TD 3: Model-Checking and Büchi Automata

1 CTL Model Checking

Exercise 1 (Fair CTL). We consider strong fairness constraints, which are conjunctions of formulæ of form

$$
\mathrm{GF} \psi_{1} \Rightarrow \mathrm{GF} \psi_{2} .
$$

We want to check whether the following Kripke structure fairly verifies

$$
\varphi=\mathrm{A}_{e} \mathrm{GA}_{e} \mathrm{~F} a
$$

under the fairness requirement e defined by

$$
\begin{aligned}
\psi_{1} & =b \wedge \neg a \\
\psi_{2} & =\mathrm{E}(b \cup(a \wedge \neg b)) \\
e & =\mathrm{GF} \psi_{1} \Rightarrow \mathrm{GF} \psi_{2} .
\end{aligned}
$$

1. Compute $\llbracket \psi_{1} \rrbracket$ and $\llbracket \psi_{2} \rrbracket$.
2. Compute $\llbracket \mathrm{E}_{e} \mathrm{G} T \rrbracket$.
3. Compute $\llbracket \varphi \rrbracket$.

Exercise 2 (Horn Satisfiability). Given a finite total Kripke structure $M=(S, T, I, \mathrm{AP}, \ell)$ and a "smallest fixed-point" CTL formula φ over AP, we want to reduce the modelchecking problem $M, s \models \varphi$ with $s \in S$ to a Horn satisfiability instance, where smallest fixed-point CTL formulæ are defined by the syntax:

$$
\varphi::=\mathrm{T}|p| \varphi \wedge \varphi|\varphi \vee \varphi| \operatorname{EX} \varphi|\mathrm{E}(\varphi \mathrm{U} \varphi)| \mathrm{AF} \varphi
$$

1. Reduce the model-checking problem $M, s \vDash \varphi$ where φ is a smallest fixed-point CTL formula and s is a state in S to a Horn satisfiability instance.
2. What complexity can you obtain through to this reduction for full CTL modelchecking?

Exercise 3 (Even and Odd Positions). We saw in Exercise 2 of TD 2 that the set $(\{p\} \Sigma)^{\omega}$ is not expressible in $\operatorname{LTL}(\{p\}, \mathrm{X}, \mathrm{U})$ over $(\mathbb{N},<)$. We define two new temporal modalities U_{0} and U_{1} to fill this void:

$$
w, i \models \varphi \mathrm{U}_{b} \psi \text { if } \exists k \geq i,(k-i) \equiv b \bmod 2 \text { and } w, k \models \psi \text { and } \forall j . i \leq j<k \rightarrow w, j \models \varphi
$$

for $b=0$ (resp. 1), i.e. restrictions of U to even (resp. odd) choices of positions.

1. Show that $(\{p\} \Sigma)^{\omega}$ can be expressed in $\operatorname{TL}\left(\{p\}, \mathrm{U}_{0}\right)$.
2. Complete the reduction from the previous exercise to handle the new modality U_{0} in CTL model-checking. What complexity can you derive on the model-checking problem for CTL when U_{0} is allowed?

Exercise 4 (Model Checking a Path). Consider the time flow ($\mathbb{N},<$). We want to verify a model which is an ultimately periodic word $w=u v^{\omega}$ with u in Σ^{*} and v in Σ^{+}, where $\Sigma=2^{\mathrm{AP}}$.

Give an algorithm for checking whether $w, 0 \vDash \varphi$ holds, where φ is a $\operatorname{LTL}(\mathrm{AP}, \mathrm{X}, \mathrm{U})$ formula, in time bounded by $O(|u v| \cdot|\varphi|)$.

2 Büchi Automata

Recall from the course that a language L of infinite words in Σ^{ω} is recognizable iff there exists a Büchi automaton \mathcal{B} with $L=L(\mathcal{B})$.

Exercise 5 (Generalized Acceptance Condition). A generalized Büchi automaton $\mathcal{B}=$ $\left(Q, \Sigma, I, T,\left(F_{i}\right)_{0 \leq i<n}\right)$ has a finite set of accepting sets F_{i}. An infinite run σ in Q^{ω} satisfies this generalized acceptance condition if

$$
\bigwedge_{0 \leq i<n} \operatorname{lnf}(\sigma) \cap F_{i} \neq \emptyset
$$

i.e. if each set F_{i} is visited infinitely often.

Show that for any generalized Büchi automaton, one can construct an equivalent Büchi automaton.

Exercise 6 (Basic Closure Properties of Recognizable Languages). Show that $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ is closed under

1. finite union, and
2. finite intersection.

Exercise 7 (Prophetic Automata). A Büchi automaton $\mathcal{B}=(Q, \Sigma, I, T, F)$ over an alphabet Σ is prophetic if any infinite string w in Σ^{ω} has exactly one final (but not necessarily initial) run in \mathcal{B}.

