
MPRI 2-27-1 November 25th, 2015

MPRI 2-27-1 Exam

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

1 Multiple Context-Free Grammars

Multiple Context-Free Grammars are a mildly context-sensitive formalism defined by Seki,
Matsumura, Fuji, and Kasami in 1991. The purpose of this section is to instantiate the
‘parsing as intersection’ framework in their case.

Exercise 1 (Multiple Context-Free Grammars). Let X be an infinite countable set of
variables. A multiple context-free grammar (MCFG) of rank m and degree d is a tuple
G = 〈N,Σ, P, S〉 where N is a finite alphabet of nonterminals A(r) with positive ranks
0 < r ≤ m, Σ a finite alphabet of terminals, S(1) ∈ N is the start symbol with rank 1, and
P is a finite set of productions p of form

A(r0)(α1, . . . , αr0) :− B
(r1)
1 (x1,1, . . . , x1,r1), . . . , B

(rk)
k (xk,1, . . . , xk,rk). (p)

where 0 ≤ k ≤ d is the degree of the production, A(r0), B
(r1)
1 , . . . , B

(rk)
k are nonterminals in

N , x1,1, . . . , xk,rk are distinct variables from X , and the concatenation α1 · · ·αr0 is a linear
string over Σ] {x1,1, . . . , xk,rk}, i.e. a string where each variable xi,j occurs exactly once.
Note that if k = 0, this entails αj ∈ Σ∗ for all 1 ≤ j ≤ r0.

An MCFG G defines a deduction system over judgements of form `G A(r)(w1, . . . , wr)
where A(r) is a nonterminal from N and w1, . . . , wr are finite strings over Σ. This deduction
system has a rule

`G B(r1)
1 (w1,1, . . . , w1,r1) · · · `G B(rk)

k (wk,1, . . . , wk,rk)

`G A(r0)(α1σ, . . . , αr0σ)
(`G)

for every p in P and strings w1,1, . . . , wk,rk in Σ∗, where σ is the substitution xi,j 7→ wi,j.
The language of a nonterminal A(r) is the set of r-tuples of strings defined by

LG(A)
def
= {(w1, . . . , wr) ∈ (Σ∗)r | `G A(r)(w1, . . . , wr)} .

The language generated by G is accordingly the language of its start symbol S(1):

L(G)
def
= {w ∈ Σ∗ | `G S(1)(w)} .

MPRI 2-27-1 November 25th, 2015

Example 1 (Copy Language). The MCFG Gcopy = 〈{S(1), A(2)}, {a, b}, P, S〉 with produc-
tions

S(1)(xy) :− A(2)(x, y).

A(2)(ax, ay) :− A(2)(x, y).

A(2)(bx, by) :− A(2)(x, y).

A(2)(ε, ε) :− .

generates the language L(Gcopy) = {ww | w ∈ {a, b}∗}.

1.[1] Give a MCFG for the language Lcross
def
= {anbmcndm | n,m ≥ 0}.

Solution: This language of cross-serial dependencies—which should remind you of
the Swiss-German example of Shieber—is generated by the productions

S(1)(x, y) :− A(2)(x, y).

A(2)(ax, cy) :− A(2)(x, y).

A(2)(xb, yd) :− A(2)(x, y).

A(2)(ε, ε) :− .

2.[2] Show that any context-free language is generated by an MCFG of rank 1.

Solution: Given a CFG G = 〈N,Σ, P, S〉, we define the MCFG G ′ = 〈N,Σ, P ′, S〉
with a production

A(1)(u0x1u1 · · ·uk−1xkuk) :− B
(1)
1 (x1), . . . , B

(1)
k (xk).

in P ′ for each production A→ u0B1u1 · · ·uk−1Bkuk in P , where u0, . . . , uk are strings
in Σ∗ and B1, . . . , Bk are nonterminals in N .

3.[1] Show the converse: any MCFG of rank 1 generates a context-free language.

Solution: Simply observe that a production in an MCFG of rank 1 is of form

A(1)(u0x1u1 · · ·uk−1xkuk) :− B
(1)
π(1)(xπ(1)), . . . , B

(1)
π(k)(xπ(k)).

where u0, . . . , uk are strings in Σ∗, B1, . . . , Bk are nonterminals in N , and π is a
permutation of {1, . . . , k}. This production can then be associated with a context-
free production A→ u0B1u1 · · ·uk−1Bkuk.

MPRI 2-27-1 November 25th, 2015

Exercise 2 (Emptiness of MCFGs). The first main ingredient in the ‘parsing as inter-
section’ framework is to prove that the emptiness problem is decidable for MCFGs. In
order to consider complexity questions, we define the size of a MCFG G = 〈N,Σ, P, S〉 by
summing k +

∑r0
j=1(|αj|+ 1) over all the productions p in P .

1.[3] Show that there exists a linear-time algorithm that inputs an MCFG G and returns
whether L(G) = ∅.

