
MPRI 2-27-1 December 4, 2013

Exam: Abstract Categorial Grammars

Duration: 3 hours.
Written documents are allowed. The numbers in front of questions
are indicative of hardness or duration. Please put your answers to
sections 1 and 2 on separate sheets; do not forget to write your
name on both.

Quick Course Recap. Recall from the course that a higher-order linear signature is
a triple Σ = 〈A,C, τ〉 where A is a finite set of atomic types, C is a finite set of constants,
and τ :C → T (A) is a function that assigns each constant in C to a linear implicative
type α built over A, according to the syntax

α ::= a | α(α

where a ranges over A. By convention we consider (to be right-associative, i.e. we
write α(β (γ for α((β (γ). The order of a linear type is defined inductively as

ord(a) = 1 ord(α(β) = max(ord(α) + 1, ord(β)) .

Given a higher-order linear signature Σ, each linear lambda term of Λ◦(Σ) can be
assigned a type in T (A) by the typing system

`Σ c : τ(c)
(Cons)

x : α `Σ x : α
(Var)

Γ, x : α `Σ t : β

Γ `Σ λx.t : α(β
(Abs)

Γ `Σ t : α(β ∆ `Σ u : α

Γ,∆ `Σ tu : β
(App)

Note that x occurs free in t exactly once in (Abs) and the environments Γ and ∆ are
disjoint in (App).

Given two higher-order linear signatures Σ1 and Σ2, a linear higher-order homomor-
phism is generated by two functions η:A1 → T (A1) on types and θ:C1 → Λ◦(Σ2) on
constants such that `Σ2 θ(c) : η(τ1(c)) for all c in C1, where η and θ are lifted in a natural
way by η(α (β) = η(α) (η(β) on the one hand, and θ(x) = x, θ(λx.t) = λx.θ(t),
and θ(tu) = θ(t)θ(u) on the other hand.

An abstract categorial grammar is a tuple G = 〈Σ1,Σ2,L, s〉 where L is a linear
higher-order homomorphism from Σ1 to Σ2 and s is a distinguished type in T (A1). The
abstract language generated by G is

A (G) = {t ∈ Λ◦(Σ1) | `Σ1 t : s}
while its object language is the image of the abstract language by the homomorphism:

L (G) = {t ∈ Λ◦(Σ2) | ∃u ∈ A (G).t = L(u)} .

1

MPRI 2-27-1 December 4, 2013

1 Second-Order ACGs and Tree Languages

Exercise 1 (Ground Lambda Terms). Let Σ be a second-order linear signature, i.e. a
signature such that the type of any constant c is of form

τ(c) = a1 (· · ·(an (a0

for atomic ai’s in A. Consider the normalized typing system with a single rule

`′Σ c : τ(c) = a1 (· · ·(an (a0 `′Σ t1 : a1 . . . `′Σ tn : an

`′Σ c t1 · · · tn : a0
(App′)

We want to show that, for all ground terms t and atomic types a, `Σ t : a if and only
if `′Σ t : a.

1. Show that, if τ(c) = a1 (· · · (an (a0, 0 ≤ i ≤ n, and `Σ tj : aj for all[2]

1 ≤ j ≤ i, then `Σ c t1 · · · ti : ai+1 (· · ·(an (a0. Deduce that `′Σ t : a implies
`Σ t : a if t is ground and a atomic.

2. Show that, if `Σ t : α for a ground term t and type α, then t = c t1 · · · ti for some[2]

constant c with τ(c) = a1 (· · · (an (a0, some 0 ≤ i ≤ n, and some ground
terms t1, . . . , ti such that α = ai+1 (· · ·(an (a0 and `Σ tj : aj for 0 ≤ j ≤ i
for some atomic types aj ’s.

3. Deduce that `Σ t : a implies `′Σ t : a whenever t is a ground term and a an atomic[1]

type.

Exercise 2 (Local Tree Languages). For a second-order constant c with type τ(c) =
a1 (· · ·(an (a0, we call n its arity (and thus can see C as a ranked alphabet) and
associate to the ground lambda term t = c t1 · · · tn the unique tree t̄ = c(n)(t̄1, . . . , t̄n).
Given a second-order signature Σ and a distinguished atomic type s, we define the tree
language

G (Σ, s) = {t̄ ∈ T (C) | `Σ t : s where t is ground} .

1. Consider the second-order linear signature Σ0 with atomic types A0 = {np, s, c},[1]

constants C0 = {alice,believe, left, someone,that}, and typing

τ0(alice) = np τ0(believe) = c(np(s

τ0(left) = np(s τ0(someone) = np

τ0(that) = s(c

The corresponding ranked alphabet is F0 = {alice(0),believe(2), left(1), someone(0),that(1)}.
Give a tree automaton over F0 for G (Σ0, s).

