TD 5: EF Games, Separation

1 Separation

Exercise 1 (Expressiveness and Separation). Consider the FO(AP, <) formula

$$\begin{split} \psi(x) &= P_a(x) \land \forall y. P_a(y) \to \exists z. (y < x \to P_b(z) \land y < z < x) \\ \land (y > x \to P_c(z) \land z > y) \; . \end{split}$$

- 1. Separate $\psi(x)$, i.e. provide pure formulæ $\psi_i(x)$ such that $\psi(x)$ is equivalent to a boolean combination of the $\psi_i(x)$, and each $\psi_i(x)$ only contains separated subformulæ.
- 2. Provide equivalent TL(AP, SS, SU) formulæ φ_i for the $\psi_i(x)$.

Exercise 2 (Deciding Semantic Purity). Let us consider time flows in $(\mathbb{N}, <)$. Show that the problem whether a TL(AP, SS, SU) formula φ is *semantically* pure future is in PSPACE.

2 EF Games

Exercise 3 (Non-Strict Until).

- 1. Show that SU is not expressible in TL(AP, S, U) over $(\mathbb{R}, <)$.
- 2. Show that SU is not expressible in TL(AP, S, U) over $(\mathbb{N}, <)$.

Exercise 4 (Periodic Properties).

- 1. Show that the fact that a finite temporal time flow is of "even length" cannot be expressed in TL(AP, SS, SU).
- 2. Recall Exercise 3 of TD 2: Show that the set $(\{p\}\Sigma)^{\omega}$ cannot be expressed in $\mathrm{TL}(\{p\}, \mathsf{SS}, \mathsf{SU})$ over $(\mathbb{N}, <)$.

3 LTL with Past

Exercise 5 (Succinctness of Past Formulæ). Consider the time flow $(\mathbb{N}, <)$. Let $\operatorname{AP}_{n+1} = \{p_0, \ldots, p_n\} = \operatorname{AP}_n \cup \{p_n\}$ be a set of atomic propositions, defining the alphabet $\Sigma_{n+1} = 2^{\operatorname{AP}_{n+1}}$. We want to show the existence of an O(n)-sized LTL formula with past such that any equivalent pure future LTL formula is of size $\Omega(2^n)$.

First consider the following LTL formula of exponential size:

$$\left(\begin{array}{c} \left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \wedge p_n \right) \Rightarrow \mathsf{G}(\left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \right) \Rightarrow p_n \right) \\ \\ \wedge \left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \wedge \neg p_n \right) \Rightarrow \mathsf{G}(\left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \right) \Rightarrow \neg p_n \right) \right) \qquad (\varphi_n)$$

- 1. Describe 'intuitively' which words of Σ_{n+1}^{ω} are the models of φ_n .
- 2. Can an LTL formula with past modalities check whether it is at the initial position of a word?
- 3. Provide an LTL formula with past ψ_n of size O(n) initially equivalent to φ_n .
- 4. Consider the language $L_n = \{ \sigma \in \Sigma_{n+1}^{\omega} \mid \sigma \models \mathsf{G} \varphi_n \}$. We want to prove that any generalized Büchi automaton that recognizes L_n requires at least 2^{2^n} states.

For this we fix a permutation $a_0 \cdots a_{2^n-1}$ of the symbols in Σ_n and we consider all the different subsets $K \subseteq \{0, \ldots, 2^n - 1\}$. For each K we consider the word

$$w_K = b_0 \cdots b_{2^n - 1}$$

in $\sum_{n+1}^{2^n}$, defined for each *i* in $\{0, \ldots, 2^n - 1\}$ by

$$b_i = a_i \qquad \text{if } i \in K$$

$$b_i = a_i \cup \{p_n\} \qquad \text{otherwise.}$$

Thus K is the set of positions of w_K where p_n does not hold.

Using the w_K for different values of K, prove that any generalized Büchi automaton for $\mathsf{G} \varphi_n$ requires at least 2^{2^n} states.

5. Conclude using the fact that any pure future LTL formula φ can be given a generalized Büchi automaton with at most $2^{|\varphi|}$ states.

4 Stavi Connectives

Exercise 6 (Linear Orders with Gaps). In this exercise we assume $(\mathbb{T}, <)$ to be a linear time flow.

1. Let us define a new unary "gap" modality gap:

$$\begin{split} w,i \models \mathsf{gap}\varphi \text{ iff } \forall k.k > i \to (\exists \ell.k < \ell \land \forall j.i < j < \ell \to w, j \models \varphi) \\ & \lor (\exists j.i < j < k \land w, j \models \neg \varphi) \\ & \land \exists k_1.k_1 > i \land \forall j.i < j \le k_1 \to w, j \models \varphi \\ & \land \exists k_2.k_2 > i \land w, k_2 \models \neg \varphi . \end{split}$$

The intuition behind gap is that φ should hold for some time until a gap occurs in the time flow, after which $\neg \varphi$ holds at points arbitrarily close to the gap.

- (a) Express $gap\varphi$ using the standard SU modality.
- (b) Show that, if $(\mathbb{T}, <)$ is Dedekind-complete, then gapp for $p \in AP$ cannot be satisfied.
- 2. Consider the temporal flow $(\{0\} \times \mathbb{Z}_{<0} \times \mathbb{Z} \cup \{1\} \times \mathbb{Z} \times \mathbb{Z}, <)$ where < is the lexicographic ordering and AP = $\{p\}$. Let *n* be an even integer in \mathbb{Z} , and define

$$h_0(p) = \{ (0, i, j) \in \mathbb{T} \mid i \text{ is odd} \} \cup \{ (1, i, j) \in \mathbb{T} \mid i \text{ is odd} \}$$
$$h_1(p) = \{ (0, i, j) \in \mathbb{T} \mid i \text{ is odd} \} \cup \{ (1, i, j) \in \mathbb{T} \mid i > n \text{ is odd} \} .$$

- (a) Show that $w_0, (x, i, j) \models \mathsf{gap}p$ for any $x \in \{0, 1\}$, odd *i*, and *j*.
- (b) Show that no TL($\{p\}$, SS, SU) formula can distinguish between $(w_0, (0, -1, 0))$ and $(w_1, (0, -1, 0))$.
- (c) Here is the definition of the Stavi "until" modality:

$$\begin{split} w,i \models \varphi \ \overline{\mathsf{U}} \ \psi \ \text{iff} \ \exists \ell.i < \ell \\ & \land \forall k.i < k < \ell \rightarrow [\exists j_1.k < j_1 \land \forall j.i < j < j_1 \rightarrow w, j \models \varphi] \\ & \lor [(\forall j_2.k < j_2 < \ell \rightarrow w, j_2 \models \psi) \\ & \land (\exists j_3.i < j_3 < k \land w, j_3 \models \neg \varphi)] \\ & \land \exists k_1.i < k_1 < \ell \land w, k_1 \models \neg \varphi \\ & \land \exists k_2.i < k_2 < \ell \land \forall j.i < j < k_2 \rightarrow w, j \models \varphi \end{split}$$

This modality is quite similar to $gap\varphi$, but further requires ψ to hold for some time after the gap (the " j_2 " condition above).

Show that $w_1, (0, -1, 0) \models p \overline{U} \neg gap p$ but $w_0, (0, -1, 0) \not\models p \overline{U} \neg gap p$.