TD 5: EF Games, Separation

1 Separation

Exercise 1 (Expressiveness and Separation). Consider the FO(AP, <) formula

\[\psi(x) = P_a(x) \land \forall y.P_a(y) \rightarrow \exists z.(y < x \rightarrow P_b(z) \land y < z < x) \]
\[\land (y > x \rightarrow P_c(z) \land z > y) . \]

1. Separate \(\psi(x) \), i.e. provide pure formulæ \(\psi_i(x) \) such that \(\psi(x) \) is equivalent to a boolean combination of the \(\psi_i(x) \), and each \(\psi_i(x) \) only contains separated subformulae.

2. Provide equivalent TL(AP, SS, SU) formulæ \(\varphi_i \) for the \(\psi_i(x) \).

Exercise 2 (Deciding Semantic Purity). Let us consider time flows in \((\mathbb{N}, <)\). Show that the problem whether a TL(AP, SS, SU) formula \(\varphi \) is semantically pure future is in PSPACE.

2 EF Games

Exercise 3 (Non-Strict Until).

1. Show that SU is not expressible in TL(AP, S, U) over \((\mathbb{R}, <)\).

2. Show that SU is not expressible in TL(AP, S, U) over \((\mathbb{N}, <)\).

Exercise 4 (Periodic Properties).

1. Show that the fact that a finite temporal time flow is of “even length” cannot be expressed in TL(AP, SS, SU).

2. Recall Exercise 3 of TD 2: Show that the set \((\{p\} \Sigma)^\omega\) cannot be expressed in TL((\{p\}, SS, SU) over \((\mathbb{N}, <)\).

3 LTL with Past

Exercise 5 (Succinctness of Past Formulæ). Consider the time flow \((\mathbb{N}, <)\). Let AP_{n+1} = \{p_0, \ldots, p_n\} = AP_n \cup \{p_n\} be a set of atomic propositions, defining the alphabet \(\Sigma_{n+1} = 2^{AP_{n+1}} \). We want to show the existence of an \(O(n) \)-sized LTL formula with past such that any equivalent pure future LTL formula is of size \(\Omega(2^n) \).
First consider the following LTL formula of exponential size:

\[\bigwedge_{S \subseteq AP_n} \left(\left(\bigwedge_{p_i \in S} p_i \land \bigwedge_{p_j \not\in S} \neg p_j \right) \Rightarrow G \left(\left(\bigwedge_{p_i \in S} p_i \land \bigwedge_{p_j \not\in S} \neg p_j \right) \Rightarrow p_n \right) \right) \land \left(\left(\bigwedge_{p_i \in S} p_i \land \bigwedge_{p_j \not\in S} \neg p_j \right) \Rightarrow G \left(\left(\bigwedge_{p_i \in S} p_i \land \bigwedge_{p_j \not\in S} \neg p_j \right) \Rightarrow \neg p_n \right) \right) \]

(\varphi_n)

1. Describe ‘intuitively’ which words of \(\Sigma_{n+1}^\omega \) are the models of \(\varphi_n \).

2. Can an LTL formula with past modalities check whether it is at the initial position of a word?

3. Provide an LTL formula with past \(\psi_n \) of size \(O(n) \) initially equivalent to \(\varphi_n \).

4. Consider the language \(L_n = \{ \sigma \in \Sigma_{n+1}^\omega \mid \sigma \models G \varphi_n \} \). We want to prove that any generalized Büchi automaton that recognizes \(L_n \) requires at least \(2^{2n} \) states.

For this we fix a permutation \(a_0 \cdots a_{2^n-1} \) of the symbols in \(\Sigma_n \) and we consider all the different subsets \(K \subseteq \{0, \ldots, 2^n-1\} \). For each \(K \) we consider the word

\[w_K = b_0 \cdots b_{2^n-1} \]

in \(\Sigma_{n+1}^{2^n} \), defined for each \(i \) in \(\{0, \ldots, 2^n-1\} \) by

\[b_i = a_i \quad \text{if } i \in K \]
\[b_i = a_i \cup \{p_n\} \quad \text{otherwise} \]

Thus \(K \) is the set of positions of \(w_K \) where \(p_n \) does not hold.