Solution: We reduce in linear time the emptiness problem for MCFGs to that for
CFGs, the latter problem being decidable in linear time (it is a variant of HornSAT).

The key argument is that, according to (`G), `G A(r0)(w0,1, . . . , w0,r0) holds for some
strings w0,1, . . . , w0,r0 in Σ∗ if and only if there exists a production p in P and the
1 ≤ i ≤ k judgements `G B(ri)(wi,1, . . . , wi,ri) hold for some strings wi,1, . . . , wi,ri
in Σ∗.

We construct accordingly the CFG G ′ = 〈N,Σ, P ′, S〉 with a productionA→ B1 · · ·Bk

for each production p in P . Then by the previous observation, LG(A) = ∅ iff
LG′(A) = ∅ for all nonterminals A. This is clearly a linear-time reduction.

Exercise 3 (Intersection with a Regular Language). The second ingredient of the ‘parsing
as intersection’ framework is to show that the class of languages generated by MCFGs is
closed under intersection with regular languages.

1.[2] As a preliminary, show that for any MCFG, one can construct in linear time an equiva-
lent MCFG where the productions p in P with k > 0 enforce αj ∈ X ∗, i.e. no terminal
symbol appears in such productions, in other words each αj is of form y1 · · · ynj

for
y1, . . . , ynj

some distinct variables taken among x1,1, . . . , xk,rk .

Solution: Consider some production p in P with k > 0 and some αj = uj,0y1uj,1 · · ·uj,nj−1ynj
uj,nj

with y1, . . . , ynj
variables among x1,1, . . . , xk,rk and uj,0, . . . , uj,nj

strings in Σ∗. We

introduce a fresh nonterminal C
(1)
j,` and variable zj,` for each such uj,` and define

α′j
def
= zj,0y1zj,1 · · · zj,nj−1ynj

zj,nj
for each such αj. We then replace p with

Ar0(α′1, . . . , α
′
r0

) :− B
(r1)
1 (x1,1, . . . , x1,r1), . . . , B

(rk)
k (xk,1, . . . , xk,rk), C

(1)
1,0(z1,0), . . . , C

(1)
r0,nr0

(zr0,nr0
).

and for all 1 ≤ j ≤ r0 and 0 ≤ ` ≤ nj

C
(1)
j,` (uj,`) :− .

This transformation results in an increase in size by ≤
∑r0

j=1(|αj| + 1) + k for each
production p in P , hence a linear increase overall.

MPRI 2-27-1 November 25th, 2015

2.[5] Show that, given an MCFG G = 〈N,Σ, P, S〉 of with rank m and degree d satisfying
the restriction of the previous question, and given a nondeterministic finite automaton
A = 〈Q,Σ, δ, I, F 〉, we can compute an MCFG G ′ such that L(G ′) = L(G)∩L(A) and
|G ′| ∈ O(|G| · |Q|mmax(d+1,2)).

Hint: Use nonterminals A
(r)

q1,q′1,...,qr,q
′
r

such that `G′ A(r)

q1,q′1,...,qr,q
′
r
(w1, . . . , wr) if and only

if `G A(r)(w1, . . . , wr) and qj
wj−→A q′j for all 1 ≤ j ≤ r.

Solution: We can assume without loss of generality that G is in the form of the
previous question. We define two types of productions in P ′:

1. for each production of form

A(r0)(u1, . . . , ur0) :− .

in P , we create a production in P ′

A
(r0)

q1,q′1,...,qr0 ,q
′
r0

(u0, . . . , ur0) :− .

for every q1, q
′
1, . . . , qr0 , q

′
r0

in Q such that qj
uj−→A q′j for each 1 ≤ j ≤ r0. This

requires to quantify over 2r0 ≤ 2m states for each production in P with k = 0.

2. for each production of form (p) with k > 0 and each αj of form yj,1 · · · yj,nj
, we

create a production in P ′

A
(r0)

q1,q′1,...,qr0 ,q
′
r0

(α1, . . . , αr0) :−B(r1)

1,q1,1,q′1,1,...,q1,r1 ,q
′
1,r1

(x1,1, . . . , x1,r1),

. . . , B
(rk)

k,q1,k,q
′
1,k,...,qk,rk ,q

′
k,rk

(xk,1, . . . , xk,rk).

for all choices of states q0, q
′
0, . . . , qr0 , q

′
r0
, q1,1, . . . , q

′
k,rk

such that, for every 1 ≤
j ≤ r0,

• if yj,1 = xi,` for some 1 ≤ i ≤ k and 1 ≤ ` ≤ ri, then qj = qi,`,

• if yj,nj
= xi,` for some 1 ≤ i ≤ k and 1 ≤ ` ≤ ri, then q′j = q′i,`, and

• for every 1 ≤ j < nj − 1, if yj,j+1 = xi,` and yj+1,j+2 = xi′,`′ for some
1 ≤ i, i′ ≤ k, 1 ≤ ` ≤ ri, and q ≤ `′ ≤ ri′ , then q′i,` = qi′,`′ .

