
Fairness and Petri nets

Answer sketches for Home Assignment 2

To hand in before or on February 17, 2013.
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Electronic versions (PDF only) can be sent by email to 〈schmitz@lsv.ens-cachan.fr〉,
paper versions should be handed in on the 17th or put in my mailbox at LSV, ENS
Cachan.

The following formula will be applied to late assignments: g − 3d + 1, where 0 ≤
g ≤ 20 is the original grade and d > 0 is the number of days of delay, rounded up

onward from the 13th at midnight.

This assignment is concerned with fairness in Petri nets. Fairness properties are
employed to rule out behaviours where a process might wait indefinitely before being
activated.

The numbers in the margins next to exercises are indications of time and difficulty.
Judging from your answers, I did a pretty bad job of evaluating this difficulty, sorry
about that.

1 The Fairness Fragment

We restrict ourselves to a fragment TL(AP,GF) where the only temporal modality is GF

(sometimes also written
∞
F), i.e. with syntax

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | GFϕ

where p ranges over AP.
Let us consider the case of state-based LTL model-checking for Petri nets. In

this framework, we are checking infinite sequences of markings of a Petri net N =
〈P, T,W,m0〉, i.e. infinite sequences m0m1 · · ·mi · · · in (NP )ω such that, for all i in N,
mi →N mi+1 is a transition step of N according to some t in T , thus verifying for
all p in P that mi(p) ≥ W (p, t) and mi+1(p) = mi(p) −W (p, t) + W (t, p). More gen-
erally, the effect ∆(u) of a transition sequence u in T ∗ is defined by ∆(ε) = 0P and
∆(ut) = ∆(u)−W (P, t) +W (t, P ).

The atomic propositions in AP ⊆ P represent places, and are interpreted over such a
sequence by mi |= p iff mi(p) > 0. Put differently, a Petri net N gives rise to an infinite
Kripke structure MN = 〈NP ,→N , {m0},AP, `〉 where `(m) = {p ∈ AP | m(p) > 0}.
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Recall (from TD 6, Exercise 3) that the model-checking problem for state-based
TL(AP,X,U) is undecidable in general and PSpace-complete for safe nets. In the fol-
lowing we restrict ourselves to the model-checking problem for ordinary Petri nets, which
verify W (t, p) ≤ 1 and W (p, t) ≤ 1 for all p in P and t in T (note that this does not
imply that the net is safe).

Exercise 1 (Fairness in Petri Nets). Let N be an ordinary Petri net, m a marking in[4]

{0, 1}P , and t be a transition in T . Reduce the following problems to MC∃(AP,GF)
model-checking instances on an ordinary Petri net N ′:

repeated coverability (RC∃): there exists an infinite execution where m is covered
infinitely often, i.e. such that mi ≥ m for an infinite number of indices i,

weak fairness (WF∀): every infinite execution either fires t infinitely often, or t is
infinitely often not firable,

strong fairness (SF∀): in every infinite execution, if t is firable infinitely often, then it
is actually fired infinitely often.

One can also consider the existential questions WF∃ or SF∃, which ask whether there
exist some fair infinite execution. We will see in sections 2 and 3 that RC∃ and WF∃

are decidable.
It turns out that SF∃ is not decidable. Because the proof of this result [1] is a bit

involved, we rather look at a decidable case:

Exercise 2 (Strong Fairness in Safe Nets). We consider the SF∃ problem when the Petri
net N is known to be safe, i.e. verifying m(p) ≤ 1 for all reachable m and all places p in
P .

Show that SF∃ is PSpace-complete when N is safe. Hint: For hardness, reduce from[4]

reachability in safe nets.
The upper bound was immediate, using Exercise 1 and the fact that MC∃(AP,X,U) is
in PSpace for 1-safe Petri nets (from TD 6, Exercise 3.1).

2 Repeated Coverability

We show in this section that RC∃ is decidable, relying for this on the properties of the
coverability graph seen during TD 7.

Exercise 3 (Decidability). We prove in this exercise that repeated coverability is de-
cidable. Let N be Petri net, G be its coverability graph and m some marking in NP .

