
Petri Nets Coverability

Answer sketches for Home Assignment 2

To hand in before or on February 12, 2014.
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Electronic versions (PDF only) can be sent by email to 〈schmitz@lsv.ens-cachan.fr〉,
paper versions should be handed in on the 12th or put in my mailbox at LSV, ENS
Cachan. No delays.

The numbers in the margins next to exercises are indications of time and difficulty.

This assignment is concerned with the coverability problem in Petri nets. Formally,
given a Petri net N with set of places P , a source marking ms in NP , and a target
marking mt in NP , the problem asks whether there exists m in NP such that ms →∗N m
and m ≥ mt.

Here (and in the remainder of this assignment), the ordering is the product ordering
over NP , defined by m ≤ m′ if and only if m(p) ≤ m′(p) for all p in P .

The main application in verification is to check safety properties in concurrent sys-
tems, where the target marking represents an undesired state that we wish to avoid.

1 Large Coverability Graphs

We start by demonstrating that the algorithm studied in class for coverability, which
first constructs the coverability graph of the Petri net, and then checks whether the
target marking is covered in the coverability graph, has a non-elementary complexity:

Exercise 1 (A Non-Elementary Coverability Graph). Consider the Petri net depicted in
Figure 1. We fix a linear ordering q0, q1, q2, p0, p

′
0, p1, p2 over its places, so that markings

in NP can be seen as vectors in N7.

1. Show that m(q0) + m(q1) + m(q2) = 1 in any reachable marking m.[0]

2. Assume that n = 0. Show that a marking m with m(q0) = 1 and m(p0) = 2k is[1]

reachable.

We show by induction that, for all i ≤ k, the marking 〈1, 0, 0, 2i, 0, k − i, 0〉 is
reachable. For the base case i = 0, this is the initial marking. For the induction
step, assuming i < k, by induction hypothesis we reach 〈1, 0, 0, 2i, 0, k− i, 0〉. Then

the sequence of transitions ui
def
= b2

i
dc2

i+1
a yields the marking 〈1, 0, 0, 2i+1, 0, k −

i− 1, 0〉 as desired.
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Figure 1: A Petri net.

3. Assume k = 0 and define tower(0)
def
= 1 and tower(n + 1)

def
= 2tower(n). Show that a[1]

marking m with m(q0) = 1 and m(p0) = tower(n) is reachable.

We show by induction that, for all j ≤ n, the marking 〈1, 0, 0, tower(j), 0, 0, n −
j〉 is reachable. For the base case j = 0, this is indeed the initial marking.
For the induction step, assuming j < n, by induction hypothesis we can reach

〈1, 0, 0, tower(j), 0, 0, n − j〉. Then the sequence vj
def
= getower(j)f yields the mark-

ing
〈1, 0, 0, 1, 0, tower(j), n− j − 1〉 ,

from which the sequence u0 · · ·utower(j)−1 yields the desired marking

〈1, 0, 0, tower(j + 1), 0, 0, n− j − 1〉

according to the previous question.

4. Show that any sequence of markings m0,m1, . . . with mi → mi+1 for all i is bad,[2]

i.e. satisfies mi 6≤ mj for all i < j. Deduce that the coverability graph for this
Petri net has non-elementary size.

It suffices to show that mj(p) < mi(p) for some place p:

• If transition g is fired at least once between steps i and j, then mj(p2) <
mi(p2).

• Otherwise, if g is never fired and f is fired at least once, then mj(q2) < mi(q2).

• Otherwise, if g, f are never fired, and e is fired at least once, then mi(q1) =
mj(q1) = mi(q1) = mj(q1) = 0, i.e. only e can be fired, thus mj(p0) < mi(p0).
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• Otherwise, if g, f, e are never fired, then we can ignore p2 and q2. If a is fired
at least once, then mj(p1) < mi(p1).

• Otherwise, if g, f, e, a are never fired, and d is fired at least once, then
mj(q0) < mi(q0).

• Otherwise, if g, f, e, a, d are never fired, then either b is fired at least once and
mj(p0) < mi(p0), or c is fired at least once and mj(p

′
0) < mi(p

′
0).

