TD 3: Model-Checking and Büchi Automata

1 CTL Model Checking

Exercise 1 (Fair CTL). We consider *strong* fairness constraints, which are conjunctions of formulæ of form

$$\mathsf{GF}\psi_1 \Rightarrow \mathsf{GF}\psi_2$$
.

We want to check whether the following Kripke structure fairly verifies

$$\varphi = \mathsf{A}_e \mathsf{G} \mathsf{A}_e \mathsf{F} a$$

under the fairness requirement e defined by

$$\psi_1 = b \land \neg a$$

$$\psi_2 = \mathsf{E}(b \mathsf{U}(a \land \neg b))$$

$$e = \mathsf{GF} \psi_1 \Rightarrow \mathsf{GF} \psi_2 .$$

- 1. Compute $\llbracket \psi_1 \rrbracket$ and $\llbracket \psi_2 \rrbracket$.
- 2. Compute $\llbracket \mathsf{E}_e \mathsf{G} \top \rrbracket$.
- 3. Compute $\llbracket \varphi \rrbracket$.

Exercise 2 (Horn Satisfiability). Given a finite total Kripke structure $M = (S, T, I, AP, \ell)$ and a "smallest fixed-point" CTL formula φ over AP, we want to reduce the model-checking problem $M, s \models \varphi$ with $s \in S$ to a Horn satisfiability instance, where smallest fixed-point CTL formulæ are defined by the syntax:

$$\varphi ::= \top \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathsf{EX} \varphi \mid \mathsf{E}(\varphi \cup \varphi) \mid \mathsf{AF} \varphi$$

- 1. Reduce the model-checking problem $M, s \models \varphi$ where φ is a smallest fixed-point CTL formula and s is a state in S to a Horn satisfiability instance.
- 2. What complexity can you obtain through to this reduction for *full* CTL model-checking?

Exercise 3 (Even and Odd Positions). We saw in Exercise 2 of TD 2 that the set $(\{p\}\Sigma)^{\omega}$ is not expressible in $LTL(\{p\}, X, U)$ over $(\mathbb{N}, <)$. We define two new temporal modalities U_0 and U_1 to fill this void:

 $w, i \models \varphi \cup_b \psi$ if $\exists k \ge i, (k-i) \equiv b \mod 2$ and $w, k \models \psi$ and $\forall j.i \le j < k \rightarrow w, j \models \varphi$

for b = 0 (resp. 1), i.e. restrictions of U to even (resp. odd) choices of positions.

- 1. Show that $(\{p\}\Sigma)^{\omega}$ can be expressed in $\mathrm{TL}(\{p\}, \mathsf{U}_0)$.
- 2. Complete the reduction from the previous exercise to handle the new modality U_0 in CTL model-checking. What complexity can you derive on the model-checking problem for CTL when U_0 is allowed?

Exercise 4 (Model Checking a Path). Consider the time flow $(\mathbb{N}, <)$. We want to verify a model which is an ultimately periodic word $w = uv^{\omega}$ with u in Σ^* and v in Σ^+ , where $\Sigma = 2^{\text{AP}}$.

Give an algorithm for checking whether $w, 0 \models \varphi$ holds, where φ is a LTL(AP, X, U) formula, in time bounded by $O(|uv| \cdot |\varphi|)$.

2 Büchi Automata

Recall from the course that a language L of infinite words in Σ^{ω} is *recognizable* iff there exists a Büchi automaton \mathcal{B} with $L = L(\mathcal{B})$.

Exercise 5 (Generalized Acceptance Condition). A generalized Büchi automaton $\mathcal{B} = (Q, \Sigma, I, T, (F_i)_{0 \le i < n})$ has a finite set of accepting sets F_i . An infinite run σ in Q^{ω} satisfies this generalized acceptance condition if

$$\bigwedge_{0 \le i < n} \mathsf{Inf}(\sigma) \cap F_i \neq \emptyset .$$

i.e. if each set F_i is visited infinitely often.

Show that for any generalized Büchi automaton, one can construct an equivalent Büchi automaton.

Exercise 6 (Basic Closure Properties of Recognizable Languages). Show that $\mathsf{Rec}(\Sigma^{\omega})$ is closed under

- 1. finite union, and
- 2. finite intersection.

Exercise 7 (Prophetic Automata). A Büchi automaton $\mathcal{B} = (Q, \Sigma, I, T, F)$ over an alphabet Σ is *prophetic* if any infinite string w in Σ^{ω} has exactly one final (but not necessarily initial) run in \mathcal{B} .

