Exam: Abstract Categorial Grammars

Duration: 3 hours.

Written documents are allowed. The numbers in front of questions are indicative of hardness or duration. Please put your answers to sections 1 and 2 on separate sheets; do not forget to write your name on both.

Quick Course Recap. Recall from the course that a higher-order linear signature is a triple $\Sigma = \langle A, C, \tau \rangle$ where A is a finite set of atomic types, C is a finite set of constants, and $\tau: C \to \mathcal{T}(A)$ is a function that assigns each constant in C to a linear implicative type α built over A, according to the syntax

$$\alpha ::= a \mid \alpha \multimap \alpha$$

where a ranges over A. By convention we consider \multimap to be right-associative, i.e. we write $\alpha \multimap \beta \multimap \gamma$ for $\alpha \multimap (\beta \multimap \gamma)$. The order of a linear type is defined inductively as

$$\operatorname{ord}(a) = 1$$
 $\operatorname{ord}(\alpha \multimap \beta) = \max(\operatorname{ord}(\alpha) + 1, \operatorname{ord}(\beta))$

Given a higher-order linear signature Σ , each linear lambda term of $\Lambda^{\circ}(\Sigma)$ can be assigned a type in $\mathcal{T}(A)$ by the typing system

$$\frac{1}{\vdash_{\Sigma} c : \tau(c)} (\mathsf{Cons}) \qquad \frac{1}{x : \alpha \vdash_{\Sigma} x : \alpha} (\mathsf{Var}) \qquad \frac{\Gamma, x : \alpha \vdash_{\Sigma} t : \beta}{\Gamma \vdash_{\Sigma} \lambda x.t : \alpha \multimap \beta} (\mathsf{Abs})$$

$$\frac{1}{\Gamma \vdash_{\Sigma} t : \alpha \multimap \beta} \Delta \vdash_{\Sigma} u : \alpha}{\Gamma, \Delta \vdash_{\Sigma} tu : \beta} (\mathsf{App})$$

Note that x occurs free in t exactly once in (Abs) and the environments Γ and Δ are disjoint in (App).

Given two higher-order linear signatures Σ_1 and Σ_2 , a linear higher-order homomorphism is generated by two functions $\eta: A_1 \to \mathcal{T}(A_1)$ on types and $\theta: C_1 \to \Lambda^{\circ}(\Sigma_2)$ on constants such that $\vdash_{\Sigma_2} \theta(c): \eta(\tau_1(c))$ for all c in C_1 , where η and θ are lifted in a natural way by $\eta(\alpha \multimap \beta) = \eta(\alpha) \multimap \eta(\beta)$ on the one hand, and $\theta(x) = x$, $\theta(\lambda x.t) = \lambda x.\theta(t)$, and $\theta(tu) = \theta(t)\theta(u)$ on the other hand.

An abstract categorial grammar is a tuple $\mathcal{G} = \langle \Sigma_1, \Sigma_2, \mathcal{L}, s \rangle$ where \mathcal{L} is a linear higher-order homomorphism from Σ_1 to Σ_2 and s is a distinguished type in $\mathcal{T}(A_1)$. The abstract language generated by \mathcal{G} is

$$\mathscr{A}(\mathcal{G}) = \{ t \in \Lambda^{\circ}(\Sigma_1) \mid \vdash_{\Sigma_1} t : s \}$$

while its object language is the image of the abstract language by the homomorphism: $\mathscr{L}(\mathcal{G}) = \{t \in \Lambda^{\circ}(\Sigma_2) \mid \exists u \in \mathscr{A}(\mathcal{G}) . t = \mathcal{L}(u)\}.$

1 Second-Order ACGs and Tree Languages

Exercise 1 (Ground Lambda Terms). Let Σ be a second-order linear signature, i.e. a signature such that the type of any constant c is of form

$$\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$$

for atomic a_i 's in A. Consider the normalized typing system with a single rule

$$\frac{\vdash_{\Sigma}' c : \tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0 \quad \vdash_{\Sigma}' t_1 : a_1 \ldots \vdash_{\Sigma}' t_n : a_n}{\vdash_{\Sigma}' c t_1 \cdots t_n : a_0} (\mathsf{App}')$$

We want to show that, for all ground terms t and atomic types $a, \vdash_{\Sigma} t : a$ if and only if $\vdash'_{\Sigma} t : a$.

