (uoziug - - U1 Trttg) — Bfr()l)(xw(l)), . ,BT(F(L) (T (k))-
where ug, ..., u; are strings in X*, By,..., By are nonterminals in N, and 7 is a
permutation of {1,...,k}. This production can then be associated with a context-
free production A — ugBiuy - - - up_1 Bruy,.

MPRI 2-27-1 November 25th, 2015

Exercise 2 (Emptiness of MCFGs). The first main ingredient in the ‘parsing as inter-
section’ framework is to prove that the emptiness problem is decidable for MCFGs. In
order to consider complexity questions, we define the size of a MCFG G = (N, X, P, S) by
summing & + > 7% (Ja| + 1) over all the productions @ in P.

[3] 1. Show that there exists a linear-time algorithm that inputs an MCFG G and returns
whether L(G) = 0.

Solution: We reduce in linear time the emptiness problem for MCFGs to that for
CFGs, the latter problem being decidable in linear time (it is a variant of HornSAT).

The key argument is that, according to (¢, F¢ A(TO)(U}OJ, ..., W) holds for some

strings wo 1, ..., Wo,, in X* if and only if there exists a production [p in P and the
1 < i < k judgements kg B9 (w;;,...,w;,) hold for some strings w;,...,w;,.
in X*.

We construct accordingly the CFG G’ = (N, X, P, S) with a production A — B; - - - By
for each production [g| in P. Then by the previous observation, Lg(A) = 0 iff
Lg(A) = (for all nonterminals A. This is clearly a linear-time reduction.

Exercise 3 (Intersection with a Regular Language). The second ingredient of the ‘parsing
as intersection’ framework is to show that the class of languages generated by MCFGs is
closed under intersection with regular languages.

[2] 1. Asa preliminary, show that for any MCFG, one can construct in linear time an equiva-
lent MCFG where the productions [p|in P with k& > 0 enforce a; € X'*, i.e. no terminal
symbol appears in such productions, in other words each «; is of form y; - - -y, for
Y1, - - -, Yn, some distinct variables taken among 11, .., Tpy, -

Solution: Consider some production[p|in P with & > 0 and some o = w; 0y1tj1 * ** Ujn;—1Yn,; Wjn,
with y1,...,y,, variables among w1 3,..., Ty, and wujg, ..., uj,, strings in 3*. We

introduce a fresh nonterminal C’](’lz) and variable z;, for each such u;, and define

def g
O = 2j0Y12j,1 " Zjm;—1Yn; Zjn; for each such a;. We then replace H with

A (o, ..., al) — Byl)(xl,l, e Ty)y e s B,(f’“)(xkﬁl, ey Thry)s C’Sg(zw), ..,cW (zro’nm).

7o 7 T T0sNrg

and for all 1 < j <rpand 0 < ¢ < n;
1
O (uz0) =~ .

This transformation results in an increase in size by < »7"% (|a;| + 1) + k for each
production [p in P, hence a linear increase overall.

MPRI 2-27-1 November 25th, 2015

[5] 2. Show that, given an MCFG G = (N, X, P, S) of with rank m and degree d satisfying
the restriction of the previous question, and given a nondeterministic finite automaton
A=(Q,%,0,I,F), we can compute an MCFG G’ such that L(G") = L(G) N L(.A) and
G’ € O(|g| - |Q[mmaxt+1.2),

. . (r)
Hint: Use nonterminals A/, ,
q1,915--qr-q)

such that ¢ A

A dlaral (wy,...,w,) if and only

if Fg A" (wy, ..., w,) and g; LA q; forall 1 <j <.

Solution: We can assume without loss of generality that G is in the form of the
previous question. We define two types of productions in P’

1. for each production of form
AT (uy, . uy,) =

in P, we create a production in P’

/Q(TO)

1,44 5--Grg 1 (o, -, tury) =
for every qi,4q}, ..., qr, q,, in Q such that g; = q; for each 1 < j < ry. This
requires to quantify over 2ry < 2m states for each production in P with k£ = 0.

2. for each production of form @ with k& > 0 and each a; of form y; -+ y;n;, we
create a production in P’
(r1)

/ ’
17Q1,17Q1717---7q1,r1 7(11’7~1

(rx)

Rt ko@h gooees@h,rg Qe g

14(T0)

Q17q/17--.,qr0,q40 (xl,l, ... 7-771,r1)7

(1,...,) — B

<oy (l’k’l,...,$k7rk>.

for all choices of states qo, g, - - -, @ros @5 Q1,15 - - - @y, SUch that, for every 1 <
j S To,

o if yj1 =z, for some 1 <¢ <k and 1 < /¢ <, then ¢; = giy,

o if yjn, =z for some 1 <i < kand 1 </ <y, then ¢; = q;,, and

o for every 1 < j < n; — 1, if y; ;41 = 2;y and yj41,j42 = @y p for some

1<4,i <k, 1<0<r;and ¢ < <ry, then q;, = g s

We need to pick 222;0 r; states for each such EI in P, but among those 2rg
are equal to some states in {qi,1,...,q},, }, and exactly half of the remaining

2 Zle r; — 21y states are unconstrained. Hence, we only need to quantify over
S o7 < (k + 1)m states for each H with k£ > 0.