Show that there exists an infinite computation s.t. m ≤ mi for infinitely many indices[4]

i iff there exists an accessible loop m′
v−→G m

′ in G s.t. m ≤ m′ and ∆(v) ≥ 0P . Conclude.
Hint: Use Exercise 2 from TD 7.
Assume m0m1m2 · · · is an infinite computation of N with m ≤ mi for infinitely many
indices i0 < i1 < i2 < · · · . Because (N|P |,≤) is a wqo, we can extract an increasing
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subsequence mj1 ≤ mj2 ≤ · · · for j0 < j1 < · · · among {i0, i1, . . . }, i.e. mjk
vk−→N mjk+1

verifies ∆(vk) ≥ 0P for all k, and m0
u−→N mj0 for some u.

By Exercise 2.1 from TD 7, there exists an infinite computation m0
u−→G m′j0

v1−→
m′j1 · · · in G s.t. mjk ≤ m′jk for all k. Because for all k

• m′jk(p) = mjk(p) ≤ mjk+1
= m′jk+1

for all p ∈ P \ Ω(m′jk+1
),

• Ω(m′jk) ⊆ Ω(m′jk+1
), i.e. m′jk(p) = m′jk+1

(p) = ω for all p ∈ Ω(m′jk), and

• m′jk(p) < m′jk+1
(p) = ω for all p ∈ Ω(m′jk+1

) \ Ω(m′jk),

we deduce that m′jk ≤ m
′
jk+1

. However, by definition of G, after K ≤ |P | of these steps,
two successive values are equal: whenever mjk < mjk+1

, at least one new ω value is
introduced. Thus there exists a loop on mjK in G, with effect ∆(vK) ≥ 0P .

Conversely, if there exists an accessible loop m0
u−→G m′

v−→G m′ in G s.t. m ≤
m′ and ∆(v) ≥ 0P , then by Exercise 2.2 from TD 7 and using a partial marking

max(Θ(v)(p),m(p)) for all p in Ω(m′), there exists a run m0
u0w

k1
1 u1···wkn

n un+1−−−−−−−−−−−−→N m1.
Since m1(p) = m′(p) ≥ m(p) on the places p in P \ Ω(m′) and m1(p) ≥ m(p) on the
places p in Ω(m′), m1 ≥ m. Furthermore, since m′

v−→G m′, m1(p) = m′(p) ≥ Θ(v)(p)
on the places p in P \ Ω(m′), and m1(p) ≥ Θ(v)(p) on the places p in Ω(m′), thus the
sequence v can be fired in m1: m1

v−→N m2. Since ∆(v) ≥ 0P , m2 ≥ m1 thus m2 ≥ m
and m2 ≥ Θ(v), and we can construct an infinite computation that covers m infinitely
often by repeatedly applying v.

Remark 3.1 (Non-negative Cycles in G). Beware that, in a cycle m′
v−→G m′ in the

coverability graph, the overall effect ∆(v) is not necessarily ≥ 0. Consider for instance
the following Petri net and its coverability graph:

p0 p1

p2

t1

t2

t4

t3

〈1, 0, 0〉

〈1, ω, 0〉 〈0, 0, 1〉

〈0, ω, 1〉

t1 t2

t1

t2

t3

t4 t3

Its coverability graph has a decreasing cycle on 〈0, ω, 1〉 when firing t4.
Regarding the next question on action-based LTL model-checking, consider the la-

beling λ(t1) = λ(t2) = {a}, λ(t3) = ∅, and λ(t4) = {b}. Then N |=∀ FG¬b, because, in
any infinite execution of N , either t2 is never fired and b never holds, or t4 can only be
fired as many times as t1 was fired before firing t2, i.e. finitely many times. However,
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G |=∃ GF b, by going to the state 〈0, ω, 1〉 and looping on t4. Thus one cannot simply
check G with an LTL formula in order to deduce that the same formula holds in N .

Remark 3.2 (Finding a Witness in G). I did not really expect you to give details on how
a reachable cycle m′

v−→G m
′ with m ≤ m′ and ∆(v) ≥ 0P could be found in G, so I was

not disappointed not to see it in most answers. In fact, it is easily reduced to a linear
programming problem. This problem is thus in PTime in the size of G. A reference on
the complexity of such problems is [2] (beware that most of the paper is dedicated to
the case where |P | is fixed).

Remark 3.3 (RC∀ is Undecidable). Because at least one of you claimed that the same
ideas would lead to a decidability proof for RC∃, I feel compelled to spell out an unde-
cidability proof (I couldn’t find any reference for this result). The proof uses arguments
somewhat similar to the ones used in the undecidability proof of SF∃ by Carstensen [1].

