TD 5: EF Games, Separation

1 Separation

Exercise 1 (Expressiveness and Separation). Consider the FO(AP, $<$) formula

$$
\begin{aligned}
\psi(x)=P_{a}(x) \wedge \forall y \cdot P_{a}(y) \rightarrow \exists & \exists z \cdot\left(y<x \rightarrow P_{b}(z) \wedge y<z<x\right) \\
& \wedge\left(y>x \rightarrow P_{c}(z) \wedge z>y\right) .
\end{aligned}
$$

1. Separate $\psi(x)$, i.e. provide pure formulæ $\psi_{i}(x)$ such that $\psi(x)$ is equivalent to a boolean combination of the $\psi_{i}(x)$, and each $\psi_{i}(x)$ only contains separated subformulæ.
2. Provide equivalent $\mathrm{TL}(\mathrm{AP}, \mathrm{SS}, \mathrm{SU})$ formulæ φ_{i} for the $\psi_{i}(x)$.

Exercise 2 (Deciding Semantic Purity). Let us consider time flows in ($\mathbb{N},<$). Show that the problem whether a TL(AP, $\mathrm{SS}, \mathrm{SU})$ formula φ is semantically pure future is in PSpace.

2 EF Games

Exercise 3 (Non-Strict Until).

1. Show that SU is not expressible in $\operatorname{TL}(\mathrm{AP}, \mathrm{S}, \mathrm{U})$ over $(\mathbb{R},<)$.
2. Show that SU is not expressible in $\mathrm{TL}(\mathrm{AP}, \mathrm{S}, \mathrm{U})$ over $(\mathbb{N},<)$.

Exercise 4 (Periodic Properties).

1. Show that the fact that a finite temporal time flow is of "even length" cannot be expressed in TL(AP, SS, SU).
2. Recall Exercise 3 of TD 2: Show that the set $(\{p\} \Sigma)^{\omega}$ cannot be expressed in $\mathrm{TL}(\{p\}, \mathrm{SS}, \mathrm{SU})$ over $(\mathbb{N},<)$.

3 LTL with Past

Exercise 5 (Succinctness of Past Formulæ). Consider the time flow $(\mathbb{N},<)$. Let $\mathrm{AP}_{n+1}=$ $\left\{p_{0}, \ldots, p_{n}\right\}=\mathrm{AP}_{n} \cup\left\{p_{n}\right\}$ be a set of atomic propositions, defining the alphabet $\Sigma_{n+1}=2^{\mathrm{AP}_{n+1}}$. We want to show the existence of an $O(n)$-sized LTL formula with past such that any equivalent pure future LTL formula is of size $\Omega\left(2^{n}\right)$.

First consider the following LTL formula of exponential size:

$$
\begin{aligned}
\bigwedge_{S \subseteq \mathrm{AP}_{n}} & \left(\bigwedge_{p_{i} \in S} p_{i} \wedge \bigwedge_{p_{j} \notin S} \neg p_{j} \wedge p_{n}\right) \Rightarrow \mathrm{G}\left(\left(\bigwedge_{p_{i} \in S} p_{i} \wedge \bigwedge_{p_{j} \notin S} \neg p_{j}\right) \Rightarrow p_{n}\right) \\
& \left.\wedge\left(\bigwedge_{p_{i} \in S} p_{i} \wedge \bigwedge_{p_{j} \notin S} \neg p_{j} \wedge \neg p_{n}\right) \Rightarrow \mathrm{G}\left(\left(\bigwedge_{p_{i} \in S} p_{i} \wedge \bigwedge_{p_{j} \notin S} \neg p_{j}\right) \Rightarrow \neg p_{n}\right)\right)
\end{aligned}
$$

1. Describe 'intuitively' which words of Σ_{n+1}^{ω} are the models of φ_{n}.
2. Can an LTL formula with past modalities check whether it is at the initial position of a word?
3. Provide an LTL formula with past ψ_{n} of size $O(n)$ initially equivalent to φ_{n}.
4. Consider the language $L_{n}=\left\{\sigma \in \Sigma_{n+1}^{\omega}|\sigma|=\mathrm{G} \varphi_{n}\right\}$. We want to prove that any generalized Büchi automaton that recognizes L_{n} requires at least $2^{2^{n}}$ states.
For this we fix a permutation $a_{0} \cdots a_{2^{n}-1}$ of the symbols in Σ_{n} and we consider all the different subsets $K \subseteq\left\{0, \ldots, 2^{n}-1\right\}$. For each K we consider the word

$$
w_{K}=b_{0} \cdots b_{2^{n}-1}
$$

in $\Sigma_{n+1}^{2^{n}}$, defined for each i in $\left\{0, \ldots, 2^{n}-1\right\}$ by

$$
\begin{aligned}
b_{i} & =a_{i} & \text { if } i \in K \\
b_{i} & =a_{i} \cup\left\{p_{n}\right\} & \text { otherwise. }
\end{aligned}
$$

