TD 6: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

- 1. How can you correct this Petri net to avert unwanted behaviours (like $r \to ry \to rr$) in a 1-safe manner?
- 2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:

producers who can make the actions *produce* (p) or *deliver* (d), and

consumers with the actions *receive* (r) and *consume* (c).

All the producers and consumers communicate through a single unordered channel.

- 1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?
- 2. An *inhibitor arc* between a place p and a transition t makes t firable only if the current marking at p is zero. In the following example, there is such an inhibitor arc between p_1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but (1, 1, 1) does not allow to fire t.

Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is not currently used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider as usual propositional LTL, with a set of atomic propositions AP equal to P the set of places of the Petri net. We define proposition p to hold in a marking m in \mathbb{N}^P if m(p) > 0.

The models of our LTL formulæ are computations $m_0 m_1 \cdots$ in $(\mathbb{N}^P)^{\omega}$ such that, for all $i \in \mathbb{N}, m_i \to_{\mathcal{N}} m_{i+1}$ is a transition step of the Petri net \mathcal{N} .

- 1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1-safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton $\mathcal{B}_{\mathcal{N}}$ from a 1-safe Petri net that recognizes all the infinite computations of \mathcal{N} starting in m_0 .
- 2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.
- 3. We consider now a different set of atomic propositions, such that $\Sigma = 2^{AP}$, and a labeled Petri net, with a labeling homomorphism $\lambda : T \to \Sigma$. The models of our LTL formulæ are infinite words $a_0a_1\cdots$ in Σ^{ω} such that $m_0 \xrightarrow{t_0}_{\mathcal{N}} m_1 \xrightarrow{t_1}_{\mathcal{N}} m_2\cdots$ is an execution of \mathcal{N} and $\lambda(t_i) = a_i$ for all i.

Prove that *action-based* LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

3 Unfoldings

Exercise 4 (Adequate Partial Orders). A partial order \prec between events is *adequate* if the three following conditions are verified:

- (a) \prec is well-founded,
- (b) $\lfloor t \rfloor \subsetneq \lfloor t' \rfloor$ implies $t \prec t'$, and

(c) \prec is preserved by finite extensions: as in the lecture notes, if $t \prec t'$ and B(t) = B(t'), and E and E' are two isomorphic extensions of $\lfloor t \rfloor$ and $\lfloor t' \rfloor$ with $\lfloor u \rfloor = \lfloor t \rfloor \oplus E$ and $\lfloor u' \rfloor = \lfloor t' \rfloor \oplus E'$, then $u \prec u'$.

As you can guess, adequate partial orders result in complete unfoldings.

- 1. Show that \prec_s defined by $t \prec_s t'$ iff $|\lfloor t \rfloor| < |\lfloor t' \rfloor|$ is adequate.
- 2. Construct the finite unfolding of the following Petri net using \prec_s ; how does the size of this unfolding relate to the number of reachable markings?

3. Suppose we define an arbitrary total order \ll on the transitions T of the Petri net, i.e. they are $t_1 \ll \cdots \ll t_n$. Given a set S of events and conditions of \mathcal{Q} , $\varphi(S)$ is the sequence $t_1^{i_1} \cdots t_n^{i_n}$ in T^* where i_j is the number of events labeled by t_j in S. We also note \ll for the lexicographic order on T^* .

Show that \prec_e defined by $t \prec_e t'$ iff $|\lfloor t \rfloor| < |\lfloor t' \rfloor|$ or $|\lfloor t \rfloor| = |\lfloor t' \rfloor|$ and $\varphi(\lfloor t \rfloor) \ll \varphi(\lfloor t' \rfloor)$ is adequate. Construct the finite unfolding for the previous Petri net using \prec_e .

4. There might still be examples where \prec_e performs poorly. One solution would be to use a *total* adequate order; why? Give a 1-safe Petri net that shows that \prec_e is not total.

4 Vector Addition Systems

Exercise 5 (VASS). An *n*-dimensional vector addition system with states (VASS) is a tuple $\mathcal{V} = \langle Q, \delta, q_0 \rangle$ where Q is a finite set of states, $q_0 \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^n \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^n$. An execution of \mathcal{V} is a sequence of configurations $(q_0, v_0)(q_1, v_1) \cdots (q_m, v_m)$ such that $v_0 = \overline{0}$, and for $0 < i \leq m$, $(q_{i-1}, v_i - v_{i-1}, q_i)$ is in δ .

1. Show that any VASS can be simulated by a Petri net—we can give a formal meaning to 'simulation', but you haven't seen it in class yet, so do it at an intuitive level...

2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 6 (VAS). An *n*-dimensional vector addition system (VAS) is a pair (v_0, W) where $v_0 \in \mathbb{N}^n$ is the initial vector and $W \subseteq \mathbb{Z}^n$ is the set of transition vectors. An execution of (v_0, W) is a sequence $v_0v_1 \cdots v_m$ where $v_i \in \mathbb{N}$ for all $0 \leq i \leq m$ and $v_i - v_{i-1} \in W$ for all $0 < i \leq m$.

We want to show that any *n*-dimensional VASS \mathcal{V} can be simulated by an (n+3)-dimensional VAS (v_0, W) .

Hint: Let k = |Q|, and define the two functions a(i) = i + 1 and b(i) = (k + 1)(k - i). Encode a configuration (q_i, v) of \mathcal{V} as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state $q_i, 0 \leq i < k$, we add two transition vectors to W:

$$t_i = (0, \dots, 0, -a(i), a(k-i) - b(i), b(k-i))$$

$$t'_i = (0, \dots, 0, b(i), -a(k-i), a(i) - b(k-i))$$

For every transition $d = (q_i, w, q_j)$ of \mathcal{V} , we add one transition vector to W:

$$t_d = (w(1), \dots, w(n), a(j) - b(i), b(j), -a(i))$$

- 1. Show that any execution of \mathcal{V} can be simulated by (v_0, W) for a suitable v_0 .
- 2. Conversely, show that this VAS (v_0, W) simulates \mathcal{V} faithfully.