2-Counter Machines. The reduction is from the halting problem in 2-counters Min-
sky machines. Formally, such a machine is a tuple M = 〈Q, δ, q0, qh〉 where Q is a finite
set of states containing an initial state q0 and a halting state qh, and δ maps a state in
Q \ {qh} to a tuple

1. (i, q) standing for the action “ci++; goto q”, or

2. (i, q, q′) standing for the action “if ci==0 then goto q; else ci--; goto q′”

for some i in {0, 1} and q, q′ in Q. A configuration of M is a triple C = (q, n0, n1)
in Q × N × N holding the current state and the current values in the two counters c0

and c1. The initial configuration is C0 = (q0, 0, 0), and in a configuration (q, n0, n1) we
either halt if q = qh, or apply the action δ(q). Because M is deterministic, there is a
single possible execution starting from C0. The question whether M halts, i.e. whether
it reaches a configuration (qh, n0, n1), regardless of the values n0 and n1 of the counters,
is undecidable.

Never Covered. As a first step, let us prove that the following variant of RC∀ is
undecidable: given 〈N ,m〉, does there exist an infinite execution where m is never
covered?

Given an instance 〈M〉 of the 2-counter halting problem, we construct a Petri net
N = 〈P, T,W,m0〉 that will simulate the counter machine: we set

Q̄ = {q̄ | ∃i, q′, q′′.δ(q) = (i, q′, q′′)} P = Q ] Q̄ ] {z, c0, c1} ,

i.e. each state and each counter of M is associated to a place, and states with actions
δ(q) of type 2 have an additional state q̄; the place z is used to express that we are
currently testing a counter for zero. The transitions of N depend on the actions of M
and are best defined in pictures:
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δ(q) = (i, q′) δ(q) = (i, q′, q′′)

q

q′ ci

tq

q ci

q̄

q′

q′′

z

c1−i

tq= tq 6=

tq̄

The initial marking is m0 = q0. We claim thatM does not halt if and only if there exists
an infinite computation where m = z ⊕ c0 ⊕ c1 is never covered (here ⊕ is the multiset
union operator, i.e. m(z) = m(c0) = m(c0) = 1 and m(p) = 0 for all p ∈ P \ {m, c0, c1}).

Let us start with a few easy observations: the place z is marked whenever some q̄
is, and the places in Q and Q̄ contain together exactly one token at all times. We can
with a configuration C = (q, n0, n1) ofM a sequence µ(C) of one or two markings in NP
defined by µ(C) = q ⊕ cn0

0 ⊕ c
n1
1 · µ′(C) where µ′(C) = z ⊕ q̄ ⊕ cn1+1

1 if δ(q) = (0, q′, q′′)
and n0 = 0, µ′(C) = z ⊕ q̄ ⊕ cn0+1

0 if δ(q) = (1, q′, q′′) and n1 = 0, and µ′(C) is the
empty sequence otherwise. We can extend µ to be a homomorphism from (Q×N×N)∗

to (NP )∗.
In the case of δ(q) = (i, q′, q′′), note that N simulates M with a non-deterministic

choice instead of the deterministic action: the transition tq= can be fired even if ci is not
empty. It is rather immediate that every execution C0C1 · · · ofM can be simulated byN
(by the execution µ(C0C1 · · · )), but that some executions of N do not have counterparts
in M, i.e. those executions where, in at least one occasion, a transition tq= is fired
athough the corresponding counter place ci is not empty. In such a case, the sequence
of markings does not have a pre-image by µ.

If we reach some marking covering z, then we are necessarily covering some q̄, i.e. we
are simulating a zero-test for some δ(q) = (i, q, q′); thus, if we are covering m, then our
simulation of this test is incorrect: the associated configuration has ci > 0, although in
q̄ we are already commited to the case ci==0 of our action.