Then, the coverability graph for this Petri net does not have any ω-value, hence it
has to explicitly contain all the markings leading to tower(n).

In fact, by extending the construction of the exercise, one can show that the cover-
ability graph can be of non primitive-recursive size.

2 Backward Chaining

Let us recall that a well-quasi-order (wqo) is a quasi-order (A,≤) with the additional
property that, if x0, x1, . . . is an infinite sequence of elements of A, then there exist two
indices i < j such that xi ≤ xj . In particular, (NP ,≤) for P finite is a wqo.

Exercise 2 (Ascending Chains Condition). Let (A,≤) be a quasi-order. The upward-

closure of a subset X of A is ↑X def
= {y ∈ A | ∃x ∈ X.x ≤ y}. A subset U of A is

upward-closed if U = ↑U .
Show that a quasi-order (A,≤) is a well-quasi-order (wqo) if and only if any increasing[2]

sequence U0 ⊆ U1 ⊆ U2 ⊆ · · · of upward-closed subsets of A eventually stabilizes, i.e.,
∃i ∈ N s.t. Ui = Ui+1 = · · · = Ui+k for all k.
Assume that the ascending chains condition holds. Consider an infinite sequence x0, x1, . . .
over A, and build the sequence ↑{x0} ⊆ ↑{x0, x1} ⊆ · · · of upward-closed subsets of A.
Then the latter sequence stabilizes at rank j, i.e. ↑{x0, . . . , xj−1, xj} ⊆ ↑{x0, . . . , xj−1},
which means xj ∈ ↑{x0, . . . , xj−1}. Thus ∃0 ≤ i < j such that xi ≤ xj .

Conversely, assume that (A,≤) is a wqo, and consider an increasing sequence U0 ⊆
U1 ⊆ U2 ⊆ · · · of upward-closed subsets of A. Whenever Uij+1 6⊆ Uij , extract an element
xij from Uij+1 \Uij , and observe that j < k implies xij 6≤ xik since the Ui’s are upward-
closed. If the sequence U0 ⊆ U1 ⊆ U2 ⊆ · · · does not stabilize, then we have exhibited
an infinite bad sequence xi0 , xi1 , . . . over A, a contradiction.

Exercise 3 (Finite Basis Property). Let (A,≤) a wqo.

1. For a subset X of A, we say that x is a minimal element of X if x is in X and for[1]

all y in X, y 6< x, and write min(X)
def
= {x ∈ X | ∀y ∈ X.y 6< x}, where <

def
= ≤\≥.

Show that every element of X is larger or equal to a minimal element of X.

Assume for the sake of contradiction that there exists x0 in X such that, for all
y ∈ min(X), y 6≤ x0. In particular, x0 does not belong to min(X), hence there
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exists x1 in X with x1 < x0. Now, x1 ≤ x0 thus x1 cannot belong to min(X),
and we can find x2 < x1. Pursuing this construction, we obtain an infinite bad
sequence x0 > x1 > · · · over (A,≤), a contradiction.

2. Let us write ≡ def
= ≤∩≥ for the equivalence generated by ≤. For a subset U of A,[1]

write U/≡ for its quotient by ≡. Note that ≤ becomes a partial ordering over the
equivalence classes in U/≡. Show that min(U/≡) is finite.

It suffices to show that min(U/≡) is an antichain, since any antichain is necessarily
finite over a wpo. Let [x] and [y] be two elements of U/≡, and assume [x] ≤ [y].
Since [x] 6< [y] and ≤ is a partial ordering over U/≡, this entails [x] = [y].

3. Show that any upward-closed U ⊆ A can be written as U = ↑B for some finite[1]

B ⊆ A: B is then called a finite basis for U .

For each equivalence class [x] in U/≡, we pick a representative r([x]) in [x]. Define

B
def
= r(min(U/≡)) .

Since (A,≤) is a wqo, B is finite. Furthermore, if y is in U , then there exists [x]
in min(U/≡) s.t. [x] ≤ [y], i.e. there exists r([x]) in B s.t. r([x]) ≤ r([y]) ≤ y by
transitivity of ≤, hence U ⊆ ↑B.

