TD 7: Coverability

Exercise 1 (Dickson's Lemma). A quasi-order (A, \leq) is a set A endowed with a reflexive and transitive ordering relation \leq. A well quasi order (wqo) is a quasi order (A, \leq) s.t., for any infinite sequence $a_{0} a_{1} \cdots$ in A^{ω}, there exist indices $i<j$ with $a_{i} \leq a_{j}$.

1. Let (A, \leq) be a wqo and $B \subseteq A$. Show that (B, \leq) is a wqo.
2. Show that $(\mathbb{N} \uplus\{\omega\}, \leq)$ is a wqo.
3. Let (A, \leq) be a wqo. Show that any infinite sequence $a_{0} a_{1} \cdots$ in A^{ω} embeds an infinite increasing subsequence $a_{i_{0}} \leq a_{i_{1}} \leq a_{i_{2}} \leq \cdots$ with $i_{0}<i_{1}<i_{2}<\cdots$.
4. Let $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ be two wqo's. Show that the cartesian product $\left(A \times B, \leq_{x}\right)$, where the product ordering is defined by $(a, b) \leq_{X}\left(a^{\prime}, b^{\prime}\right)$ iff $a \leq_{A} a^{\prime}$ and $b \leq_{B} b^{\prime}$, is a wqo.

Exercise 2 (Coverability Graph). The coverability problem for Petri nets is the following decision problem:
Instance: A Petri net $\mathcal{N}=\left\langle P, T, F, W, m_{0}\right\rangle$ and a marking m_{1} in \mathbb{N}^{P}.
Question: Does there exist m_{2} in reach $\mathcal{N}_{\mathcal{N}}\left(m_{0}\right)$ such that $m_{1} \leq m_{2}$?
For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpacecomplete.

One way to decide the general coverability problem is to use Karp and Miller's coverability graph (see the lecture notes). Indeed, we have the equivalence between the two statements:
i. there exists m_{2} in reach $\left.\mathcal{N}^{(} m_{0}\right)$ such that $m_{1} \leq m_{2}$, and
ii. there exists m_{3} in Coverability $\operatorname{Graph}_{\mathcal{N}}\left(m_{0}\right)$ such that $m_{1} \leq m_{3}$.

1. In order to prove that (ij) implies (iii), we will prove a stronger statement: for a marking m in $(\mathbb{N} \uplus\{\omega\})^{P}$, write $\Omega(m)=\{p \in P \mid m(p)=\omega\}$ for the set of ω-places of m.
Show that, if $m_{0} \xrightarrow{u} \mathcal{N} m_{2}$ in the Petri net \mathcal{N} for some u in T^{*}, then there exists m_{3} in $(\mathbb{N} \uplus\{\omega\})^{P}$ such that $m_{2}(p)=m_{3}(p)$ for all p in $P \backslash \Omega\left(m_{3}\right)$ and $m_{0}{ }_{\rightarrow}^{u} m_{3}$ in the coverability graph.
2. Let us prove that (iii) implies (ii). The idea is that we can find reachable markings that agree with m_{3} on its finite places, and that can be made arbitrarily high on its ω-places. For this, we need to identify the graph nodes where new ω values were introduced, which we call ω-nodes.
(a) The threshold $\Theta(u)$ of a transition sequence u in T^{*} is the minimal marking m in \mathbb{N}^{P} s.t. u is enabled from m. Show how to compute $\Theta(u)$. Show that $\Theta(u \cdot v) \leq \Theta(u)+\Theta(v)$ for all u, v in T^{*}.
(b) Recall that an ω value is introduced in the coverability graph thanks to Algorithm 1 .
```
repeat
    saved \(\leftarrow m^{\prime}\);
    foreach \(m^{\prime \prime} \in V\) s.t. \(\exists v \in T^{*}, m^{\prime \prime} \xrightarrow{v}_{G} m\) do
        if \(m^{\prime \prime}<m^{\prime}\) then
                \(m^{\prime} \leftarrow m^{\prime}+\left(\left(m^{\prime}-m^{\prime \prime}\right) \cdot \omega\right)\)
        end
    end
until saved \(=m^{\prime}\);
return \(m^{\prime}\)
```