Now, ifM does not halt, then there is an infinite execution (q0, 0, 0)(q1, c0,1, c1,1) · · ·
of M. Then we can simulate this infinite execution in N starting from m0. Conversely,
if there exists an infinite execution m0m1 · · · of N that never covers m, then we can
associate to this execution an infinite sequence µ−1(m0m1 · · · ) of configurations of M:
because we are never covering m, we know that our simulation only allows to choose a
zero-test when the corresponding counter value is 0, and the sequence m0m1 · · · is in
the range of µ. Because this execution in M is infinite, M does not halt.
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Eventually Never Covered. Let us now turn to RC∀: we actually consider its com-
plement, which asks whether there exists an infinite execution verifying FG

∨
p∈m ¬p, i.e.

where m is eventually never covered.
We are again going to reuse the previous construction of a Petri net N from a

Minsky machineM. Observe that, if N eventually never covers m, then it means that it
eventually simulates M faithfully. The only issue is that the configuration of M at the
point where the simulations starts being faithful can be arbitrary, and different from the
initial configuration C0 = (q0, 0, 0). Here we proceed differently from the “time budget”
technique of Carstensen [1] and rather reduce from the immortality problem:

Immortality Problem. Given a 2-counter Minsky machine M, the immortality
problem (IP) asks whether there exists some configuration C = (q, n0, n1) such that M
does not halt when started in C. Hooper [4] proves this problem to be undecidable.

Let us reduce from IP: we modify the Petri net N constructed fromM: we construct
a net N ′ = 〈P ′, T ′,W ′,m′0〉 and a marking m such thatM has an immortal configuration
if and only if N ′ has an infinite execution that eventually never covers m. Our net N ′ is
based on N but features an initialization component tasked with generating some initial
configuration for M to start with: we add a place i (for “initializing”) to P and the
following transitions:

i

c0

c1

z

q

∀q ∈ Q

t0

t1

t′q

Let m′0 = i⊕ z ⊕ c0 ⊕ c1; then N ′ initially puts some values n0 + 1 and n1 + 1 in c0 and
c1 by repeatedly firing t0 and t1, before firing some “start” transition t′q and simulating
N with q as initial state, n0 in c0 and n1 in c1.

Let again m = z ⊕ c0 ⊕ c1: we claim that M has an immortal configuration if and
only if 〈N ′,m〉 is not an instance of RC∀, i.e. if and only if there is an infinite execution
in N ′ that eventually never covers m.

First suppose there exists an infinite execution m′0m
′
1 · · · of N ′ that eventually never

covers m, i.e. there exists an index j such that for all k ≥ j, mk 6≤ m. Because during the
initialization phase ofN ′ all the markings coverm, in this infinite execution, some “start”
transition t′q must be fired before this index j. Thus the infinite suffix m′jm

′
j+1 · · · of

this execution is in “running mode”, where N ′ simulates N , which in turn simulatesM.
Because we never cover m in this suffix, the execution inM starting in C = µ−1(m′j) (or

C = µ−1(m′jm
′
j+1) or C = µ−1(m′j−1m

′
j) if places in Q̄ are involved) is infinite, i.e. the

configuration C is immortal inM. Conversely, if there exists an immortal configuration
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in M, say C = (q, n0, n1), then the initialization phase of N ′ can build the marking
q ⊕ n0 ⊕ n1 by firing n0 times the transition t0, n1 times the transition t1, and the
“start” transition t′q, and N ′ can then simulate M without errors, i.e. without ever
covering m after the initialization.

Undecidability of SF∃. Finally, let us see how the previous construction can be used
to show the undecidability of SF∃. It suffices to add a transition t with incoming arcs
from z, c0 and c1 and no outgoing arcs: then firing t deadlocks the Petri net (because
the tq̄ transitions are then inhibited), thus no infinite execution of the net can ever fire
t, and any strongly fair infinite execution needs to eventually never cover m = W (P, t).

Exercise 4 (Action-Based LTL). Recall from Exercise 3 of TD 6 that action-based LTL
considers labeled Petri nets 〈N , λ〉 where λ is a labelling from T to 2AP. The model-
checking problem then considers the infinite sequences λ(t1)λ(t2) · · · of transition labels

along an execution m0
t1−→N m1

t2−→N m2 · · · ; alternatively, we can consider the Kripke
structure associated with N to be Mλ

N = 〈NP ×T, T ′, I, `〉 where T ′ = {((m, t), (m′, t′)) |
m

t−→N m′ ∧m′ ≥W (P, t′)}, I = {m0} × {t ∈ T | m0 ≥W (P, t)}, and `(m, t) = λ(t).
Show that action-based LTL model-checking is decidable for labeled Petri nets.[3]

Given an action-based LTL formula ϕ, construct its Büchi automaton B¬ϕ = 〈Q,Σ, δ, I, F 〉;
wlog. let I = {q0}. From the labeled Petri netN = 〈P, T,W,m0, λ〉 to be checked against
ϕ and B¬ϕ, we construct a Petri net N¬ϕ = 〈P ]Q,T ′,W ′,m′0〉 s.t. N¬ϕ has an infinite
computation that covers some place in F infinitely often iff N |= ¬ϕ.