Thus K is the set of positions of w_{K} where p_{n} does not hold.
Using the w_{K} for different values of K, prove that any generalized Büchi automaton for $\mathrm{G} \varphi_{n}$ requires at least $2^{2^{n}}$ states.
5. Conclude using the fact that any pure future LTL formula φ can be given a generalized Büchi automaton with at most $2^{|\varphi|}$ states.

4 Stavi Connectives

Exercise 6 (Linear Orders with Gaps). In this exercise we assume ($\mathbb{T},<$) to be a linear time flow.

1. Let us define a new unary "gap" modality gap:

$$
\begin{aligned}
w, i \models \operatorname{gap} \varphi \text { iff } \forall k . k>i \rightarrow & (\exists \ell . k<\ell \wedge \forall j . i<j<\ell \rightarrow w, j \models \varphi) \\
& \vee(\exists j . i<j<k \wedge w, j \models \neg \varphi) \\
\wedge \exists k_{1} \cdot k_{1}> & i \wedge \forall j \cdot i<j \leq k_{1} \rightarrow w, j \models \varphi \\
\wedge \exists k_{2} \cdot k_{2}> & i \wedge w, k_{2} \models \neg \varphi .
\end{aligned}
$$

The intuition behind gap is that φ should hold for some time until a gap occurs in the time flow, after which $\neg \varphi$ holds at points arbitrarily close to the gap.
(a) Express gap φ using the standard SU modality.
(b) Show that, if $(\mathbb{T},<)$ is Dedekind-complete, then gap p for $p \in \mathrm{AP}$ cannot be satisfied.
2. Consider the temporal flow $\left(\{0\} \times \mathbb{Z}_{<0} \times \mathbb{Z} \cup\{1\} \times \mathbb{Z} \times \mathbb{Z},<\right)$ where $<$ is the lexicographic ordering and $\mathrm{AP}=\{p\}$. Let n be an even integer in \mathbb{Z}, and define

$$
\begin{aligned}
& h_{0}(p)=\{(0, i, j) \in \mathbb{T} \mid i \text { is odd }\} \cup\{(1, i, j) \in \mathbb{T} \mid i \text { is odd }\} \\
& h_{1}(p)=\{(0, i, j) \in \mathbb{T} \mid i \text { is odd }\} \cup\{(1, i, j) \in \mathbb{T} \mid i>n \text { is odd }\}
\end{aligned}
$$

(a) Show that $w_{0},(x, i, j) \models \operatorname{gap} p$ for any $x \in\{0,1\}$, odd i, and j.
(b) Show that no $\mathrm{TL}(\{p\}, \mathrm{SS}, \mathrm{SU})$ formula can distinguish between $\left(w_{0},(0,-1,0)\right)$ and $\left(w_{1},(0,-1,0)\right)$.
(c) Here is the definition of the Stavi "until" modality:

$$
\begin{aligned}
& w, i \models \varphi \overline{\mathrm{U}} \psi \text { iff } \exists \ell . i<\ell \\
& \wedge \forall k . i<k<\ell \rightarrow {\left[\exists j_{1} \cdot k<j_{1} \wedge \forall j . i<j<j_{1} \rightarrow w, j \models \varphi\right] } \\
& \vee {\left[\left(\forall j_{2} \cdot k<j_{2}<\ell \rightarrow w, j_{2} \models \psi\right)\right.} \\
&\left.\wedge\left(\exists j_{3} \cdot i<j_{3}<k \wedge w, j_{3} \models \neg \varphi\right)\right] \\
& \wedge \exists k_{1} \cdot i<k_{1}<\ell \wedge w, k_{1} \models \neg \varphi \\
& \wedge \exists k_{2} \cdot i<k_{2}<\ell \wedge \forall j . i<j<k_{2} \rightarrow w, j \models \varphi
\end{aligned}
$$

This modality is quite similar to gap φ, but further requires ψ to hold for some time after the gap (the " j_{2} " condition above).

Show that $w_{1},(0,-1,0) \vDash p \overline{\mathrm{U}} \neg$ gap p but $w_{0},(0,-1,0) \not \vDash p \overline{\mathrm{U}} \neg$ gap p.