2

MPRI 2-27-1 December 4, 2013

2. Let F be a ranked alphabet. A deterministic top-down tree automaton A =[2]

〈Q,F , δ, {q0}〉 is local if there exists a function `:F → Q such that the rules in δ
are all of the form (`(f (n)), f (n), q1, . . . , qn).

Show that, if L is recognized by a local deterministic top-down tree automaton,
then there is a second order linear signature Σ and a distinguished atomic type s
such that L = G (Σ, s).

3. Show that, conversely, given a second-order signature Σ and a distinguished atomic[2]

type s, there exists a local top-down deterministic tree automaton A such that
L(A) = G (Σ, s).

4. Give an example of a regular tree language, which cannot be expressed as G (Σ, s)[1]

for any second-order linear signature Σ and distinguished atomic type s.

Exercise 3 (Regular Tree Languages). Fix some ranked alphabet F . We define the

generic tree signature ΣF = 〈{σ},F , τF 〉 by τF (f (n)) =

n times︷ ︸︸ ︷
σ (· · ·(σ (σ = σn (σ.

Let G = 〈Σ1,ΣF ,L, s〉 be an ACG with Σ1 a second-order linear signature and s an
atomic type of A1. We define the tree language of G as

T (G) = {t̄ ∈ T (F) | ∃t ground.∃u ground. `Σ1 u : s ∧ L(u)→∗β t} .

1. Give an ACG G s.t. T (G) = {f(g(a), g(b))}.[1]

2. Assume that maxa∈A1 ord(a) = 1. Justify why T (G) is a regular tree language.[1]

Hint: Recall that linear tree homomorphisms preserve regularity.

Exercise 4 (Tree Adjoining Languages).

1. Give a TAG G with word language L(G) = {anbmcndm | n,m ≥ 0}.[1]

2. Give an ACG G′ that generates the same trees as your answer to the previous[2]

question: T (G′) = LT (G).

2 ACGs for Semantics

Exercise 5 (Covert Movements and Spurious Ambiguities). Consider again the signa-
ture of Exercice 2.1, to which we add a constant qr, i.e., Σ0 = 〈A0, C0, τ0〉 where:

A0 = {np, s, c} C0 = {alice,believe, left, someone,that,qr}

τ0(alice) = np τ0(believe) = c(np(s

τ0(left) = np(s τ0(someone) = np

τ0(that) = s(c τ0(qr) = np((np(s) (s

3

MPRI 2-27-1 December 4, 2013

Consider the signatures Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉, which are respectively
defined as follows:

A1 = {σ} C1 = {/Alice/, /believes/, /left/, /someone/, /that/}

τ1(/Alice/) = σ (σ τ1(/believes/) = σ (σ

τ1(/left/) = σ (σ τ1(/someone/) = σ (σ

τ1(/that/) = σ (σ

A2 = {ι, o} C2 = {a, left,B, ∃}

τ2(a) = ι τ2(left) = ι(o

τ2(B) = ι(o(o τ2(∃) = (ι(o) (o

Finally, define two linear higher-order homomorphisms L1 and L2 as follows:

L1(np) = σ (σ L1(s) = σ (σ L1(c) = σ (σ

L1(alice) = /Alice/ L1(believe) = λxy. y + /believes/ + x

L1(left) = λx. x+ /left/ L1(someone) = /someone/

L1(that) = λx. /that/ + x L1(qr) = λxp. p x

where a+ b is defined as λx. a (b x),

L2(np) = (ι(o) (o L2(s) = o L2(c) = o

L2(alice) = λk. k a L2(believe) = λpk. k (λx.Bx p)

L2(left) = λk. k (λx. leftx) L2(someone) = λk.∃x. k x
L2(that) = λx. x L2(qr) = . . .

1. Show that the two following terms[1]

t1 = believe (that (left someone))alice

t2 = qr someone (λx.believe (that (leftx))alice)

get the same interpretation under L1.

2. Compute L2(t1).[1]

3. Define L2(qr) in such a way that L2(t2) yields the de re interpretation (i.e., the[2]

interpretation where the existential quantifier takes wide scope over the modal
operator).

4. Show that there is an infinity of terms u0, u1, u2, . . . such that:[3]

L1(ui) = /Alice/ + /believes/ + /that/ + /someone/ + /left/

4

	Second-Order ACGs and Regular Tree Languages
	ACGs for Semantics

