TD 1: Models

Exercise 1 (Mutual Exclusion).

1. The following program is a mutual exclusion protocol for two processes due to Pnueli. There is a shared boolean variable s, initialized to 1, and two shared boolean variables y_i , i in $\{0,1\}$, initialized to 0. Each process P_i can read the values of s, y_0 , and y_1 , but only write a new value in s and y_i . Here is the code of process P_i in C-like syntax:

```
while (true) {
    /* 1: Noncritical section. */
    atomic { y_i = 1; s = i; };
    /* 2: Wait for turn. */
    wait until ((y_{1-i} == 0) || (s != i));
    /* 3: Critical section. */
    y_i = 0;
}
```

Draw the transition system of each process, and construct their parallel composition. Label the states appropriately using the atomic propositions \mathbf{w}_i and \mathbf{c}_i , holding when process P_i is waiting or in the critical section, respectively.

- 2. Does the algorithm ensure *mutual exclusion*, i.e. that the two processes can never be simultaneously inside the critical section?
- 3. Does the algorithm ensure *starvation freedom*, i.e. that every waiting process will eventually access the critical section, provided that the other process does not stay forever inside the critical section?
- 4. Recall Peterson's mutual exclusion algorithm from the lecture notes: two processes 0 and 1 execute a program to access a critical section (where they can safely modify other shared resources). In order to do so, they share three boolean variables: y_0 , y_1 , and s. Here is the algorithm for P_i with the first two assignments swapped:

```
while (true) {
    /* 1: Noncritical section. */
    s = 1 - i;
    y_i = 1;
    /* 2: Wait for turn. */
    wait until ((y_{1-i} == 0) || (s == i));
    /* 3: Critical section. */
    y_i = 0;
}
```

Show that this modified algorithm is incorrect, i.e. that the two processes can simultaneously be in the critical section. More precisely, compute the part of the low-level transition system that leads to the error.

Exercise 2 (Rendez-vous with Data). Consider the synchronization of transition systems with variables through a rendez-vous mechanism. Such a system is of form $M = (S, \Sigma, \mathcal{V}, (D_v)_{v \in \mathcal{V}}, T, I, AP, l)$ where \mathcal{V} the set of (typed) variables v, each with domain D_v .

We want to extend the rendez-vous mechanism between systems with variables with the ability to exchange data values. For instance, a system M_i may transmit a value mby performing

$$s_i \xrightarrow{!m} s_i'$$

only if some system M_j is ready to receive the message, i.e. to perform

$$s_j \xrightarrow{?v} s'_j$$
,

where v is a variable of M_j and m is in D_v . Of course the synchronization is also possible if M_j performs instead

$$s_j \xrightarrow{?m} s'_j$$
.

- 1. Propose Structural Operational Semantics for the rendez-vous with data synchronization.
- 2. Assume $D_v = D$ for all variables v in \mathcal{V} .

Generalize these semantics to allow sending and receiving *terms* in $T(\Sigma, \mathcal{V})$ build from the variables and a finite set of symbols Σ that contains D.

Exercise 3 (Needham-Schroeder Protocol). We consider the analysis of a public-key authentication protocol proposed by Needham and Schroeder in 1978. The protocol relies on

- the generation of nounces N_C : random numbers that should only be used in a single session, and
- on public key encryption: we denote the encryption of message M using C's public key by $\langle M \rangle_C$.

A(lice) and B(ob) try to make sure of each other's identity by the following (very simplified) exchange:

- 1. Alice first presents herself (the A part of the message) and challenges Bob with her nounce N_A . Assuming both cryptography and random number generation to be perfect, only Bob can decrypt $\langle A, N_A \rangle_B$ and find the correct number N_A .
- 2. Bob responds by proving his identity (the N_A part) and challenges Alice with his own nounce N_B .
- 3. Finally, Alice proves her identity by sending N_B .

The nounces N_A and N_B are used by Alice and Bob as secret keys for their communications.

In order to account for the insecure channel, we have to add an intruder I to the model, who has his own nounce N_I , and can read and send any message it fancies, but can only decrypt $\langle M \rangle_I$ messages and cannot guess the nounces generated by Alice and Bob.

We can model the behaviour of Alice as a transition system M_A with variables and rendez-vous with data, using a single variable N ranging over $D_N = \{N_A, N_B, N_I\}$.

- 1. Provide a model M_B for Bob.
- 2. Provide a model M_I the intruder.
- 3. Unfold an execution path in the synchronized product of M_A , M_B , and M_I that unveils a flaw in the protocol.

Exercise 4 (Channel Systems). The course notes present the semantics of FIFO channels. We consider here the case of a single finite system $M = \langle S, \Sigma, T, I, AP, \ell \rangle$ along with n unbounded channels over a finite set Γ (i.e. each channel is declared as c_i : channel $[\infty]$ of Γ for each $1 \leq i \leq n$). Configurations of the full system \hat{M} are thus in $S \times (\Gamma^*)^n$, i.e. of form $(s, \gamma_1, \ldots, \gamma_n)$ where s is a state of S and channel i contains γ_i . Without loss of generality, we consider the channels to be empty in the initial configurations, i.e. $\hat{I} = \{(s_i, \varepsilon, \ldots, \varepsilon) \mid s_i \in I\}$.

We are interested in the *control-state reachability problem*, i.e. given an *n*-channel system \hat{M} and a state s, does there exist an initial state s_i in I and n strings $\gamma_1, \ldots, \gamma_n$ in Γ^* s.t. $(s_i, \varepsilon, \ldots, \varepsilon) \to^* (s, \gamma_1, \ldots, \gamma_n)$?

- 1. Consider the case $\Gamma = \{a\}$ and n = 1. Show that the control-state reachability problem is decidable in PTIME.
- 2. Show that it becomes undecidable for n=1 and $|\Gamma| \geq 2$.
- 3. We allow the channel systems to test the contents of a channel for emptiness:

$$\frac{\nu(c_j) = \varepsilon \wedge s_i \xrightarrow{\text{empty}(c_j)} s_i'}{(\bar{s}, \nu) \xrightarrow{\text{empty}(c_j)} (\bar{s}', \nu)}$$

Show that the control-state reachability problem is then undecidable for $n \geq 2$ even if $|\Gamma| = 1$. Hint: reduce from the control state reachability in 2-counters Minsky machines.