Algorithm 1: $\operatorname{AddOMEGAS}\left(m, m^{\prime}, V\right)$
We consider a call to $\operatorname{AddOmegas}\left(m, m^{\prime}, V\right)$ on line 8 of the CoverabilityGraph algorithm from the course notes, where $m \xrightarrow{t} \mathcal{N} m^{\prime}$ for t the transition chosen at line 6 of the CoverabilityGraph algorithm.
Let $\left\{v_{1}, \ldots, v_{\ell}\right\}$ be the set of " $v t$ " sequences, where v is found on line 3 of $\operatorname{AddOmegas}\left(m, m^{\prime}, V\right)$. These sequences $v t$ resulted in adding at least one ω value to m^{\prime} on line 5 . Let $w=v_{1} \cdots v_{\ell}$. Show that, for any k in \mathbb{N}, the marking ν_{k} defined by

$$
\nu_{k}(p)= \begin{cases}m^{\prime}(p) & \text { if } p \in P \backslash \Omega(m) \\ \Theta\left(w^{k}\right)(p) & \text { if } p \in \Omega(m)\end{cases}
$$

allows to fire w^{k}. How does the marking ν_{k}^{\prime} with $\nu_{k} \xrightarrow{w^{k}} \mathcal{N} \nu_{k}^{\prime}$ compare to ν_{k} ?
(c) Prove that, if $m_{0}{ }_{\rightarrow}^{u} m_{3}$ for some u in T^{*} in the coverability graph and m^{\prime} in $\mathbb{N}^{\Omega\left(m_{3}\right)}$ is a partial marking on the places of $\Omega\left(m_{3}\right)$, then there are

- n in \mathbb{N},
- a decomposition $u=u_{1} u_{2} \cdots u_{n+1}$ with each u_{i} in T^{*} (where the markings μ_{i} reached by $m_{0} \xrightarrow{u_{1} \cdots u_{i}} \mu_{i}$ for $i \leq n$ have new ω values),
- sequences w_{1}, \ldots, w_{n} in T^{+},
- numbers k_{1}, \ldots, k_{n} in \mathbb{N},
such that $m_{0} \xrightarrow{u_{1} w_{1}^{k_{1}} u_{2} \cdots u_{n} w_{n}^{k_{n}} u_{n+1}} \mathcal{N}$ m m_{2} with $m_{2}(p)=m_{3}(p)$ for all p in $P \backslash$ $\Omega\left(m_{3}\right)$ and $m_{2}(p) \geq m^{\prime}(p)$ for all p in $\Omega\left(m_{3}\right)$.

Exercise 3 (Decidability of Model-checking Action-based LTL).

1. Let \mathcal{N} be Petri net, G its coverability graph, and m some marking in \mathbb{N}^{P}. An infinite computation is a sequence $m_{0} m_{1} \cdots$ in $\left(\mathbb{N}^{P}\right)^{\omega}$ where for all $i \in \mathbb{N}, m_{i} \rightarrow_{\mathcal{N}}$ m_{i+1} is a transition step. The effect $\Delta(u)$ of a transition sequence u in T^{*} is defined by $\Delta(\varepsilon)=0^{P}$ and $\Delta(u t)=\Delta(u)-W(P, t)+W(t, P)$.
Show that there exists an infinite computation s.t. $m \leq m_{i}$ for infinitely many indices i iff there exists an accessible loop $m^{\prime} \xrightarrow{v} G m^{\prime}$ in G s.t. $m \leq m^{\prime}$ and $\Delta(v) \geq 0^{P}$.
2. Show that action-based LTL model-checking is decidable for labeled Petri nets.

Exercise 4 (Rackoff's Algorithm). A rather severe issue with the coverability graph construction is that it can generate a graph of Ackermannian size compared to that of the original Petri net. We show here a much more decent ExpSpace upper bound, which is matched by an ExpSpace hardness proof by Lipton.

