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TD 7: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you correct this Petri net to avert unwanted behaviours (like r → ry → rr)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.
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p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net N = 〈P, T, F,W,m0〉. We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in NP if
m(p) > 0.

The models of our LTL formulæ are computations m0m1 · · · in (NP )ω such that, for
all i ∈ N, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton BN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism λ : T → Σ. The models of our

LTL formulæ are infinite words a0a1 · · · in Σω such that m0
t0−→N m1

t1−→N m2 · · ·
is an execution of N and λ(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

3 Coverability Graphs

Exercise 4 (Dickson’s Lemma). A quasi-order (A,≤) is a set A endowed with a reflexive
and transitive ordering relation ≤. A well quasi order (wqo) is a quasi order (A,≤) s.t.,
for any infinite sequence a0a1 · · · in Aω, there exist indices i < j with ai ≤ aj .

1. Let (A,≤) be a wqo and B ⊆ A. Show that (B,≤) is a wqo.
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2. Show that (N ] {ω},≤) is a wqo.

3. Let (A,≤) be a wqo. Show that any infinite sequence a0a1 · · · in Aω embeds an
infinite increasing subsequence ai0 ≤ ai1 ≤ ai2 ≤ · · · with i0 < i1 < i2 < · · · .

4. Let (A,≤A) and (B,≤B) be two wqo’s. Show that the cartesian product (A×B,≤×),
where the product ordering is defined by (a, b) ≤× (a′, b′) iff a ≤A a′ and b ≤B b′,
is a wqo.

Exercise 5 (Coverability Graph). The coverability problem for Petri nets is the following
decision problem:

Instance: A Petri net N = 〈P, T, F,W,m0〉 and a marking m1 in NP .

Question: Does there exist m2 in reachN (m0) such that m1 ≤ m2?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpace-
complete.

One way to decide the general coverability problem is to use Karp and Miller’s
coverability graph (see the lecture notes). Indeed, we have the equivalence between the
two statements:

i. there exists m2 in reachN (m0) such that m1 ≤ m2, and

ii. there exists m3 in CoverabilityGraphN (m0) such that m1 ≤ m3.

1. In order to prove that (i) implies (ii), we will prove a stronger statement: for a
marking m in (N]{ω})P , write Ω(m) = {p ∈ P | m(p) = ω} be the set of ω-places
of m.

Show that, if m0
u−→N m2 in the Petri net N for some u in T ∗, then there exists

m3 in (N] {ω})P such that m2(p) = m3(p) for all p in P \Ω(m3) and m0
u−→G m3

in the coverability graph.

2. Let us prove that (ii) implies (i). The idea is that we can find reachable markings
that agree with m3 on its finite places, and that can be made arbitrarily high on
its ω-places. For this, we need to identify the graph nodes where new ω values
were introduced, which we call ω-nodes.

(a) The threshold Θ(u) of a transition sequence u in T ∗ is the minimal marking
m in NP s.t. u is enabled from m. Show how to compute Θ(u). Show that
Θ(u · v) ≤ Θ(u) + Θ(v) for all u, v in T ∗.

(b) Recall that an ω value is introduced in the coverability graph thanks to Al-
gorithm 1.

Let {v1, . . . , v`} be the set of “v” sequences found on line 1 of the algorithm
that resulted in adding at least one ω value to m′ on line 1 during a single call
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repeat1

saved ← m′2

foreach m′′ ∈ V s.t. ∃v ∈ T+,m′′
v−→G m do3

if m′′ < m′ then4

m′ ← m′ + ((m′ −m′′) · ω)5

until saved = m′6

return m′7

Algorithm 1: AddOmegas(m,m′, V )

to AddOmegas(m,m′, V ) on line 8 of the CoverabilityGraph algorithm
from the course notes. Let w = v1 · · · v`. Show that, for any k in N, the
marking νk defined by

νk(p) =

{
m′(p) if p ∈ P \ Ω(m)

Θ(wk)(p) if p ∈ Ω(m)

allows to fire wk. How does the marking ν ′k with νk
wk

−−→N ν ′k compare to νk?

(c) Prove that, if m0
u−→G m3 for some u in T ∗ in the coverability graph and m′

in NΩ(m3) is a partial marking on the places of Ω(m3), then there are

• n in N,

• a decomposition u = u1u2 · · ·un+1 with each ui in T ∗ (where the markings

µi reached by m
u1···ui−−−−→G µi for i ≤ n have new ω values),

• sequences w1, . . . , wn in T+,

• numbers k1, . . . , kn in N,

such that m0
u1w

k1
1 u2···unw

kn
n un+1−−−−−−−−−−−−−−→N m2 with m2(p) = m3(p) for all p in P \

Ω(m3) and m2(p) ≥ m′(p) for all p in Ω(m3).

Exercise 6 (Decidability of Model-checking Action-based LTL).

1. Let N be Petri net, G its coverability graph, and m some marking in NP . An
infinite computation is a sequence m0m1 · · · in (NP )ω where for all i ∈ N, mi →N
mi+1 is a transition step. The effect ∆(u) of a transition sequence u in T ∗ is
defined by ∆(ε) = 0P and ∆(ut) = ∆(u)−W (P, t) +W (t, P ).

Show that there exists an infinite computation s.t. m ≤ mi for infinitely many
indices i iff there exists an accessible loop m′

v−→G m′ in G s.t. m ≤ m′ and
∆(v) ≥ 0P .

2. Show that action-based LTL model-checking is decidable for labeled Petri nets.
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