For the converse inclusion, consider some y ∈ A with r([x]) ≤ y for some [x] in
min(U/≡). Then x ≤ r([x]) ≤ y and x ∈ U , hence y ∈ U since U is upward-closed,
i.e. ↑B ⊆ U .

Exercise 4 (Backward Chaining Algorithm). Fix a coverability instance 〈N ,ms,mt〉
where N = 〈P, T,W,ms〉 is a Petri net with a finite set of places P , a finite set of
transitions T , transition weights W : (P × T ) ∪ (T × P )→ N, and initial marking ms in
NP , and mt is a target marking in NP .

1. Let U be an upward-closed set included in NP . Show that[1]

Pre(U)
def
= {m ∈ NP | ∃m′ ∈ U.m→N m′}

is upward-closed.

Assume m1 ∈ Pre(U) and m′1 ≥ m1. Then there exists m2 ∈ U with m1
t−→N m2

for some t ∈ T , which also yields m′1
t−→N m′2 for some m′2 ≥ m2. Since U is

upward-closed, this entails m′1 ∈ Pre(U).

2. For a marking m in NS for some finite S, define its norm ‖m‖ as maxs∈S m(s).[1]

For a finite set B of markings in NS , define its norm as ‖B‖ def
= maxm∈B ‖m‖ and

write |B| for its cardinality. We also write ‖T‖ for max(‖W�P×T
‖, ‖W�T×P

‖).
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Let B be a finite set included in NP . Show that we can compute a finite basis
B′ for ↑B ∪ Pre(↑B) in time O(|B| · |T | · |P | · log(‖B‖ + ‖T‖)) and satisfying
‖B′‖ ≤ ‖B‖+ ‖W�P×T

‖.
Let

B′′
def
= {(0P t (m−W (t, P ))) + W (P, t) | m ∈ B}

where t denotes the lub operation in ZP , i.e. the componentwise maximum. Then
B′′ ⊆ NP can be computed in time O(|B| · |T | · |P | · log(‖B‖+ ‖T‖)) by computing
the effect of every transition in T on every marking in B. It satisfies ‖B′′‖ ≤
‖B‖+ ‖W�P×T

‖. The answer then follows by setting B′
def
= B ∪B′′.

3. Deduce that Bmin
def
= min(↑B ∪ Pre(↑B)) can be computed in time O(|B|2 · |T |2 ·[0]

|P | · log(‖B‖+ ‖T‖)) and satisfies ‖Bmin‖ ≤ ‖B‖+ ‖W�P×T
‖.

4. Consider the following sequence of sets of markings (Ci)i:[2]

C0
def
= ↑{mt} , Ci+1

def
= Ci ∪ Pre(Ci) .

Show that (Ci)i stabilizes to some set C` for some ` ∈ N. Show that

Ci = {m ∈ NP | ∃m′ ∈ NP .∃j ≤ i.m′ ≥ mt ∧m→j
N m′} ,

i.e. that Ci is exactly the set of markings that cover mt in i or less steps.

For the first point, each Ci is upward-closed by induction over i, and Ci ⊆ Ci+1

for every i, thus by the ascending chain condition the family (Ci)i stabilizes.

For the second point, we proceed by induction over i. The base case holds trivially,
and for the induction step, we have that m belongs to Ci+1 \Ci iff there exists m′

in Ci such that m →N m′. By induction hypothesis, m′ belongs to Ci iff there
exists j ≤ i and m′′ ≥ mt s.t. m′ →j

N m′′, hence m →j+1
N m′′, but j + 1 > i since

m 6∈ Ci, hence i = j.

5. Let Bi
def
= minCi for all i. Deduce an algorithm for coverability that employs the[1]

(Bi)i sequence.

We construct the sequence of sets (Bi)i by

B0 = {mt} , Bi+1 = min(↑Bi ∪ Pre(↑Bi)) .

Then by induction over i, we can check that Bi = min(Ci) and Ci = ↑Bi.