Define for this T ′ = {(t, (q, a, q′)) ∈ T × δ | λ(t) = a} and

W ′(p, (t, (q, a, q′))) = W (p, t) W ′((t, (q, a, q′)), p) = W (t, p)

W ′(q′′, (t, (q, a, q′))) = (q′′ = q) W ′(t, (q, a, q′)), q′′) = (q′′ = q′)

m′0(p) = m0(p) m′0(q′′) = (q′′ = q0)

for all p in P , q′′ in Q, t in T , and (q, a, q′) in δ with λ(t) = a.

Thus there is a computation m′0
t1,(q0,a1,q1)−−−−−−−→ m′1

t2,(q1,a2,q2)−−−−−−−→ m′2 · · · in N¬ϕ iff there

is one m0
t1−→ m1

t2−→ m2 · · · in N and one q0
a1−→ q1

a2−→ q2 · · · with λ(ti) = ai and
m′i = mi ⊕ qi, which yields the result.

Remark 4.1 (Complexity). Although the algorithms in exercises 3 and 4 are of Acker-
mannian complexity (due to their relying on the construction of the coverability graph),
the problems are actually ExpSpace-complete, a result due to Habermehl [3].

3 Weak Fairness

We examine in this section the relationship between the existential weak fairness problem
WF∃ and the reachability problem (RP) in Petri nets: given a Petri net N and a marking
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m in NP , does there exist a finite run m0 →∗N m? This problem is known to be decidable
[9, 7, 8], although its exact complexity is still open.

Exercise 5 (Lower Bounds). We want to exhibit a reduction from RP to WF∃.

1. Show that RP can be reduced to the following problem: given a Petri net N and[2]

a place p, does there exist a reachable marking m (i.e. verifying m0 →∗N m) such
that m(p) = 0?

Let 〈N ,m〉 be an instance of RP with N = 〈P, T,W,m0〉; we construct an instance
〈N ′, s〉 of the empty place problem s.t. m0 →∗N m iff ∃m′.m′(s) = 0∧m′0 →∗N ′ m′.
The idea behind this reduction is that the place s in N ′ will hold the sum plus
one of the numbers of tokens in all the places in N , and a new transition tm of N ′
will empty this place if and only if m was reachable in N .

Given a marking m in NP , we write σ(m) for the sum of its components, i.e. for∑
p∈P m(p). We construct N ′ = 〈P ′, T ] {tm},W ′,m′0〉 where P ′ = P ] {s}, m′0 =

m0 ⊕ s1+σ(m0), where the restriction of W ′ to P and T is W , but each transition
t in T additionally verifies W ′(s, t) = σ(W (P, t)) and W ′(t, s) = σ(W (t, P )), and
the transition tm has W ′(P ′, tm) = m ⊕ s1+σ(m) and W ′(tm, P

′) = 0. Note that
the modified transitions in T preserve as an invariant that m′(s) = 1 + σ(m′|P ) for

all reachable markings m′ in N .

Assume m0 →∗N m. Then, by firing the same sequence of transitions in N ′,
m′0 = m0 ⊕ s1+σ(m0) →∗N ′ m ⊕ s1+σ(m) tm−→N ′ 0, i.e. a marking with 0 in s.
Conversely, assume that m′0 →∗N ′ m′ with m′(s) = 0. Because m′0(s) > 0 and
due to the invariant on the transitions in T , necessarily tm was fired last from the
marking m′′ = m ⊕ s1+σ(m): hence the same sequence of transitions up to that
marking m′′ reaches m in N .

2. Show that RP can be reduced to WF∃.[3]

We reduce from an instance 〈N , p〉 of the previous problem. We construct for
this a new Petri net N ′ = 〈P ] {r}, T ] {tp, te},W ′,m0 ⊕ r〉, where W ′ extends
W , where the place r is a “running place” and te is a dummy transition with
W ′(P, te) = W ′(te, P ) = 0 and W ′(r, te) = W ′(r, t) = W ′(t, r) = W ′(te, r) = 1 for
all t ∈ T .

