TD 4: LTL Model-Checking

1 Synchronous Büchi Transducers

Exercise 1. Give synchronous Büchi transducers for the following formulæ:

- 1. SGq and Gq,
- 2. $\mathsf{G}(p \to \mathsf{F} q)$,
- 3. $\mathsf{G}_0 q$ (recall from Exercise 3 of TD 3 that $w, i \models \mathsf{G}_0 \varphi$ iff $\forall k \ge i, (k-i) \equiv 0 \mod 2 \Rightarrow w, k \models \varphi$).

2 Complexity of LTL Model-Checking

Exercise 2 (Complexity of LTL(X)). We want to show that LTL(X) existential model checking is NP-complete (instead of PSPACE-complete for the full LTL(SU)).

- 1. Show that $MC^{\exists}(X)$ is in NP.
- 2. Reduce 3SAT to $MC^{\exists}(X)$ in order to prove NP-hardness.

Exercise 3 (Hardness of LTL(X, F)). Adapt the proof given during the lecture to show that $MC^{\exists}(X, F)$ is PSPACE-hard.

As a preliminary question, consider the following Kripke structure M_n over AP = $\{s, b\}$:

Any infinite word σ generated by M_n is in $(\{s\}(\{b\}+\emptyset)^n)^\omega$, where each segment between two s's can be seen as describing a value from 0 to $2^n - 1$ encoded in binary. Provide an polynomial-sized LTL(X, F) formula φ that selects runs ρ where the successive values form the sequence 0, 1, ..., $2^n - 1$, 0, 1, ..., i.e. count modulo 2^n .

Exercise 4 (Stuttering and LTL(U)). In the time flow $(\mathbb{N}, <)$, i.e. when working with words σ in Σ^{ω} , stuttering denotes the existence of consecutive symbols, like *aaaa* and *bb* in *baaaabb*. Concrete systems tend to stutter, and thus some argue that verification properties should be stutter invariant.

A stuttering function $f : \mathbb{N} \to \mathbb{N}_{>0}$ from the positive integers to the positive integers. Let $\sigma = a_0 a_1 \cdots$ be an infinite word of Σ^{ω} and f a stuttering function, we denote by $\sigma[f]$ the infinite word $a_0^{f(0)} a_1^{f(1)} \cdots$, i.e. where the *i*-th symbol of σ is repeated f(i) times. A language $L \subseteq \Sigma^{\omega}$ is stutter invariant if, for all words σ in Σ^{ω} and all stuttering functions f,

$$\sigma \in L$$
 iff $\sigma[f] \in L$.

- 1. Prove that if φ is a TL(AP, U) formula, then $L(\varphi)$ is stutter-invariant.
- 2. A word $\sigma = a_0 a_1 \cdots$ in Σ^{ω} is stutter-free if, for all i in \mathbb{N} , either $a_i \neq a_{i+1}$, or $a_i = a_j$ for all $j \geq i$. We note $\mathrm{sf}(L)$ for the set of stutter-free words in a language L.

Show that, if L and L' are two stutter invariant languages, then sf(L) = sf(L') iff L = L'.

3. Let φ be a TL(AP, X, U) formula such that $L(\varphi)$ is stutter invariant. Construct inductively a formula $\tau(\varphi)$ of TL(AP, U) such that $sf(L(\varphi)) = sf(L(\tau(\varphi)))$, and thus such that $L(\varphi) = L(\tau(\varphi))$ according to the previous question. What is the size of $\tau(\varphi)$ (there exists a solution of size $O(|\varphi| \cdot 2^{|\varphi|})$)?

Exercise 5 (Complexity of LTL(U)). We want to prove that the model checking and satisfiability problems for LTL(U) formulæ are both PSPACE-complete.

- Prove that MC[∃](X, U) can be reduced to MC[∃](U): given an instance (M, φ) of MC[∃](X, U), construct a stutter-free Kripke structure M' and an LTL(U) formula τ'(φ). Beware: the τ construction of the previous exercise does not yield a polynomial reduction!
- 2. Show that $MC^{\exists}(X, U)$ can be reduced to SAT(U).