TD 2: Temporal Logics

1 LTL

Exercise 1 (Specification). We would like to verify the properties of a boolean circuit with input x, output y, and two registers r_1 and r_2 . We define accordingly AP = $\{x, y, r_1, r_2\}$ as our set of atomic propositions and consider the linear time flow $(\mathbb{N}, <)$ where the runs of the circuit can be seen as temporal structures.

Translate the following properties (a) in LTL(AP) and (b) in FO(<):

- 1. "it is impossible to get two consecutive 1 as output"
- 2. "each time the input is 1, at most two ticks later the output will be 1"
- 3. "each time the input is 1, the register contents remains the same over the next tick"
- 4. "register r_1 is infinitely often 1"

Note that there might be several, non-equivalent formal specifications matching these informal descriptions—that's the whole point of writing specifications!—but your (a) and (b) should be equivalent.

Exercise 2 (Equivalences). We fix a set AP of atomic propositions including $\{p, q, r\}$ and some discrete linear time flow $(\mathbb{T}, <)$.

- 1. Consider the formulæ $\varphi_1 = \mathsf{G}(p \to \mathsf{X} q)$ and $\varphi_2 = \mathsf{G}(p \to ((\neg q) \mathsf{R} q))$.
 - (a) Does φ_2 imply φ_1 ?
 - (b) Does φ_1 imply φ_2 ?
- 2. Simplify the following formula:

 $\mathsf{SF}(((\mathsf{SG}\,r)\,\mathsf{U}\,p)\wedge(\neg q\,\mathsf{U}\,p))\vee\mathsf{SF}(\neg p\vee\mathsf{F}\,q)\;.$

Exercise 3 (Expressiveness). We fix the set $AP = \{p\}$ of atomic propositions, with an associated alphabet $\Sigma = \{\{p\}, \emptyset\}$, and consider the $(\mathbb{N}, <)$ flow of time, where temporal structures can be seen as infinite words over Σ , i.e. words in Σ^{ω} .

- 1. Show that the following subsets of Σ^{ω} are expressible in LTL(AP, U, X):
 - (a) $\{p\}^* \cdot \emptyset^{\omega}$, and

- (b) $\{p\}^n \cdot \emptyset^{\omega}$ for each fixed $n \ge 0$.
- 2. Is the language $(\{p\} \cdot \emptyset)^{\omega}$ expressible in LTL(AP, U, X)?
- 3. Consider the infinite sequence $\sigma_i = \{p\}^i \cdot \emptyset \cdot \{p\}^\omega$ for $i \ge 0$. Show by induction on LTL(AP, U, X) formulæ φ that, for all $n \ge 0$, if φ has less than $n \ge 0$ modalities, then for all $i, i' > n, \sigma_i \models \varphi$ iff $\sigma_{i'} \models \varphi$. (*Hint: For the case of* U, show that $\sigma_i \models \varphi$ iff $\sigma_{n+1} \models \varphi$.)
- 4. Using the previous question, show that the set $(\{p\} \cdot \Sigma)^{\omega}$ is not expressible in LTL(AP) over $(\mathbb{N}, <)$.

2 CTL*

We work throughout this section and the next with tree temporal flows.

Exercise 4 (Equivalences). Are the following formulæ equivalent?

- 1. $\mathsf{AXAG}\,\varphi$ and $\mathsf{AXG}\,\varphi$
- 2. $\mathsf{EXEG}\varphi$ and $\mathsf{EXG}\varphi$
- 3. $\mathsf{A}(\varphi \land \psi)$ and $\mathsf{A} \varphi \land \mathsf{A} \psi$
- 4. $\mathsf{E}(\varphi \land \psi)$ and $\mathsf{E}\varphi \land \mathsf{E}\psi$
- 5. $\neg \mathsf{A}(\varphi \Rightarrow \psi)$ and $\mathsf{E}(\varphi \land \neg \psi)$

3 CTL and CTL⁺

Exercise 5 (CTL Equivalences).

- 1. Are the two formulæ $\varphi = A G(E F p)$ and $\psi = E F p$ equivalent? Does one imply the other?
- 2. Same questions for $\varphi = \mathsf{E} \mathsf{G} q \lor (\mathsf{E} \mathsf{G} p \land \mathsf{E} \mathsf{F} q)$ and $\psi = \mathsf{E}(p \lor q)$.

Exercise 6 (CTL⁺). CTL⁺ extends CTL by allowing boolean connectives on path formulæ, according to the following abstract syntax:

$$\begin{aligned} f &::= \top \mid a \mid f \land g \mid \neg f \mid \mathsf{E}\,\varphi \mid \mathsf{A}\,\varphi & (\text{state formulæ } f,g) \\ \varphi &::= \varphi \land \psi \mid \neg \varphi \mid \mathsf{X}\,f \mid f \,\mathsf{U}\,g & (\text{path formulæ } \varphi,\psi) \end{aligned}$$

where a is an atomic proposition. The associated semantics is that of CTL^{*}.

We want to prove that, for any CTL^+ formula, there exists an equivalent CTL formula.

1. Give an equivalent CTL formula for

$$\mathsf{E}((a_1 \mathsf{U} b_1) \land (a_2 \mathsf{U} b_2))$$

2. Generalize your translation for any formula of form

$$\mathsf{E}(\bigwedge_{i=1,\dots,n} (\psi_i \, \mathsf{U} \, \psi_i') \wedge \mathsf{G} \, \varphi) \;. \tag{1}$$

What is the complexity of your translation?

3. Give an equivalent CTL formula for the following CTL⁺ formula:

$$\mathsf{E}(\mathsf{X} a \land (b \mathsf{U} c))$$
.

4. Using subformulæ of form (1) and E modalities, give an equivalent CTL formula to

$$\mathsf{E}(\mathsf{X}\,\varphi \wedge \bigwedge_{i=1,\dots,n} (\psi_i \,\mathsf{U}\,\psi_i') \wedge \mathsf{G}\,\varphi') \,. \tag{2}$$

What is the complexity of your translation?

5. We only have to transform any CTL⁺ formula into (nested) disjuncts of form (2). Detail this translation for the following formula:

$$\mathsf{A}((\mathsf{F} a \lor \mathsf{X} a \lor \mathsf{X} \neg b \lor \mathsf{F} \neg d) \land (d \lor \mathsf{U} \neg c)) .$$