- 1. The residual language $L(\mathcal{B}_q)$ of a state q in Q is the language accepted by $\mathcal{B}_q = (Q, \Sigma, \{q\}, T, F)$, i.e. the set of words with a final run in \mathcal{B} that starts with state q. Show that \mathcal{B} is prophetic if and only if Σ^{ω} can be partitioned as $\biguplus_{q \in Q} L(\mathcal{B}_q)$.
- 2. An automaton \mathcal{B} is trim if every $L(\mathcal{B}_q) \neq \emptyset$ for every q in Q. It is co-deterministic if, for every state q' in Q and a in Σ , there is at most one state q in Q such that (q, a, q') belongs to T. It is co-complete if, for every state q' in Q and a in Σ , there is at least one state q in Q such that (q, a, q') belongs to T.

Show that, if \mathcal{B} is trim and prophetic, then \mathcal{B} is co-deterministic and co-complete.

3. Let $\Sigma = \{a, b\}$. Construct a prophetic automaton for the language $(a\Sigma)^{\omega}$.

Exercise 8 (Ultimately Periodic Words). An ultimately periodic word over Σ is a word of form $u \cdot v^{\omega}$ with u in Σ^* and v in Σ^+ .

Prove that any nonempty recognizable language in $\text{Rec}(\Sigma^{\omega})$ contains an ultimately periodic word.

Exercise 9 (Rational Languages). A rational language L of infinite words over Σ is a finite union

$$L = \bigcup X \cdot Y^{\omega}$$

where X is in $\mathsf{Rat}(\Sigma^*)$ and Y in $\mathsf{Rat}(\Sigma^+)$. We denote the set of *rational* languages of infinite words by $\mathsf{Rat}(\Sigma^{\omega})$.

Show that $\operatorname{Rec}(\Sigma^{\omega}) = \operatorname{Rat}(\Sigma^{\omega})$.

Exercise 10 (Deterministic Büchi Automata). A Büchi automaton is *deterministic* if $|I| \leq 1$, and for each state q in Q and symbol a in Σ , $|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1$.

1. Give a nondeterministic Büchi automaton for the language in $\{a, b\}^{\omega}$ described by the expression $(a + b)^* a^{\omega}$.

- 2. Show that there does not exist any deterministic Büchi automaton for this language.
- 3. Let $\mathcal{A} = (Q, \Sigma, q_0, T, F)$ be a finite deterministic automaton that recognizes the language of finite words $L \subseteq \Sigma^*$. We can also interpret \mathcal{A} as a deterministic Büchi automaton with a language $L' \subseteq \Sigma^{\omega}$; our goal here is to relate the languages of finite and infinite words defined by \mathcal{A} .

Let the *limit* of a language $L \subseteq \Sigma^*$ be

$$\vec{L} = \{ w \in \Sigma^{\omega} \mid w \text{ has infinitely many prefixes in } L \} .$$

Characterize the language L' of infinite words of \mathcal{A} in terms of its language of finite words L and of the limit operation.

Exercise 11 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under complement. We consider for this a Büchi automaton $A = (Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(A)}$ is in $\operatorname{Rec}(\Sigma^{\omega})$.

We note $q \stackrel{u}{\to} q'$ for q, q' in Q and $u = a_1 \cdots a_n$ in Σ^* if there exists a sequence of states q_0, \ldots, q_n such that $q_0 = q, q_n = q'$ and for all $0 \leq i < n, (q_i, a_{i+1}, q_{i+1})$ is in T. We note in the same way $q \stackrel{u}{\to}_F q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define the congruence \sim_A over Σ^* by

$$u \sim_A v \text{ iff } \forall q, q' \in Q, \ (q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u}_F q' \Leftrightarrow q \xrightarrow{v}_F q').$$

- 1. Show that \sim_A has finitely many congruence classes [u], for u in Σ^* .
- 2. Show that each [u] for u in Σ^* is in $\operatorname{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.
- 3. Consider the language K(L) for $L \subseteq \Sigma^{\omega}$

$$K(L) = \{ [u][v]^{\omega} \mid u, v \in \Sigma^*, [u][v]^{\omega} \cap L \neq \emptyset \} .$$

Show that K(L) is in $\operatorname{Rec}(\Sigma^{\omega})$ for any $L \subseteq \Sigma^{\omega}$.

- 4. Show that $K(L(A)) \subseteq L(A)$ and $K(\overline{L(A)}) \subseteq \overline{L(A)}$.
- 5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^* such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an integer, and $c: X^{(n)} \to \{1, \ldots, k\}$ a k-coloring of the n-tuples of X. Then there exists some infinite monochromatic subset M of X such that all the n-tuples of M have the same image by c.

6. Conclude.