Let us fix a Petri net $\mathcal{N}=\left\langle P, T, F, W, m_{0}\right\rangle$. We consider generalized markings in \mathbb{Z}^{P}. A generalized computation is a sequence $\mu_{1} \cdots \mu_{n}$ in $\left(\mathbb{Z}^{P}\right)^{*}$ such that, for all $1 \leq i<n$, there is a transition t in T with $\mu_{i+1}(p)=\mu_{i}(p)-W(p, t)+W(t, p)$ for all $p \in P$ (i.e. we do not enforce enabling conditions). For a subset I of P, a generalized sequence is I-admissible if furthermore $\mu_{i}(p) \geq W(p, t)$ for all p in I at each step $1 \leq i<n$. For a value B in \mathbb{N}, it is I-B-bounded if furthermore $\mu_{i}(p)<B$ for all p in I at each step $1 \leq i \leq n$. A generalized sequence is an I-covering for m_{1} if $\mu_{1}=m_{0}$ and $\mu_{n}(p) \geq m_{1}(p)$ for all p in I.

Thus a computation is a P-admissible generalized computation, and a P-admissible P-covering for m_{1} answers the coverability problem.

For a Petri net $\mathcal{N}=\left\langle P, T, F, W, m_{0}\right\rangle$ and a marking m_{1} in \mathbb{N}^{P}, let $\ell\left(\mathcal{N}, m_{1}\right)$ be the length of the shortest P-admissible P-covering for m_{1} in \mathcal{N} if one exists, and otherwise $\ell\left(\mathcal{N}, m_{1}\right)=0$. For L, k in \mathbb{N}, define

$$
M_{L}(k)=\sup \left\{\ell\left(\mathcal{N}, m_{1}\right)| | P \mid=k, \max _{p \in P, t \in T} W(p, t)+\max _{p \in P} m_{1}(p)<L\right\}
$$

the maximal $\ell\left(\mathcal{N}, m_{1}\right)$ over all Petri nets \mathcal{N} of dimension k and all markings m_{1} to cover, under some restrictions on incoming weights $W(p, t)$ in \mathcal{N} and values in m_{1}.

1. Show that $M_{L}(0) \leq 1$.
2. We want to show that

$$
M_{L}(k) \leq\left(L \cdot M_{L}(k-1)\right)^{k}+M_{L}(k-1)
$$

for all $k \geq 1$. To this end, we prove that, for every marking m_{1} in \mathbb{N}^{P} for a Petri net \mathcal{N} with $|P|=k$,

$$
\begin{equation*}
\ell\left(\mathcal{N}, m_{1}\right) \leq\left(L \cdot M_{L}(k-1)\right)^{k}+M_{L}(k-1) . \tag{*}
\end{equation*}
$$

Let

$$
B=M_{L}(k-1) \cdot \max _{p \in P, t \in T} W(p, t)+\max _{p \in P} m_{1}(p)
$$

and suppose that there exists a P-admissible P-covering $w=\mu_{1} \cdots \mu_{n}$ for m_{1} in \mathcal{N}.
(a) Show that, if w is $P-B$-bounded, then (*) holds.
(b) Assume the contrary: we can split w as $w_{1} w_{2}$ such that w_{1} is $P-B$-bounded and w_{2} starts with a marking μ_{j} with a place p such that $\mu_{j}(p) \geq B$. Show that (*) also holds.
3. Show that $M_{L}(|P|) \leq L^{(3 \cdot|P|)!}$ for $L \geq 2$.
4. Given a Petri net $\mathcal{N}=\left\langle P, T, W, m_{0}\right\rangle$ and a marking m_{1}, set $L=2+\max _{p \in P, t \in T} W(p, t)+$ $\max _{p \in P} m_{1}(p)$. Assuming that the size n of the instance $\left(\mathcal{N}, m_{1}\right)$ of the coverability problem is more than

$$
\max \left(\log L,|P|, \max _{p \in P, t \in T} \log W(t, p)\right)
$$

deduce that we can guess a P-admissible P-covering for m_{1} of length at most $2^{2^{c \cdot n} \log n}$ for some constant c. Conclude that coverability can be solved in EXPSPACE.