We need to pick 2
∑k

i=0 ri states for each such p in P , but among those 2r0
are equal to some states in {q1,1, . . . , q′k,rk}, and exactly half of the remaining

2
∑k

i=1 ri − 2r0 states are unconstrained. Hence, we only need to quantify over∑k
i=0 ri ≤ (k + 1)m states for each p with k > 0.

3.[1] Deduce an algorithm for the membership problem, which given an MCFG G = 〈N,Σ, P, S〉

MPRI 2-27-1 November 25th, 2015

and a string w in Σ∗, returns whether w ∈ L(G).

Solution: As usual in the ‘parsing as intersection’ framework, given w, buildAw with
language {w} and |w| + 1 states, then use the two previous questions to construct
G ′ for the language L(G ′) = L(G) ∩ {w} and the previous exercise to test whether
L(G ′) = ∅, which occurs if and only if w 6∈ L(G).

2 Covert Movements in Second-Order ACGs

In the exercises that follow, we only consider 2nd-order ACGs. This allows one not to
bother about linearity constraints, and to work in the setting of the simply-typed λ-
calculus.

Exercise 4. One considers the following three signatures:

pierre : NP

maison : N

une : N → QNP (ΣABS)

acheter : QNP → VP

veut : VP → NP → S

/Pierre/ : string

/maison/ : string

/une/ : string (ΣS-FORM)

/acheter/ : string

/veut/ : string

where, as usual, string is defined to be o→ o for some atomic type o;

p : ind

house : ind→ prop (ΣL-FORM)

buy : ind→ ind→ prop

want : ind→ prop→ prop

We then define two morphisms (LSYNT: ΣABS → ΣS-FORM, and LSEM: ΣABS → ΣL-FORM)
as follows:

MPRI 2-27-1 November 25th, 2015

(LSYNT) NP 7→ string
N 7→ string

QNP 7→ string
VP 7→ string
S 7→ string

pierre 7→ /Pierre/
maison 7→ /maison/

une 7→ λx. /une/+ x
acheter 7→ λx. /acheter/+ x

veut 7→ λxy. y + /veut/+ x

(LSEM) NP 7→ (ind→ prop)→ prop
N 7→ ind→ prop

QNP 7→ (ind→ prop)→ prop
VP 7→ ind→ prop
S 7→ prop

pierre 7→ λx. xp
maison 7→ house

une 7→ λxy.∃z. (x z) ∧ (y z)
acheter 7→ λxy. x (λz.buy y z)

veut 7→ λxy. y (λz.want z (x z))

where, as usual, the concatenation operator ‘+’ is defined as functional composition.

1.[2] Check that LSEM is such that the interpretation it gives to acheter is consistent with
the interpretation it gives to the types.

Solution: We have that acheter is of type QNP → VP . Then, we have that :

LSEM(QNP → VP) = ((ind→ prop)→ prop)→ ind→ prop (1)

We then compute the principal typing of the interpretation of acheter:

λxy. x (λz.buy y z) : ((ind→ prop)→ α)→ ind→ α (2)

Finally, we check that (1) is an instance of (2).

2.[1] Give a term, say t, such that:

LSYNT(t) = /Pierre/+ /veut/+ /acheter/+ /une/+ /maison/

Then, compute LSEM(t).

Solution:
t = veut (acheter (unemaison))pierre

LSEM(t) = wantp (∃z. (house z) ∧ (buyp z))

Exercise 5. Let us extend ΣABS with the following constants (and types):

trace : XNP
x-acheter : XNP → XVP

x-veut : XVP → NP → XS
qr : QNP → XS → S

MPRI 2-27-1 November 25th, 2015

1.[1] We extend LSYNT accordingly as follows:

XNP 7→ string→ string
XVP 7→ string→ string
XS 7→ string→ string

trace 7→ λx. x
x-acheter 7→ λxy. /acheter/+ (x y)

x-veut 7→ λxyz. y + /veut/+ (x z)
qr 7→ λxy. y x

Compute the interpretation of the following term (according to the above extension of
LSYNT):

qr (unemaison) (x-veut (x-achetertrace)pierre) (tre)

Solution:

LSYNT(tre) = /Pierre/+ /veut/+ /acheter/+ /une/+ /maison/

2.[3] We also extend LSEM as follows:

XNP 7→ ind→ (ind→ prop)→ prop
XVP 7→ ind→ ind→ prop
XS 7→ ind→ prop

trace 7→ λxy. y x
x-acheter 7→ λwxy. w x (λz.buy y z)

x-veut 7→ · · ·
qr 7→ · · ·

Complete the above extension (i.e., provide the interpretations of x-veut and qr) in
such a way that LSEM(tre) yields a de re interpretation.

Solution: Let:

x-veut
def
= λwxy. x (λz.want z (w y z))

qr
def
= λxy. x y

Then:
LSEM(tre) = ∃z. (house z) ∧ (wantp (buyp z))

	Multiple Context-Free Grammars
	Covert Movements in Second-Order ACGs

