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TD 6: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture

notes:
r— ry?

S

Ty — g

“M@\M

1. How can you correct this Petri net to avert unwanted behaviours (like r — ry — 771)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and
consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition ¢ makes ¢ firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p; and t. A marking (0,2,1) allows to fire ¢ to reach (0,1,2), but
(1,1,1) does not allow to fire ¢.
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Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net N' = (P, T, F, W, mg). We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in N? if
m(p) > 0.

The models of our LTL formulse are computations momy --- in (N¥)® such that, for
all © € N, m; = m;;1 is a transition step of the Petri net N.

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Biichi automaton By, from a 1-safe Petri net that recognizes all
the infinite computations of N starting in my.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting

problem for 2-counter Minsky machines.
3. We consider now a different set of atomic propositions, such that ¥ = 24P and a
labeled Petri net, with a labeling homomorphism A : T — 3. The models of our

LTL formulee are infinite words agaj - -- in X% such that mg t—on\/ my t—1>/\/ mo - -+
is an execution of N and \(t;) = a; for all .

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

3 Unfoldings

Exercise 4 (Adequate Partial Orders). A partial order < between events is adequate if
the three following conditions are verified:

(a) < is well-founded,

(b) |t] € [t'] implies ¢t < ¢, and
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(c) < is preserved by finite extensions: as in the lecture notes, if ¢ < ¢ and B(t) =
B(t'), and E and E’ are two isomorphic extensions of |¢| and |¢'| with |u| = |t|®FE
and |[v'| = |¢'] @ F', then u < v/

As you can guess, adequate partial orders result in complete unfoldings.
1. Show that < defined by t <, ¢' iff ||¢|| < |[¢']| is adequate.

2. Construct the finite unfolding of the following Petri net using <,; how does the
size of this unfolding relate to the number of reachable markings?

oL

3. Suppose we define an arbitrary total order < on the transitions 7" of the Petri net,
i.e. they are t; < --- < t,. Given a set S of events and conditions of Q, ¢(5) is
the sequence t’f <o tin in T* where ij is the number of events labeled by ¢; in S.
We also note < for the lexicographic order on 7.

Show that <. defined by t < t"iff |[¢]| < [[¢']|or |[£]| = ||¢']| and ¢([t]) < @([t'])
is adequate. Construct the finite unfolding for the previous Petri net using <.

4. There might still be examples where <. performs poorly. One solution would be
to use a total adequate order; why? Give a 1-safe Petri net that shows that <. is
not total.

4 Vector Addition Systems

Exercise 5 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = (Q,0,qo) where @ is a finite set of states, qo € @ the initial state, and
d C Q X Z" x @Q the transition relation. A configuration of V is a pair (¢,v) in @ x N".
An execution of V is a sequence of configurations (qo,vo)(q1,v1) -+ (¢m,vm) such that
vo =0, and for 0 <i <m, (gi_1,v; — v;_1,q) is in 6.

1. Show that any VASS can be simulated by a Petri net—we can give a formal meaning
to ‘simulation’, but you haven’t seen it in class yet, so do it at an intuitive level...
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2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 6 (VAS). An n-dimensional vector addition system (VAS) is a pair (vg, W)
where vg € N™ is the initial vector and W C Z" is the set of transition vectors. An
execution of (vg, W) is a sequence vgvy - - vy, where v; € N for all 0 < i < m and
v; —vi—1 € Wiorall 0 <i<m.

We want to show that any n-dimensional VASS V can be simulated by an (n + 3)-
dimensional VAS (vg, W).
Hint: Let k = |Q], and define the two functions a(i) =i+ 1 and b(i) = (k + 1)(k — 7).
Encode a configuration (g;,v) of V as the vector (v(1),...,v(n),a(i),b(i),0). For every
state ¢;, 0 <1 < k, we add two transition vectors to W:

t; =(0,...,0,—a(i),a(k — 1) — b(i),b(k — 1))
t: =1(0,...,0,b(i), —a(k —i),a(i) — b(k — 1))

For every transition d = (g;,w, g;) of V, we add one transition vector to W:

tqg = (w(l),...,w(n),a(j) —b(:),b(y), —a(i))

1. Show that any execution of V can be simulated by (v, W) for a suitable wy.

2. Conversely, show that this VAS (v, W) simulates V faithfully.
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