Since (Ci)i eventually stabilizes and since we are working over a wpo, so does
(Bi)i. Each step of the computation of the Bi’s is effective, and checking whether
Bi = Bi+1 can be undertaken in

O(|P | · |Bi| · |Bi+1| · log(‖Bi‖+ ‖Bi+1‖) .
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Thus we can effectively compute (Bi)0≤i≤`. It only remains to check whether
ms ∈ ↑B`, in time

O(|P | · |B`| · log(‖B`‖+ ‖ms‖)) .

6. Let b
def
= max0≤i≤` ‖Bi‖ and c

def
= max0≤i≤` |Bi|. Give bounds on b and c in terms[1]

of `, ‖mt‖, ‖W�P×T
‖, and |P |. Deduce that the algorithm works in time

2O(|P |·log(‖mt‖+`·‖T‖)) · |T |2 · log(‖ms‖) .

By Question 3, b ≤ ‖mt‖+` ·‖W�P×T
‖. Thus c ≤ (b+1)|P |. The overall complexity

should take into account ` steps of computation, each with complexity

O(c2 · |T |2 · |P | · log(b + ‖T‖))

plus ` checks for stabilization in

O(c2 · |P | · log b)

and a final membership test for ms in

O(c · |P | · log(b + ‖ms‖)) .

Note that the stabilization check is basically for free in a concrete algorithm where
the elements of B′′ are checked against ↑B as they are constructed.

The overall complexity is thus in

O(` · c2 · |T |2 · |P | · log(b + ‖T‖+ ‖ms‖)) ⊆ 2O(|P |·log(‖mt‖+`·‖T‖)) · |T |2 · log(‖ms‖)

3 Complexity Upper Bounds

The missing information in order to bound the complexity of the backward chaining
algorithm for coverability is an upper bound on `, the stabilization rank. One could
extract upper bounds on ` from so-called length function theorems for Dickson’s Lemma,
but they will be too high for our problem here.

Instead, assume that we can cover mt from ms. We are going to prove an upper
bound on the minimal rank i such that ms belongs to Ci, working for this by induction
over P the set of places. This is actually pretty simple, but requires quite a bit of
notation.

We consider for this the projected net N�I for I ⊆ P : it has place set I, transition set
T , weights W�I×T∪T×I

, and initial marking ms�I in NI . Note that ‖m�I‖ ≤ ‖m‖ for all
m in NP , and similarly ‖W�I×T

‖ ≤ ‖W�P×T
‖. We call an I-witness from m1 a sequence

m1, . . . ,mn of markings in NI with mn ≥ mt�I and mi →N�I
mi+1 for all 1 ≤ i < n. A

coverability witness is a P -witness from ms.

6
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Exercise 5 (Upper Bound on Coverability Witnesses). For I ⊆ P and m in NI , let
us define `(I,m) as the minimal length of an I-coverability witness from m, and set
`(I,m) = 0 if no such witness exists. We further define

M(I)
def
= sup

m∈NI

`(I,m) .

1. Show that M(∅) = 1 for the base case.[0]

A Petri net with no places has the zero-dimensional marking for initial marking,
which equals the also zero-dimensional mt�∅ .

2. For the induction step, let I 6= ∅. We want to bound M(I) using M
def
= maxI′(I M(I ′).

To this end, we define

L
def
= M · ‖W�P×T

‖+ ‖mt‖
and prove that, for every marking m1 in NI , if there exists an I-witness w =
m1, . . . ,mn of minimal length from m1, then

n ≤ L|I| + M . (∗)

(a) Let us call w L-bounded if mi(p) < L for all 1 ≤ i ≤ n and p in I. Show that,[1]

if w is L-bounded, then (∗) holds.

We can assume all the markings in w to be distinct, otherwise we could avoid
a loop in the sequence and obtain a shorter one, contradicting the minimality
of w. There are at most L|I| distinct markings bounded by L, hence (∗) holds
in this case.

(b) Assume the contrary: we can split w as w1, w2 such that w1 is L-bounded and[1]

w2 starts with a marking mj such that mj(p) ≥ L for some (maybe several)
p in I. Show that (∗) also holds.