Using the \(w_K \) for different values of \(K \), prove that any generalized Büchi automaton for \(G \varphi_n \) requires at least \(2^{2^n} \) states.

5. Conclude using the fact that any pure future LTL formula \(\varphi \) can be given a generalized Büchi automaton with at most \(2|\varphi| \) states.

4 Stavi Connectives

Exercise 6 (Linear Orders with Gaps). In this exercise we assume \((T, <)\) to be a linear time flow.

1. Let us define a new unary “gap” modality \(\text{gap} \):

\[w, i \models \text{gap} \varphi \text{ iff } \forall k. k > i \rightarrow (\exists \ell. k < \ell \land \forall j. i < j < \ell \rightarrow w, j \models \varphi) \]
\[\lor \left(\exists j. i < j < k \land w, j \models \neg \varphi \right) \]
\[\land \exists k_1. k_1 > i \land \forall j. i < j \leq k_1 \rightarrow w, j \models \varphi \]
\[\land \exists k_2. k_2 > i \land w, k_2 \models \neg \varphi \]
The intuition behind \(\text{gap} \) is that \(\varphi \) should hold for some time until a gap occurs in the time flow, after which \(\neg \varphi \) holds at points arbitrarily close to the gap.

(a) Express \(\text{gap} \varphi \) using the standard \(SU \) modality.

(b) Show that, if \((T, <) \) is Dedekind-complete, then \(\text{gap} p \) for \(p \in \text{AP} \) cannot be satisfied.

2. Consider the temporal flow \((\{0\} \times \mathbb{Z}_{<0} \times \mathbb{Z} \cup \{1\} \times \mathbb{Z} \times \mathbb{Z}, <) \) where \(< \) is the lexicographic ordering and \(\text{AP} = \{p\} \). Let \(n \) be an even integer in \(\mathbb{Z} \), and define

\[
\begin{align*}
h_0(p) &= \{(0, i, j) \in T \mid i \text{ is odd}\} \cup \{(1, i, j) \in T \mid i \text{ is odd}\} \\
h_1(p) &= \{(0, i, j) \in T \mid i \text{ is odd}\} \cup \{(1, i, j) \in T \mid i > n \text{ is odd}\}.
\end{align*}
\]

(a) Show that \(w_0, (x, i, j) \models \text{gap} p \) for any \(x \in \{0, 1\} \), odd \(i \), and \(j \).

(b) Show that no \(\text{TL}(\{p\}, SS, SU) \) formula can distinguish between \((w_0, (0, -1, 0)) \) and \((w_1, (0, -1, 0)) \).

(c) Here is the definition of the Stavi “until” modality:

\[
w, i \models \varphi U \psi \text{ iff } \exists \ell, i < \ell\]

\[
\land \forall k, i < k < \ell \rightarrow [\exists j_1, k < j_1 \land \forall j, i < j < j_1 \rightarrow w, j \models \varphi]
\lor [\forall j_2, k < j_2 < \ell \rightarrow w, j_2 \models \psi]
\land (\exists j_3, i < j_3 < k \land w, j_3 \models \neg \varphi)]
\land \exists k_1, i < k_1 < \ell \land w, k_1 \models \neg \varphi
\land \exists k_2, i < k_2 < \ell \land \forall j, i < j < k_2 \rightarrow w, j \models \varphi
\]

This modality is quite similar to \(\text{gap} \varphi \), but further requires \(\psi \) to hold for some time after the gap (the “\(j_2 \)” condition above).

Show that \(w_1, (0, -1, 0) \models p U \neg \text{gap} p \) but \(w_0, (0, -1, 0) \not\models p U \neg \text{gap} p \).