[1] 3. Deduce an algorithm for the membership problem, which given an MCFG G = (N, %, P, S)

MPRI 2-27-1

November 25th, 2015

and a string w in ¥*, returns whether w € L(G).

Solution: As usual in the ‘parsing as intersection’ framework, given w, build A,, with
language {w} and |w| + 1 states, then use the two previous questions to construct
G’ for the language L(G') = L(G) N {w} and the previous exercise to test whether
L(G") = 0, which occurs if and only if w & L(G).

2 Covert Movements in Second-Order ACGs

In the exercises that follow, we only consider 2nd-order ACGs. This allows one not to
bother about linearity constraints, and to work in the setting of the simply-typed -

calculus.

Exercise 4. One considers the following three signatures:

PIERRE :
MAISON :

UNE

ACHETER :
VEUT :

/ Pierre/ :
/maison/ :
June/ :
/acheter/ :
Jveut/ :

NP

N

: N — QNP (XaBs)
QNP — VP

VP — NP — S

string
string
string (Xs-rorm)
string

string

where, as usual, string is defined to be o — o for some atomic type o;

P:

house

buy :

want

ind

:ind — prop (XL-FoRM)
ind — ind — prop

> ind — prop — prop

We then define two morphisms (Lsynt: Xaps — Ls-ForM, and Lsen: XABS — LL-FORM)

as follows:

MPRI 2-27-1 November 25th, 2015

(LsynT) NP — string (Lsem) NP + (ind — prop) — prop
N +— string N — ind — prop
QNP s string QNP +— (ind — prop) — prop
VP +— string VP + ind — prop
S > string S+ prop
PIERRE +— /Pierre/ PIERRE — \Z. 7 p
MAISON — /maison/ MAISON — house
UNE — A\z. [une/ + x UNE — Azy. 3z. (2 2) A (y 2)
ACHETER +— Ax. /acheter/ + x ACHETER — Azy. z (Az.buyy z)
VEUT — A\zy.y + /veut/ +x VEUT — Azy.y (Az. want z (z z))

where, as usual, the concatenation operator ‘+’ is defined as functional composition.

. Check that Lggy is such that the interpretation it gives to ACHETER is consistent wi
2] 1. Check that £ i h that the int tation it gi t i istent with
the interpretation it gives to the types.

Solution: We have that ACHETER is of type QNP — VP. Then, we have that :
Lsgm(QNP — VP) = ((ind — prop) — prop) — ind — prop (1)
We then compute the principal typing of the interpretation of ACHETER:
Azy. x (Az.buyyz) : ((ind — prop) — a) — ind — « (2)

Finally, we check that is an instance of .

[1] 2. Give a term, say t, such that:
Lsynt(t) = /Pierre/ + Jveut/ + [acheter/ + [une/ + /maison/

Then, compute Lsgpm(t).

Solution:
t = VEUT (ACHETER (UNE MAISON)) PIERRE

Lsenm(t) = want p (3z. (house z) A (buy p 2))

Exercise 5. Let us extend Yaps with the following constants (and types):

TRACE : XNP
X-ACHETER : XNP — XVP
X-VEUT : XVP — NP — XS
QR : QNP —» XS — S

MPRI 2-27-1 November 25th, 2015

[1] 1. We extend Lsynt accordingly as follows:

XNP +— string — string
XVP — string — string
XS > string — string

TRACE — Ax. %
X-ACHETER — Azy. /acheter/ + (zy)
X-VEUT — Azyz.y + /veut/ + (z 2)

QR — A\xy.yx
Compute the interpretation of the following term (according to the above extension of
Lsynt):
QR (UNE MAISON) (X-VEUT (X-ACHETER TRACE) PIERRE) (tre)
Solution:

Lsynt(te) = /Pierre/ + Jveut/ + [acheter/ + /une/ + /maison/

(3] 2. We also extend Lggy as follows:

XNP + ind — (ind — prop) — prop
XVP — ind — ind — prop
XS — ind — prop

TRACE — A\xy.yx
X-ACHETER — \wzy.wz (Az.buyy 2)
X-VEUT 5 - - -
QR |—> o e

Complete the above extension (i.e., provide the interpretations of X-VEUT and QR) in
such a way that Lsgpy () yields a de re interpretation.

Solution: Let:

X-VEUT ¥ \wzy. 2 (Az.want z (wy 2))
QR & ATy. Ty

Then:
Lspy(tre) = Jz. (house z) A (want p (buy p z))

	Multiple Context-Free Grammars
	Covert Movements in Second-Order ACGs