- [2] 1. Show that, if $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$, $0 \le i \le n$, and $\vdash_{\Sigma} t_j : a_j$ for all $1 \le j \le i$, then $\vdash_{\Sigma} c t_1 \cdots t_i : a_{i+1} \multimap \cdots \multimap a_n \multimap a_0$. Deduce that $\vdash_{\Sigma}' t : a$ implies $\vdash_{\Sigma} t : a$ if t is ground and a atomic.
- [2] 2. Show that, if $\vdash_{\Sigma} t : \alpha$ for a ground term t and type α , then $t = c t_1 \cdots t_i$ for some constant c with $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$, some $0 \le i \le n$, and some ground terms t_1, \ldots, t_i such that $\alpha = a_{i+1} \multimap \cdots \multimap a_n \multimap a_0$ and $\vdash_{\Sigma} t_j : a_j$ for $0 \le j \le i$ for some atomic types a_j 's.
- [1] 3. Deduce that $\vdash_{\Sigma} t : a$ implies $\vdash'_{\Sigma} t : a$ whenever t is a ground term and a an atomic type.

Exercise 2 (Local Tree Languages). For a second-order constant c with type $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$, we call n its arity (and thus can see C as a ranked alphabet) and associate to the ground lambda term $t = c t_1 \cdots t_n$ the unique tree $\bar{t} = c^{(n)}(\bar{t}_1, \ldots, \bar{t}_n)$. Given a second-order signature Σ and a distinguished atomic type s, we define the tree language

 $\mathscr{G}(\Sigma, s) = \{ \overline{t} \in T(C) \mid \vdash_{\Sigma} t : s \text{ where } t \text{ is ground} \}.$

[1] 1. Consider the second-order linear signature Σ_0 with atomic types $A_0 = \{np, s, c\}$, constants $C_0 = \{$ ALICE, BELIEVE, LEFT, SOMEONE, THAT $\}$, and typing

 $\begin{aligned} \tau_0(\text{ALICE}) &= np & \tau_0(\text{BELIEVE}) = c \multimap np \multimap s \\ \tau_0(\text{LEFT}) &= np \multimap s & \tau_0(\text{SOMEONE}) = np \\ \tau_0(\text{THAT}) &= s \multimap c \end{aligned}$

The corresponding ranked alphabet is $\mathcal{F}_0 = \{ALICE^{(0)}, BELIEVE^{(2)}, LEFT^{(1)}, SOMEONE^{(0)}, THAT^{(1)}\}$. Give a tree automaton over \mathcal{F}_0 for $\mathscr{G}(\Sigma_0, s)$. [2] 2. Let \mathcal{F} be a ranked alphabet. A deterministic top-down tree automaton $\mathcal{A} = \langle Q, \mathcal{F}, \delta, \{q_0\} \rangle$ is *local* if there exists a function $\ell: \mathcal{F} \to Q$ such that the rules in δ are all of the form $(\ell(f^{(n)}), f^{(n)}, q_1, \dots, q_n)$.

Show that, if L is recognized by a local deterministic top-down tree automaton, then there is a second order linear signature Σ and a distinguished atomic type s such that $L = \mathscr{G}(\Sigma, s)$.

- [2] 3. Show that, conversely, given a second-order signature Σ and a distinguished atomic type s, there exists a local top-down deterministic tree automaton \mathcal{A} such that $L(\mathcal{A}) = \mathscr{G}(\Sigma, s).$
- [1] 4. Give an example of a regular tree language, which cannot be expressed as $\mathscr{G}(\Sigma, s)$ for any second-order linear signature Σ and distinguished atomic type s.

Exercise 3 (Regular Tree Languages). Fix some ranked alphabet \mathcal{F} . We define the generic tree signature $\Sigma_{\mathcal{F}} = \langle \{\sigma\}, \mathcal{F}, \tau_{\mathcal{F}} \rangle$ by $\tau_{\mathcal{F}}(f^{(n)}) = \overbrace{\sigma \multimap \cdots \multimap \sigma}^{n} \multimap \sigma = \sigma^n \multimap \sigma$.

Let $\mathcal{G} = \langle \Sigma_1, \Sigma_{\mathcal{F}}, \mathcal{L}, s \rangle$ be an ACG with Σ_1 a second-order linear signature and s an atomic type of A_1 . We define the *tree language* of \mathcal{G} as

 $\mathscr{T}(\mathcal{G}) = \{ \bar{t} \in T(\mathcal{F}) \mid \exists t \text{ ground.} \exists u \text{ ground.} \vdash_{\Sigma_1} u : s \land \mathcal{L}(u) \to_{\beta}^* t \} .$

- [1] 1. Give an ACG \mathcal{G} s.t. $\mathscr{T}(\mathcal{G}) = \{f(g(a), g(b))\}.$
- [1] 2. Assume that $\max_{a \in A_1} \operatorname{ord}(a) = 1$. Justify why $\mathscr{T}(\mathcal{G})$ is a regular tree language. Hint: Recall that linear tree homomorphisms preserve regularity.

Exercise 4 (Tree Adjoining Languages).

- [1] 1. Give a TAG \mathcal{G} with word language $L(\mathcal{G}) = \{a^n b^m c^n d^m \mid n, m \ge 0\}.$
- [2] 2. Give an ACG \mathcal{G}' that generates the same *trees* as your answer to the previous question: $\mathscr{T}(\mathcal{G}') = L_T(\mathcal{G})$.

