TD 8: Unfoldings, Vector Addition Systems

1 Unfoldings

Exercise 1 (Adequate Partial Orders). A partial order \prec between events is adequate if the three following conditions are verified:
(a) \prec is well-founded,
(b) $\lfloor t\rfloor \subsetneq\left\lfloor t^{\prime}\right\rfloor$ implies $t \prec t^{\prime}$, and
(c) \prec is preserved by finite extensions: as in the lecture notes, if $t \prec t^{\prime}$ and $B(t)=$ $B\left(t^{\prime}\right)$, and E and E^{\prime} are two isomorphic extensions of $\lfloor t\rfloor$ and $\left\lfloor t^{\prime}\right\rfloor$ with $\lfloor u\rfloor=\lfloor t\rfloor \oplus E$ and $\left\lfloor u^{\prime}\right\rfloor=\left\lfloor t^{\prime}\right\rfloor \oplus E^{\prime}$, then $u \prec u^{\prime}$.

As you can guess, adequate partial orders result in complete unfoldings.

1. Show that \prec_{s} defined by $t \prec_{s} t^{\prime}$ iff $\left.|\lfloor t\rfloor|<\| t^{\prime}\right\rfloor \mid$ is adequate.
2. Construct the finite unfolding of the following Petri net using \prec_{s}; how does the size of this unfolding relate to the number of reachable markings?

3. Suppose we define an arbitrary total order \ll on the transitions T of the Petri net, i.e. they are $t_{1} \ll \cdots \ll t_{n}$. Given a set S of events and conditions of $\mathcal{Q}, \varphi(S)$ is the sequence $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$ in T^{*} where i_{j} is the number of events labeled by t_{j} in S. We also note \ll for the lexicographic order on T^{*}.
Show that \prec_{e} defined by $t \prec_{e} t^{\prime}$ iff $\left.|\lfloor t\rfloor|<\| t^{\prime}\right\rfloor \mid$ or $\left.\left.\| t\right\rfloor \mid=\| t^{\prime}\right\rfloor \mid$ and $\varphi(\lfloor t\rfloor) \ll \varphi\left(\left\lfloor t^{\prime}\right\rfloor\right)$ is adequate. Construct the finite unfolding for the previous Petri net using \prec_{e}.
4. There might still be examples where \prec_{e} performs poorly. One solution would be to use a total adequate order; why? Give a 1 -safe Petri net that shows that \prec_{e} is not total.

Exercise 2 (Coverability in Unfoldings). We consider the coverability problem in a finite complete prefix \mathcal{Q} of the unfolding of a 1 -safe Petri net \mathcal{N} : given a target marking m in \mathbb{N}^{P}, is there an event e of \mathcal{Q} with $m_{e} \geq m ?$

Show that the coverability problem for complete unfoldings is NP-hard.

2 Vector Addition Systems

Exercise 3 (VASS). An n-dimensional vector addition system with states (VASS) is a tuple $\mathcal{V}=\left\langle Q, \delta, q_{0}\right\rangle$ where Q is a finite set of states, $q_{0} \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^{n} \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^{n}$. An execution of \mathcal{V} is a sequence of configurations $\left(q_{0}, v_{0}\right)\left(q_{1}, v_{1}\right) \cdots\left(q_{m}, v_{m}\right)$ such that $v_{0}=\overline{0}$, and for $0<i \leq m,\left(q_{i-1}, v_{i}-v_{i-1}, q_{i}\right)$ is in δ.

1. Show that any VASS can be simulated by a Petri net - we can give a formal meaning to 'simulation', but you haven't seen it in class yet, so do it at an intuitive level...
2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 4 (VAS). An n-dimensional vector addition system (VAS) is a pair (v_{0}, W) where $v_{0} \in \mathbb{N}^{n}$ is the initial vector and $W \subseteq \mathbb{Z}^{n}$ is the set of transition vectors. An execution of $\left(v_{0}, W\right)$ is a sequence $v_{0} v_{1} \cdots v_{m}$ where $v_{i} \in \mathbb{N}$ for all $0 \leq i \leq m$ and $v_{i}-v_{i-1} \in W$ for all $0<i \leq m$.

We want to show that any n-dimensional VASS \mathcal{V} can be simulated by an $(n+3)$ dimensional VAS $\left(v_{0}, W\right)$.
Hint: Let $k=|Q|$, and define the two functions $a(i)=i+1$ and $b(i)=(k+1)(k-i)$. Encode a configuration $\left(q_{i}, v\right)$ of \mathcal{V} as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state $q_{i}, 0 \leq i<k$, we add two transition vectors to W :

$$
\begin{aligned}
t_{i} & =(0, \ldots, 0,-a(i), a(k-i)-b(i), b(k-i)) \\
t_{i}^{\prime} & =(0, \ldots, 0, b(i),-a(k-i), a(i)-b(k-i))
\end{aligned}
$$

For every transition $d=\left(q_{i}, w, q_{j}\right)$ of \mathcal{V}, we add one transition vector to W :

$$
t_{d}=(w(1), \ldots, w(n), a(j)-b(i), b(j),-a(i))
$$

1. Show that any execution of \mathcal{V} can be simulated by $\left(v_{0}, W\right)$ for a suitable v_{0}.
2. Conversely, show that this VAS $\left(v_{0}, W\right)$ simulates \mathcal{V} faithfully.