The transition tp is used for the fairness condition: we letW ′(r, tp) = 1, W ′(P, tp) =
p, and W ′(tp, P ] {r}) = 0, so that tp can only be fired if p is marked, and if fired
then it deadlocks N ′. Thus tp cannot be fired infinitely often, and weak fairness
can only be enforced if it is infinitely often not firable along some infinite execution.

8
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∀t ∈ T

r

tet

N

p tp

Assume that m0 →∗N m with m(p) = 0. Then the same sequence of transitions can
be fired in N ′, leading to m0 ⊕ r →∗N ′ m⊕ r, from which te can be fired infinitely
often: this constructs an infinite execution of N where tp is infinitely often not
firable, i.e. a weakly fair execution for tp.

Conversely, if there exists an infinite execution m′0m
′
1 · · · inN ′ where tp is infinitely

often not firable. Because any infinite execution leaves r marked at all times, i.e.
m′i(r) = 1 for all i, this means that p is empty infinitely often, i.e. m′i(p) = 0

for infinitely many i. Pick the first such i: the execution m0 ⊕ r
w−→N ′ mi ⊕ r

with w ∈ (T ′)∗ can be mapped to an execution m0
π(w)−−−→N m for the projection

defined by π(te) = ε and π(t) = t for all t ∈ T . The marking m′i = mi ⊕ r verifies
mi(p) = m′i(p) = 0.

Exercise 6 (Decidability). We want to show that WF∃ is decidable. Let us first con-
centrate on the subcase where there exists an infinite execution where t is infinitely often
not firable.

1. Reduce this case to the question whether there exists a place p in P and an exe-[1]

cution m0 →∗N m→+
N m′ with m ≤ m′ and m(p) = m′(p) = 0.

The question is badly written... The problem I had in mind was: given p, whether
there exists an execution m0 →∗N m→+

N m′ with m ≤ m′ and m(p) = m′(p) = 0.

Because we assume our Petri nets to be ordinary, if t is not firable in a marking
m, then there exists some place p such that W (p, t) = 1 and m(p) = 0.

We reduce the existence of an infinite execution where t is infinitely often not
firable to a finite disjunction of instances of our new problem, one for each p such
that W (p, t) = 1.

Assume first that there exists an infinite execution m0 →∗N m
w−→N m′ with w

in T+ verifying ∆(w) ≥ 0 and m(p) = m′(p) = 0 where W (p, t) = 1. Then
∆(w)(p) = 0, and because m′ ≥ m, we can fire again the sequence w from m′,
leading to a marking m′′ ≥ m′ ≥ m with m′′(p) = m′(p) = m(p) = 0, and so on,
thereby building an infinite execution where t is infinitely often not firable.

Conversely, suppose that there exists an infinite execution m0m1 · · · in N such
that t is infinitely often not firable. Color each of the infinitely many markings
mi that do not cover t in this sequence with cp for some place p with W (p, t) = 1

9
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but mi(p) = 0. Since P is finite, there exists some color cp that occurs infinitely
often; this defines an infinite subsequence mi0mi1 · · · of markings in NP where
mij (p) = 0 for all j. By Dickson’s Lemma, there exist two indices j1 < j2 such
that mij1

≤ mij2
, thus exhibiting the desired witness m0 →∗N mij1

→+
N mij2

with
mij1

(p) = mij2
(p) = 0.

2. Reduce the previous question to an instance of the reachability problem.[2]

An instance of the previous problem is a pair 〈N , p0〉. We construct an instance
〈N ′,m〉 of RP from it: the idea is that N ′ will work in three phases on a set of
places P ] P̄ , such that during the first phase it simulates m0 →∗N m on both the
places in P and P̄ , and during the second phase it simulates m →+

N m′ on the
places in P only. The third phase checks whether the execution is a witness for our
initial problem: by decrementing the places p and p̄ synchronously, N ′ can check
that m′ ≥ m, and the final reachability test checks that m(p0) = m′(p0) = 0.

Let P ′ = P]P̄]{p1, p2, p3, pr} where P̄ is a disjoint copy of P . The places p1, p2, p3

indicate in which phase we are working. Let T ′ = T1 ] T2 ] T3 ] {t1, t2, tr}.