By the same reasoning as in Question (a), w1 can be chosen of length bounded
by L|I|. Because w2 starts with a place p where mj(p) ≥ L, we can consider
the places in I ′ = I \ {p | mj(p) ≥ L} and project w2 on I ′: by definition of
M , w2�I′

can be chosen of length at most M . Looking at the corresponding
unprojected witness, we still manage to end with a marking mn(p) ≥ mt(p)
for all p in I \ I since it can only decrease by ‖W�P×T

‖ at each of its M
steps.

3. Let N
def
= ‖W�P×T

‖+ ‖mt‖+ 2. Show that M(P ) ≤ N (3·|P |)!.[1]

By induction over P : for ∅, M(∅) ≤ 1 < N = N0!. For the induction step, by (∗),

M(I) ≤ (N ·M)|I| + M

≤ (N ·M)|I|+1 (since N ≥ 2)

≤ N ((3(|I|−1))!+1)(|I|+1) (by ind. hyp.)

≤ L(3|I|)! .
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Exercise 6 (Complexity of Coverability Algorithms). Given a Petri netN = 〈P, T,W,ms〉
and a marking mt, set N

def
= 2 + ‖W�P×T

‖+ ‖mt‖.

1. Assuming that the size n of the instance 〈N ,ms,mt〉 of the coverability problem[1]

is at least
max(logN, |P |, log ‖W�T×P

‖, log ‖ms‖) ,

deduce that, if mt is coverable from ms, then there is a coverability witness of
length at most 22

c·n logn
for some constant c.

If N covers mt, then there is a coverability witness of length at most M(P ). By

Exercise 5 M(P ) ≤ N (3|P |)! ≤ (2n)(3n)! ≤ 22
cn logn

for some constant c.

2. Let us exploit this bond for the backward chaining algorithm. Show that we can[3]

adapt the backward chaining algorithm to work in 2-ExpTime.

Let us first show that, if we can cover mt from ms, then ms belongs to C`(P,ms):
by definition of `(P,ms), there is a coverability witness of length `(P,ms), hence

by Exercise 4.4, ms ∈ C`(P,ms). Remember that `(P,ms) ≤ M(P ) ≤ 22
cn logn

for
some constant c.

Thus a new version of the backward chaining algorithm terminates at the minimal
rank ` such that at least one of the three conditions is fulfilled:

(a) saturation: B` = B`+1 (and then accept iff ms ∈ ↑B`),

(b) witness: ms ∈ ↑B` (and then accept),

(c) timeout: ` > 22
cn logn

for the same constant c (and then reject).

Since the only new check for (c) can rely on an exponential time pre-computation,
it does not modify the complexity of the algorithm, which is by Exercise 4.6 in

2O(|P |·n·2cn logn+n) · n3 ⊆ 22
O(n logn)

A closer look at the bound computed in Exercise 5.3 allows to avoid the new
termination checks: more generally, for any marking m, if m can cover mt in the
Petri net, then there is a witness of length at most ` = N3·|P |!, where N does not
depend on m (but depends on ‖W�P×T

‖+ ‖mt‖). This entails that the saturation
length is at most `. Indeed, assume for the sake of contradiction that there exists
a marking m in C`+1 \ C`. By Exercise 4.4, this means that there does not exist
any marking m′ ≥ mt and j ≤ ` such that m →j

N m′, contradicting the bound
`.
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3. Another way of exploiting this bound is to use a combinatorial algorithm, which[2]

searches for a coverability witness of length at most 22
c·n logn

for some constant
c, and concludes that none exists if none can be found. Show that this is an
ExpSpace algorithm.

A nondeterministic algorithm in NExpSpace can proceed to find this witness:
it requires a counter for the current length, which uses space at most 2cn logn,
and counters for each of the P places, which can each hold values of at most
22

cn logn · ‖W�T×P
‖+‖ms‖ ≤ 22

cn logn+n + 2n, thus each using space at most 2dn logn

for some constant d.

By Savitch’s Theorem, NExpSpace = ExpSpace.
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