1. The residual language $L\left(\mathcal{B}_{q}\right)$ of a state q in Q is the language accepted by $\mathcal{B}_{q}=$ $(Q, \Sigma,\{q\}, T, F)$, i.e. the set of words with a final run in \mathcal{B} that starts with state q. Show that \mathcal{B} is prophetic if and only if Σ^{ω} can be partitioned as $\biguplus_{q \in Q} L\left(\mathcal{B}_{q}\right)$.
2. An automaton \mathcal{B} is trim if every $L\left(\mathcal{B}_{q}\right) \neq \emptyset$ for every q in Q. It is co-deterministic if, for every state q^{\prime} in Q and a in Σ, there is at most one state q in Q such that (q, a, q^{\prime}) belongs to T. It is co-complete if, for every state q^{\prime} in Q and a in Σ, there is at least one state q in Q such that $\left(q, a, q^{\prime}\right)$ belongs to T.
Show that, if \mathcal{B} is trim and prophetic, then \mathcal{B} is co-deterministic and co-complete.
3. Let $\Sigma=\{a, b\}$. Construct a prophetic automaton for the language $(a \Sigma)^{\omega}$.

Exercise 8 (Ultimately Periodic Words). An ultimately periodic word over Σ is a word of form $u \cdot v^{\omega}$ with u in Σ^{*} and v in Σ^{+}.

Prove that any nonempty recognizable language in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ contains an ultimately periodic word.

Exercise 9 (Rational Languages). A rational language L of infinite words over Σ is a finite union

$$
L=\bigcup X \cdot Y^{\omega}
$$

where X is in $\operatorname{Rat}\left(\Sigma^{*}\right)$ and Y in $\operatorname{Rat}\left(\Sigma^{+}\right)$. We denote the set of rational languages of infinite words by $\operatorname{Rat}\left(\Sigma^{\omega}\right)$.

Show that $\operatorname{Rec}\left(\Sigma^{\omega}\right)=\operatorname{Rat}\left(\Sigma^{\omega}\right)$.

Exercise 10 (Deterministic Büchi Automata). A Büchi automaton is deterministic if $|I| \leq 1$, and for each state q in Q and symbol a in $\Sigma,\left|\left\{\left(q, a, q^{\prime}\right) \in T \mid q^{\prime} \in Q\right\}\right| \leq 1$.

1. Give a nondeterministic Büchi automaton for the language in $\{a, b\}^{\omega}$ described by the expression $(a+b)^{*} a^{\omega}$.
2. Show that there does not exist any deterministic Büchi automaton for this language.
3. Let $\mathcal{A}=\left(Q, \Sigma, q_{0}, T, F\right)$ be a finite deterministic automaton that recognizes the language of finite words $L \subseteq \Sigma^{*}$. We can also interpret \mathcal{A} as a deterministic Büchi automaton with a language $L^{\prime} \subseteq \Sigma^{\omega}$; our goal here is to relate the languages of finite and infinite words defined by \mathcal{A}.

Let the limit of a language $L \subseteq \Sigma^{*}$ be

$$
\vec{L}=\left\{w \in \Sigma^{\omega} \mid w \text { has infinitely many prefixes in } L\right\}
$$

Characterize the language L^{\prime} of infinite words of \mathcal{A} in terms of its language of finite words L and of the limit operation.

Exercise 11 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ is closed under complement. We consider for this a Büchi automaton $A=(Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(A)}$ is in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$.

We note $q \xrightarrow{u} q^{\prime}$ for q, q^{\prime} in Q and $u=a_{1} \cdots a_{n}$ in Σ^{*} if there exists a sequence of states q_{0}, \ldots, q_{n} such that $q_{0}=q, q_{n}=q^{\prime}$ and for all $0 \leq i<n,\left(q_{i}, a_{i+1}, q_{i+1}\right)$ is in T. We note in the same way $q \xrightarrow{u}_{F} q^{\prime}$ if furthermore at least one of the states q_{0}, \ldots, q_{n} belongs to F.

We define the congruence \sim_{A} over Σ^{*} by

$$
u \sim_{A} v \text { iff } \forall q, q^{\prime} \in Q,\left(q \xrightarrow{u} q^{\prime} \Leftrightarrow q \xrightarrow{v} q^{\prime}\right) \text { and }\left(q \xrightarrow{u}_{F} q^{\prime} \Leftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right) .
$$

1. Show that \sim_{A} has finitely many congruence classes $[u]$, for u in Σ^{*}.
2. Show that each $[u]$ for u in Σ^{*} is in $\operatorname{Rec}\left(\Sigma^{*}\right)$, i.e. is a regular language of finite words.
3. Consider the language $K(L)$ for $L \subseteq \Sigma^{\omega}$

$$
K(L)=\left\{[u][v]^{\omega} \mid u, v \in \Sigma^{*},[u][v]^{\omega} \cap L \neq \emptyset\right\} .
$$

Show that $K(L)$ is in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ for any $L \subseteq \Sigma^{\omega}$.
4. Show that $K(L(A)) \subseteq L(A)$ and $K(\overline{L(A)}) \subseteq \overline{L(A)}$.
5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^{*} such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an integer, and $c: X^{(n)} \rightarrow\{1, \ldots, k\}$ a k-coloring of the n-tuples of X. Then there exists some infinite monochromatic subset M of X such that all the n-tuples of M have the same image by c.
6. Conclude.