2 ACGs for Semantics

Exercise 5 (Covert Movements and Spurious Ambiguities). Consider again the signature of Exercise 2.1, to which we add a constant QR, i.e., $\Sigma_0 = \langle A_0, C_0, \tau_0 \rangle$ where:

 $A_0 = \{np, s, c\}$ $C_0 = \{\text{ALICE, BELIEVE, LEFT, SOMEONE, THAT, QR}\}$

$$\begin{aligned} \tau_0(\text{ALICE}) &= np & \tau_0(\text{BELIEVE}) &= c \multimap np \multimap s \\ \tau_0(\text{LEFT}) &= np \multimap s & \tau_0(\text{SOMEONE}) &= np \\ \tau_0(\text{THAT}) &= s \multimap c & \tau_0(\text{QR}) &= np \multimap (np \multimap s) \multimap s \end{aligned}$$

Consider the signatures $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ and $\Sigma_2 = \langle A_2, C_2, \tau_2 \rangle$, which are respectively defined as follows:

 $A_{1} = \{\sigma\} \qquad C_{1} = \{/\text{Alice}/, /\text{believes}/, /\text{left}/, /\text{someone}/, /\text{that}/\}$ $\tau_{1}(/\text{Alice}/) = \sigma \multimap \sigma \qquad \tau_{1}(/\text{believes}/) = \sigma \multimap \sigma$ $\tau_{1}(/\text{left}/) = \sigma \multimap \sigma \qquad \tau_{1}(/\text{someone}/) = \sigma \multimap \sigma$ $\tau_{1}(/\text{that}/) = \sigma \multimap \sigma$ $A_{2} = \{\iota, o\} \qquad C_{2} = \{\mathbf{a}, \mathbf{left}, \mathbf{B}, \exists\}$ $\tau_{2}(\mathbf{a}) = \iota \qquad \tau_{2}(\mathbf{left}) = \iota \multimap o$ $\tau_{2}(\exists) = \iota \multimap o \multimap o \qquad \tau_{2}(\exists) = (\iota \multimap o) \multimap o$

Finally, define two linear higher-order homomorphisms \mathcal{L}_1 and \mathcal{L}_2 as follows:

 $\mathcal{L}_1(np) = \sigma \multimap \sigma \qquad \mathcal{L}_1(s) = \sigma \multimap \sigma \qquad \mathcal{L}_1(c) = \sigma \multimap \sigma$

$\mathcal{L}_1(\mathrm{ALICE}) = /\mathrm{Alice}/$	$\mathcal{L}_1(\text{BELIEVE}) = \lambda x y. y + /\text{believes} / + x$
$\mathcal{L}_1(\text{LEFT}) = \lambda x. x + /\text{left}/$	$\mathcal{L}_1(\text{SOMEONE}) = /\text{someone}/$
$\mathcal{L}_1(\text{THAT}) = \lambda x. / \text{that} / + x$	$\mathcal{L}_1(\mathrm{QR}) = \lambda x p. p x$

where a + b is defined as $\lambda x. a(bx)$,

 $\mathcal{L}_2(np) = (\iota \multimap o) \multimap o \qquad \mathcal{L}_2(s) = o \qquad \mathcal{L}_2(c) = o$

$\mathcal{L}_2(\text{ALICE}) = \lambda k. k \mathbf{a}$	$\mathcal{L}_2(\text{BELIEVE}) = \lambda p k. k (\lambda x. B x p)$
$\mathcal{L}_2(\text{LEFT}) = \lambda k. k (\lambda x. \text{left} x)$	$\mathcal{L}_2(\text{SOMEONE}) = \lambda k. \exists x. k x$
$\mathcal{L}_2(\text{THAT}) = \lambda x. x$	$\mathcal{L}_2(\mathrm{QR}) = \dots$

[1] 1. Show that the two following terms

 $t_1 = \text{BELIEVE} (\text{THAT} (\text{LEFT SOMEONE})) \text{ ALICE}$ $t_2 = \text{QR SOMEONE} (\lambda x. \text{ BELIEVE} (\text{THAT} (\text{LEFT } x)) \text{ ALICE})$

get the same interpretation under \mathcal{L}_1 .

- [1] 2. Compute $\mathcal{L}_2(t_1)$.
- [2] 3. Define $\mathcal{L}_2(QR)$ in such a way that $\mathcal{L}_2(t_2)$ yields the *de re* interpretation (i.e., the interpretation where the existential quantifier takes wide scope over the modal operator).
- [3] 4. Show that there is an infinity of terms u_0, u_1, u_2, \ldots such that:

$$\mathcal{L}_1(u_i) = /\text{Alice} / + /\text{believes} / + /\text{that} / + /\text{someone} / + /\text{left} /$$