∀t ∈ T

∀p ∈• t ∀p′ ∈ t•

p1

p

p̄

p′

p̄′
t̄

p2t1

∀t ∈ T

∀p ∈• t ∀p′ ∈ t•

p

p̄

p′

p̄′

pr tr

t

p3t2

∀p ∈ P \ {p0}
p

p̄

tp

t̄p

1. In the first phase, while there is a token in p1, the transitions t̄ in T1 =
{t̄ | t ∈ T} verify W ′(p1, t̄) = W ′(t̄, p1) = 1, W ′(p, t̄) = W ′(t̄, p) = 0 for
p ∈ {p2, pr, p3}, W ′(P, t̄) = W ′(P̄ , t̄) = W (P, t), and W ′(t̄, P ) = W ′(t̄, P̄ ) =
W (t, P ); thus they simulate N on P and P̄ simultaneously.

2. In the second phase, the transitions t in T2 = T verify W ′(p2, t̄) = W ′(t̄, p2) =
W ′(t, pr) = 1, W ′(pr, t) = 0, W ′(p, t) = W ′(t, p) = 0 for p ∈ P̄ ] {p1, p3},
W ′(P, t) = W (P, t), and W ′(t, P ) = W (t, P ); thus they simulate N on P
alone and increment pr with each transition.

3. Finally, let T3 = {tp, t̄p | p ∈ P \ {p0}}. The transitions t̄p verify W ′(p, t̄p) =
W ′(p̄, t̄p) = W ′(p3, t̄p) = W ′(t̄p, p3) = 1 and have zero weights on all the other
places: they decrement the places p 6= p0 and p̄ synchronously. The transitions
tp decrement the places p 6= p0: W ′(p, tp) = W ′(p3, tp) = W ′(tp, p3) = 1 and
zero everywhere else.

10
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The transition tr allows to decrement the place pr: W
′(pr, tr) = 1 and zero every-

where else. The transitions t1 and t2 move a token from pi to pi+1 for i ∈ {1, 2}.
Given a marking m over NP , we write m̄ for the marking over NP̄ verifying m(p) =
m̄(p̄) for all p in P . We then define the initial marking m′0 = p1 ⊕m0 ⊕ m̄0 and
the target marking m = p3 ⊕ pr.
Assume first m0

u−→N m1
v−→N m2 with u in T ∗, v in T+, m1(p0) = m2(p0) = 0,

and m1 ≤ m2. Then we can simulate this execution by

m′0 = m0 ⊕ m̄0 ⊕ p1
ū−→N ′ m1 ⊕ m̄1 ⊕ p1

t1−→N ′ m1 ⊕ m̄1 ⊕ p2

v−→N ′ m2 ⊕ m̄1 ⊕ p|v|r ⊕ p2
t2−→N ′ m2 ⊕ m̄1 ⊕ p|v|r ⊕ p3

t
|v|−1
r−−−→N ′ m2 ⊕ m̄1 ⊕ pr ⊕ p3∏
p∈P\{p0}

t̄
m1(p)
p

−−−−−−−−−−−→N ′ (m2 	m1)⊕ pr ⊕ p3∏
p∈P\{p0}

t
m2(p)−m1(p)
p

−−−−−−−−−−−−−−−→N ′ pr ⊕ p3 .

Conversely, assume that m is reachable in N ′. Then we have an execution rather
similar to the above, except that the transitions tp, t̄p, and tr might occur in
a different order (tr might even occur during phase 2). By semi-commutativity
arguments, namely that

• for all t in T2, if trt can be fired, then ttr can also be fired, and for all t in T3,
if ttr can be fired, then trt can be fired,

• for all p in P \ {p0}, if tpt̄p can be fired, then t̄ptp can be fired,

• for all p 6= p′ in P \ {p0}, tptp′ can be fired iff tp′tp can be fired and t̄pt̄p′ can
be fired iff t̄p′ t̄p can be fired,

we can actually find an execution of the desired form. Then, there exists an
execution m0

u−→N m1
v−→N m2 with |v| > 0 since pr is marked, m1(p0) = m2(p0) =

0 since p0 is not marked in m and is not modified by the transitions in phase 3,
and m1 ≤ m2 since we were able to execute the transitions t̄p some (possibly null)
amount of times to reach a marking m2 	m1 over P .

3. Deduce that WF∃ is decidable.[2]

The other possibility for the existence of an infinite weakly fair execution is for t
to be fired infinitely often, which easily reduces to an RC instance.

Remark 6.1. The interreducibility of WF∃ and RP was first noted by Howell et al. [5].
The decidability of WF∃ has been generalized by Jančar [6] to a fragment of state-based
MC∃(GF) over Petri nets.
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